
1

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 1

Wireless Embedded Systems and Networking

Foundations of IP-based Ubiquitous Sensor Networks

Operating Systems for Communication-Centric Devices
TinyOS-based IP-WSNs

David E. Culler
University of California, Berkeley

Arch Rock Corp.
July 9, 2007

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 2

Technology Perspective

tier1tier1

tier2tier2

ClientClient

ServerServer

embedded netembedded net

Physical WorldPhysical World

IT EnterpriseIT Enterprise

internetinternet

SensorSensor

tier4tier4
MoteMote

tier3tier3 Routers, Routers,
APsAPs, ,
GatewaysGateways

Embedded Tier: (mote)

Router/Gateway Tier:
• Linux, Linux, Linux

Server Tier:
• Unix (Linux, Solaris, AIX, HPux), Windows
• App Servers (Axis, J2EE, Weblogic, SAP, Oracle, …)

Client Tier: (desk,lap,PDA,MP3, phone)
• Windows, Wince, Symbian, Linux/Java

2

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 3

Traditional Systems

• Well established
layers of abstractions

• Strict boundaries
• Ample resources
• Independent

Applications at
endpoints
communicate pt-pt
through routers

• Well attended

User

System

Physical Layer
Data Link
Network

Transport
Network Stack

Threads

Address Space

Drivers

Files

Application

Application

Routers

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 4

by comparison, WSNs ...

• Highly Constrained resources
– processing, storage, bandwidth, power

• Applications spread over many small nodes
– self-organizing Collectives
– highly integrated with changing environment and network
– communication is fundamental

• Concurrency intensive in bursts
– streams of sensor data and

network traffic
• Robust

– inaccessible, critical operation

• Unclear where the
boundaries belong

– even HW/SW will move

=> Provide a framework for:

• Resource-constrained
concurrency

• Defining boundaries

• Appl’n-specific processing and
power management

allow abstractions to emerge

3

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 5

TinyOS
• New operating system built specifically for

wireless sensor networks
– Small, robust, communication centric design
– Resource-constrained concurrency
– Structured Event-driven SW architecture
– Tool for protocols and dist. Algorithms

• Designed for synthesis and verification
– Eg. Ptolemy, Metropolis, …
– Whole-system compile-time analysis

• Rich set of services and development
environment

• World-wide adoption
– Open source, lead by UCB / Intel
– Corporate and academic (1000s)
– Dozen of platforms
– de facto sensor net standard

CC2420

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocksbi
t

by
te

pa
ck

et

Route map router sensor appln

ap
pl

ic
at

io
n

HW

SW

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 6

A worldwide community

Storage
Wireless Processing

Sensors

SmartDust
NEST

Wireless Sensor Networks

4

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 7

Sensors

Modern Mote Tier TinyOS Architecture

tier1

tier2

client

server

tier3 SensorNet
GW/Proxy

physical info net

MCU Radio Sensors
Hardware Abstraction Layer

TinyOS Runtime Services
Common Link Abstraction

Networking Protocols

M
anagem

ent

• Embedded applications built on a rich set
of node services.

– Timing, sensor streams, storage
– Local processing
– Reliable, low-power communication
– Platform independent + extensions

Embedded Application
tier4

“mote”

Physical World

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 8

Storage ProcessingWireless Sensors
WSN mote platform

Abstractions Emerge from Experience

Radio
Serial

Flash ADC,
Sensor I/F

MCU, Timers,
Bus,…

Link

Network
Protocols Blocks,

Logs, Files
Scheduling,

Management
Streaming

drivers

Over-the-air
Programming

Applications and Services

Communication Centric
Resource-Constrained
Event-driven Execution

Ti
ny

O
S

2.
0

5

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 9

Stack Library Alternative

MicroController

802.15.4 Radio

Hardware

Software cmds interrupts

Proprietary

Network Stack
(zigbee spec or

other)

cmds interrupts

send
start
stop

OEM / Developer

Custom Code,

RTOS, or other
TICK

OEM/Dev Hardware

• Link & networks protocols
buried in block-box library

– Ember, Figure8, . . .

