
 

A. Ozgurluk, M. Akgul, and C. T.-C. Nguyen, “RF channel-select micromechanical disk filters—part I: design,” IEEE Trans. Ultrason., Ferroelect., 

Freq. Contr., vol. 66, no. 1, pp.192-217, Jan. 2019, DOI: 10.1109/TUFFC.2018.2881727. (26 pages). 

https://doi.org/10.1109/TUFFC.2018.2881727


Ao    Overlap area between the electrode and the disk. 

kre    Effective stiffness of a single disk at the edge. 

kreA    Effective stiffness of a disk array-composite. 

kc,ij    Stiffness of the coupler beam between ith and jth res. 

ξ     Odd multiple of the quarter-wavelength. 

wc,min   Critical width that can be reliably manufactured. 

Nrow    Number of rows in in an array-quadrant. 

Ncol    Number of columns in in an array-quadrant. 

Rbias    Parasitic dc-bias line resistance. 

R/4   Quarter wavelength coupler resistance. 

Csub   Pad-to-substrate capacitance. 

Cf    Overhead feedthrough capacitance. 

σf,Single  Single resonator frequency standard deviation. 

f    Normalized frequency excursion. 

oim    Purely mechanical radian resonance frequency. 

oinom   Nominal resonance frequency of array-composite i. 

oi  Radian resonance frequency of the ith differential ar-

ray-composite including electrical effects. 

I. INTRODUCTION 

The power consumption of a radio generally goes as the num-

ber and strength of the RF signals it must process [1], [2], [3]. 

In particular, a radio receiver would consume much less power 

if the signal presented to its electronics contained only the de-

sired signal in a tiny percent bandwidth frequency channel and 

no interferers. A recent MEMS-based RF channel-selecting su-

per-regenerative receiver demonstrates this [4], even if only for 

small bit rates. At higher bit rates, however, RF channel-selec-

tion is rare. Instead, the typical mix of signals includes un-

wanted energy outside the desired channel that may be much 

stronger than the desired signal, by as much as 60dB for LTE 

[5] and 80dB for GSM [6]. The more unwanted energy present, 

the higher the dynamic range required of the electronics, hence, 

the larger the power consumption. Unfortunately, a lack of fil-

ters capable of selecting single channel bandwidths at RF forces 

the front-ends of contemporary receivers to accept unwanted 

signals, and thus, to operate with sub-optimal efficiency. In-

deed, FBAR or SAW filters, while adept at RF band-selection, 

do not possess sufficient quality factor Q to manage practical 

RF channel-selection without undue insertion loss. 

It is no surprise, then, that attempts to realize RF filters with 

percent bandwidths in the range of 0.1% sufficient to remove 

all interfering signals, leaving only energy in the desired RF 

channel, are abundant in the literature [7]. Because the band-

widths of such RF channel-selecting filters are so small, and 

technologies capable of attaining the needed Q’s are generally 

not widely tunable, much of the research has focused on micro-

scale filters that can assemble into banks of weakly tunable fil-

ters, cf. Fig. 1, to cover a target communication band. 

Because it offers tiny size and very high Q, many research 

approaches to RF channel-selection focus on MEMS technol-

ogy. These studies employ various resonator technologies using 

piezoelectric [8], [9], [10], [11], internal dielectric [12], [13], 

and capacitive-gap [14], [15], [16], [17], [18] actuation. Unfor-

tunately, so far none of the explored approaches truly achieves 

the needed performance, which demands not only small percent 

bandwidth, but also low passband insertion loss and high stop-

band rejection. Several approaches explored thus far use reso-

nators, e.g., based on piezoelectric materials [8], [9], that lack 

the needed Q to achieve low insertion loss in so small a percent 

bandwidth. For example, one attempt to use conventional at-

tached-electrode piezoelectric resonators does achieve the 

needed 0.1% bandwidth, but only with excessive passband loss 

on the order of 15dB [8], which is clearly not permissible im-

mediately after the antenna.  

On the other hand, approaches that attain sufficient Q’s on 

the order of 10,000, e.g., capacitive-gap transduced resonators, 

so far do not possess enough electromechanical coupling to at-

tain 50dB stop-band rejection at UHF. In particular, although 

the design of [19] achieves the needed 0.06% bandwidth with 

an insertion loss of only 2.5dB, it does so with only 27dB of 

stop-band rejection. It also requires rather large termination im-

pedances on the order of 1.5kΩ that necessitate the use of in-

ductors to resonate out shunt input and output capacitance. Fi-

nally, its yield of devices with adequately small passband ripple 

is quite low.  