• No execution model or
storage model

• Arbitrary system/user code
must TICKle it “sufficiently
often”

• Undefined call duration
• No system services
• Difficult to validate

• Same hardware, but a very
different approach

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 10

TinyOS from First Principles

6

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 11

Characteristics of Network Sensors
• Small physical size and low power consumption
• Concurrency-intensive operation

– multiple flows, not wait-command-respond
• Limited Physical Parallelism and Controller

Hierarchy
– primitive direct-to-device interface
– Asynchronous and synchronous devices

• Diversity in Design and Usage
– application specific, not general purpose
– huge device variation
=> efficient modularity
=> migration across HW/SW boundary

• Robust Operation
– numerous, unattended, critical
=> narrow interfaces

sensorsactuators

network

storage

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 12

Classical RTOS approaches
• Responsiveness

=> Provide some form of user-specified interrupt handler
» User threads in kernel, user-level interrupts

– Guarantees?
• Deadlines / Controlled Scheduling

– Static set of tasks with prespecified constraints
» Generate overall schedule
=> Doesn’t deal with unpredictable events, especially communication

– Threads + synchronization operations
=> Complex scheduler to coerce into meeting constraints

• Priorities, earliest deadline first, rate monotonic
• Priority inversion, load shedding, live lock, deadlock

» Sophisticated mutex and signal operations
• Communication among parallel entities

– Shared (global) variables: ultimate unstructured programming
– Mail boxes (msg passing)

=> external communication considered harmful
– Fold in as RPC

• Requires multiple (sparse) stacks
– Preemption or yield

7

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 13

Alternative Starting Points
• Event-driven models

– Easy to schedule handfuls of small, roughly uniform things
» State transitions (but what storage and comm model?)

– Usually results in brittle monolithic dispatch structures
• Structured event-driven models

– Logical chunks of computation and state that service events via execution of
internal threads

• Threaded Abstract machine
– Developed as compilation target of inherently parallel languages

» vast dynamic parallelism
» Hide long-latency operations

– Simple two-level scheduling hierarchy
– Dynamic tree of code- block activations with internal inlets and threads

• Active Messages
– Both parties in communication know format of the message
– Fine-grain dispatch and consume without parsing

• Concurrent Data-structures
– Non-blocking, lock-free (Herlihy)

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 14

TinyOS design goals

• Simple framework for resource constrained concurrency
– Single stack

• Flexible hardware/software and system boundary
• Expressive enough to build sophisticated, application specific

system structures
– Avoid arbitrary constraints on optimization

• Communication is integral to execution
– Asynchrony is first class

• Promote robustness
– Modular
– Static allocation
– Explicit success/fail at all interfaces
– Reuse

• Ease of interpositioning

8

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 15

Embedded System Design: Hardware Abstraction

• Abstract a hardware unit for convenient software
access.

• Datasheet describes set of interfaces (pins, wires,
busses) and operations

– Commands that can be asserted or issued to it
– Events that it will signal or raise
– Interfaces to other hardware units that it is attached to

• Internally the unit has state and computational
processes that operate in parallel with other units.

state

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 16

Embedded System Design: Data Acquisition
• Configure and command ADC

to sample external I/O
attached to sensor.

– Either directly or over a bus protocol
• Obtain readings upon

notification by polling or
handling interrupts

– One short or periodic
• Perform processing on the

readings (smoothing,
thresholding, transformation)
and possibly signal higher
level notification

• Similar for DAC to actuator

ADC

Analog
sensor

Digital
sensor

Digital Signal
Processing Software

storage
threads

Bus

9

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 17

Embedded System Design: Protocol Implementation
• For

– Bus Protocols within a node,
– Link Protocols between two nodes in

direct communication,
– Network Protocols between possibly

widely separate node.

• Each has
– Set of operations that it issues
– Set responses that it receives

» synchronous or asynchronous,
– state it maintains,
– state-transition diagram that it

implements

• And various commands and
events that define its interface
above and below

– Exceptions, etc.

Communication Protocol

State
processing

Lower Level of stack

Higher Level of stack

Logical
Peer
Comm.

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 18

Tiny OS Concepts
• System = Scheduler + graph of Components

– Hierarchical
• Component:

– Set of bidirectional Command/Event Interfaces
– Commands Handlers
– Event Handlers
– Frame (storage)
– Tasks (concurrency)

• Constrained two-level scheduling model
– tasks + events

• Constrained Storage Model
– frame per component,
– Single shared stack,
– no heap

• Structured event-driven processing
• Very lean multithreading
• Efficient Layering

– Events can signal events
• Extremely modular construction

– Separates creation and composition of functional elements

Component
Internal

State

C
om

m
an

ds

Ev
en

ts

interface

Task

10

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 19

Application = Graph of Components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocksbi
t

by
te

pa
ck

et

Route map router sensor appln

ap
pl

ic
at

io
n

HW

SW

Graph of cooperating state
machines on shared stack
Execution driven by interrupts

* Early TinyOS 0.x component graph going all the way
down to modulating the RF channel in software.

Modular construction of
Protocols.

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 20

TOS Execution Model

• commands request action
– ack/nack at every boundary
– call cmd or post task

• events notify occurrence
– HW intrpt at lowest level
– may signal events
– call cmds
– post tasks

• Tasks provide logical
concurrency

– preempted by events

• Migration of HW/SW
boundary

RFM

Radio byte

Radio Packet

bi
t

by
te

pa
ck

et

event-driven bit-pump

event-driven byte-pump

event-driven packet-pump

message-event driven
active message

application comp

encode/decode

crc

data processing

11

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 21

TinyOS Execution Contexts

• Events generated by interrupts preempt tasks
• Tasks do not preempt tasks
• Both essential process state transitions

Hardware

Interrupts

ev
en

ts

commands

Tasks

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 22

Dynamics of Events and Threads

bit event filtered
at byte layer

bit event =>
end of byte =>

end of packet =>
end of msg send

thread posted to start

send next message

radio takes clock events to detect recv

12

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 23

Programming TinyOS - nesC
• TinyOS 1.x and TinyOS 2.x are written in an extension of C,

called nesC
• Applications are too!

– just additional components composed with the OS components

• Provides syntax for TinyOS concurrency and storage model
– commands, events, tasks
– local frame variables

• Rich Compositional Support
– separation of definition and linkage
– robustness through narrow interfaces and reuse
– interpositioning

• Whole system analysis and optimization
• Platform independent data types and structure

– because packets are sent between different kinds of processors!

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 24

Composition
• A component specifies a set of interfaces by

which it is connected to other components
– provides a set of interfaces to other components
– uses a set of interfaces provided by other components

• Interfaces are bi-directional
– include commands and events

• Interface methods form the external namespace
of the component

– Composition by “wiring”

Timer Component

StdControl Timer

Clock

provides

uses

provides

interface StdControl;

interface Timer:

uses

interface Clock

13

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 25

Split-phase abstraction of HW
• Command synchronously initiates action
• Device operates concurrently
• Signals event(s) in response

– ADC
– Clock
– Send (UART, Radio, …)
– Recv – depending on model
– Coprocessor

• Higher level (SW) processes don’t wait or poll
– Allows automated power management

• Higher level components behave the same way
– Tasks provide internal concurrency where there is no explicit hardware

concurrency

• Components (even subtrees) replaced by HW and vice versa

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 26

TASKS
• provide concurrency internal to a component

– longer running operations
– are preempted by events
– able to perform operations beyond event context
– may call commands
– may signal events
– not preempted by tasks

• Simple (pluggable) Scheduler
– Composition exercises substantial control over scheduling

{
...
post TskName();
...
}

task void TskName {
...
}

14

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 27

Typical application use of tasks

• event driven data acquisition
• schedule task to do computational portion

event result_t sensor.dataReady(uint16_t data) {

putdata(data);

post processData();

return SUCCESS;

}

task void processData() {

int16_t i, sum=0;

for (i=0; i ‹ maxdata; i++)

sum += (rdata[i] ›› 7);

display(sum ›› shiftdata);

}

• 128 Hz sampling rate
• simple FIR filter
• dynamic software tuning for centering the
magnetometer signal (1208 bytes)

• digital control of analog, not DSP
• ADC (196 bytes)

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 28

Tasks in low-level operation
• transmit packet

– send command schedules task to calculate CRC
– task initiated byte-level data pump
– events keep the pump flowing

• receive packet
– receive event schedules task to check CRC
– task signals packet ready if OK

• i2c component
– i2c bus has long suspensive operations
– tasks used to create split-phase interface
– events can procede during bus transactions

• Timer
– Post task in-critical section, signal event when current task complete

Make SW look like HW

15

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 29

Structured Events vs Multi-tasking
• Storage
• Control Paradigm

– Always block/yield – rely on thread switching
– Never block – rely on event signaling

• Communication & Coordination among potentially parallel
activities

– Threads: global variables/mailboxes, mutex, signaling
– Preemptive – handle many potential races
– Non-premptive

» All interactions protected by costs system synch ops
– Events: signaling

• Scheduling:
– Complex threads require sophisticating scheduling
– Collections of simple events ??

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 30

Modern TinyOS Service Architecture

N
et

 P
ro

g

Hardware

In
it/

B
oo

t

Persistent
Attributes &

Event Streams

Device
Attributes &

Event Streams

Service
Interface

C
om

m
an

ds

A
ttr

ib
ut

es

E
ve

nt
s

D
is

co
ve

ry

M
es

sa
ge

s

M
an

ag
em

en
t &

 P
ow

er

Domain-Specific Application Components

OS & Net
Interface

M
ot

or

Li
gh

t

B
lo

ck
s

V
ib

ra
tio

n

Lo
gs

Fi
le

s

Network Collection,
Dissemination, &

Routing
LinksDevice

Abstraction
Interface Flash Radio / Serial Sensor / Actuator

Microcontroller Core, Timers, Buses, Onboard ADCs
Microcontroller

Abstraction
Interface

TelosB MicaZ Intel Mote2

D
om

ai
n-

S
pe

ci
fic

D
ev

ic
e

D
riv

er
s

16

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 31

TinyOS 2.0 – abstraction architecture

Flexible Hardware Abstraction for Wireless Sensor Networks, Vlado Handziski, Joseph Polastre, Jan-
Hinrich Hauer, Cory Sharp, Adam Wolisz, David Culler,In Proceedings of the Second European Workshop
on Wireless Sensor Networks (EWSN '05), January 31-February 2, 2005.

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 32

Sample of TinyOS Platforms

17

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 33

Silicon
World Storage ProcessingWireless Sensors

WSN mote platform

Wireless Embedded Networks

Physical
World

Digital
World Radio

Serial
Flash ADC,

Sensor I/F
MCU, Timers,

Bus,…

Link

Blocks,
Logs, Files

Scheduling,
Management

Streaming
drivers

Over-the-air
Programming

Applications and Services

Network
Protocols

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 34

Embedded Networking Requirements

• Reliable Dissemination
• Data Collection and Aggregation
• Point-to-point Transfers

• Reliably over lossy links
• At low power

– Idle listening, management, monitoring

• Adapting to changing conditions
• Scalar and Bulk Versions

18

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 35

Neighbor Communication

0

1
1

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 36

Multihop Routing

• Upon each transmission, one of the recipients
retransmits

– determined by source, by receiver, by …
– on the ‘edge of the cell’

19

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 37

Power to Communicate

0

20

40

60

80

100

120

140

0 1 2 3 4 5

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 38

Route-Free Dissemination

0

1
1

20

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 39

Data Collection

0

1
12

2

2

2
2

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 40

TinyOS 2x Embedded IP Architecture

GPIO
Pins

Ext.
INT

ADCSPI, i2c,
UART

Low-Power
802.15.4

V
irt

ua
l

m
s

Ti
m

er

μs
Timer

RTC

S
ch

ed
ul

er

Fl
as

h
S

to
ra

ge

arbiters

Pw
rM

gr

UDP/TCP L4 Basic Health &
Mgmt Services Basic

Configuration
Services

Sensor
Drivers

OTA
IP 6LowPAN L2

IP route L3

Higher Level Embedded Web Services

21

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 41

Transit Network
(IP or not)

Access point
- Base station
- Proxy

Sensor Patch

Patch
Network

Data Service

Intranet/Internet (IP)

Client Data Browsing
and Processing

Sensor Node

Gateway
Gateway

Verification
links

Other information
sources

Sensor Node

Canonical SensorNet Network Architecture

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 42

Typical IP Network

InternetInternet

ISP

Company Router / Firewall

externally
accessible hosts

DMZ

WiFiWiFi

Internal Private networks

ethernet

serial lines
leased links
point-point links

internally
accessible hosts

Stand-alone networks

inaccessible
hosts

WiFIWiFI

External networksVPN
tunnels

22

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 43

WSNs in an IP context

InternetInternet

Stand-alone embedded networks

monitoring devices

ad hoc
embedded

network

controllers
& analytics

IP-based
embedded

network

monitoring devices

ad hoc
embedded

network

controllers
& analytics

IP-based
embedded

network

Router /
Firewall

gateway
computer

IP-based
corporate
networks

InternetInternet

IP-based
corporate
networks

Internally connected embedded networks

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 44

Router / Gateway Architecture

Gateway Hardware Platform
802.15.4
ENMC

Linux Kernel (2.4)

serial

AR
Router

AR
Services

Appln
Specific

Processes
Basic AR
Services

Just another TinyOS
Application / System
“RockBridge”

23

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 45

TEP - TinyOS Enhancement Proposals
• TEP 1: TEP Structure and Key Words

[HTML]
• TEP 2: Hardware Abstraction

Architecture [HTML]
• TEP 3: Coding Standards [HTML]
• TEP 101: ADC [HTML]
• TEP 102: Timers [HTML]
• TEP 103: Storage [HTML]
• TEP 106: Schedulers and Tasks

[HTML]
• TEP 107: Boot Sequence [HTML]
• TEP 108: Resource Arbitration

[HTML]
• TEP 109: Sensorboards [HTML]
• TEP 111: message_t [HTML]
• TEP 112: Microcontroller Power

Management [HTML]

• TEP 113: Serial Communication
[HTML]

• TEP 114: SIDs: Source and Sink
Independent Drivers [HTML]

• TEP 115: Power Management of Non-
Virtualized Devices [HTML]

• TEP 116: Packet Protocols [HTML]
• TEP 117: Low-Level I/O [HTML]
• TEP 118: Dissemination [HTML]
• TEP 119: Collection [HTML]
• TEP 123: Collection Tree Protocol

(CTP) [HTML]
• TEP 124: Link Estimation Exchange

Protocol (LEEP) [HTML]
• TEP 125: TinyOS 802.15.4 Frames

[HTML]
• TEP 126: CC2420 Radio Stack [HTML]

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 46

TinyOS Execution Philosophy
• Sleep almost all the time.
• Wake-up (quickly) when there is something to do.
• Process it and all other concurrent or serial

activities as rapidly as possible.
– Structured, event driven concurrency

• Never wait!!!
• Automatically go back to sleep

24

7/9/2007AIIT Summer Course - M3-TinyOS WSNs 47

TinyOS Structured Design Philosophy
• Think hard about components

– Well-define behavior, well-define interfaces

• Compose components into larger components
• Flexible structured design of entire system

– And application

• Dealing with distributed system of many
resource-constrained devices embedded in hard
to reach places and coping with noise,
uncertainty and variation.

• Make the node, the network, and the system as
robust as possible.

• KEEP IT SIMPLE!