More recent work using a “capacitive-piezoelectric” trans-

ducer that combines capacitive and piezoelectric transduction 

to realize a resonator with simultaneous high Q and coupling 

[20] [21] seems poised to eventually achieve RF channel-select 

filters with appropriate insertion loss and stop-band rejection 

 

Fig. 1: (a) Direct conversion receiver architecture combined with an RF-
channel select filter bank capable of eliminating in-band blockers directly at the 

RF front-end. (b) Cartoon description of a possible multi-carrier power spec-

trum that might appear at the antenna of an advanced multi-carrier communica-
tion system. (c) On/off configuration of the filters in the RF channelizing filter 

bank that selects only the desired channels. 
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characteristics. The work of [20], however, demonstrates only 

a single-resonator that provides only a 2-pole frequency shap-

ing transfer function. Most RF front-ends require at least 4-pole 

shaping characteristics, i.e., two resonators. Perhaps most im-

portantly, if one transducer technology alone—e.g., one of ca-

pacitive-gap or piezoelectric, but not both—can be shown suf-

ficient to achieve the needed filter characteristic, then this 

would likely be the more cost-effective approach. 

This two-part paper focuses on the degree to which capaci-

tive-gap transduced micromechanical resonators can achieve 

the aforementioned RF channel-selecting filters. It aims in Part 

I to first show theoretically that with appropriate scaling capac-

itive-gap transducers are strong enough to meet the needed cou-

pling requirements; and second, to fully detail an architecture 

and design procedure needed to realize said filters. In Part II, it 

then provides an actual experimentally demonstrated RF chan-

nel-select filter designed using the above procedures and con-

firming theoretical predictions. 

The overall micromechanical circuit design hierarchy used 

here builds upon micromechanical vibrating disk resonators 

[23] and uses a combination of capacitive actuation gap scaling 

[24], coupled array-composites [25], electrical stiffness tuning 

[26], [27], and fabrication process improvements to attain un-

precedented RF channel-select performance [28]. It specifically 

modifies the design of [19] to that of Fig. 2, which points out 

the major design changes [22]. Now, smaller electrode-to-reso-

nator gaps on the order of 39nm amplify the input/output elec-

tromechanical coupling by more than 8.6×, which directly con-

tributes to larger stop-band rejection. The new design also in-

troduces additional electrodes around disks specifically tasked 

for frequency tuning towards higher circuit yields; as well as 

carefully designed electrode-less buffer devices that alleviate 

post-fabrication stress, thereby also contributing to higher yield. 

Combined, these design changes yield a 223.4-MHz two-reso-

nator filter (described in Part II) that employs 206 resonant mi-

cromechanical elements to realize a channel-selecting 0.1%-

bandwidth while achieving only 2.7dB of in-band insertion loss 

together with 50dB of out-of-channel stop-band rejection. This 

amount of rejection is more than 23dB better than that of [19] 

and comes in tandem with a 20dB shape factor of 2.7 commen-

surate with its use of two array-composite resonators. 

II. FILTER DESIGN SPECIFICATIONS 

Fig. 3 presents the transmission response, i.e., S21 with refer-

ence impedance RQ, of a third-order bandpass filter (BPF) and 

identifies important performance metrics [29], including inser-

tion loss, stopband rejection, passband ripple, group delay rip-

ple, and 20dB shape factor. A common way to achieve filter 

characteristics as in Fig. 3 is to link multiple two-pole resona-

tors together by coupling elements of some form, as shown in 

Fig. 3 (a) [29], [30]. Fig. 3 (b) presents one possible implemen-

tation that employs series LCR resonator tanks coupled by shunt 

capacitors to mimic the structure of Fig. 3(a). Here, the resona-

tors realize bandpass biquad transfer functions that when cou-

pled by the shunt capacitors assemble into a frequency response 

as shown in Fig. 3(c), where three mode peaks ensue, separated 

by frequency spans governed by coupling strength. Termination 

of the filter by resistors RQ then effectively loads the resonators, 

loading their Q’s and widening their responses so that they add 

constructively in the passband to form the flat response of Fig. 

3(d). Phasing of resonator currents also induces subtraction of 

their responses outside the passband, thereby providing rejec-

tion in the stopband. 

The desired filter amplitude response, cf. Fig. 4(a)-(b), mini-

mizes the passband insertion loss, ripple, and the filter 20dB 

shape factor, the latter defined here by the ratio of the 20dB 

bandwidth to the 3dB bandwidth; and maximizes the stopband 

rejection. The group delay characteristic [30] illustrated in Fig. 

4(c) is a measure of the degree to which the filter phase response 

deviates from the ideal linear-phase response. Not only must the 

group delay be below a certain threshold, its ripple must also be 

 

Fig. 2: The improved filter design of this work in a preferred bias and excitation 
configuration used to evaluate filter performance with indicated improvements 

over to the filter design of [19] [22]. 

 

Fig. 3: (a) Schematic description of a popular topology for a resonator-based 

band-pass filter, comprising a chain of discrete resonator tanks linked with cou-

pling elements. (b) One electrical implementation of (a) using series LCR tanks 

and shunt capacitor couplers. (c) Unterminated (i.e., RQ = 0) frequency re-

sponse of the circuit in (b), showing three distinct peaks denoting the resonance 

modes of the coupled circuit. (d) Terminated filter response after Q-control via 

termination resistors RQ. 
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small. In many cases, the ripple or variation is most important. 

As a result, in the plot of Fig. 4(c), often only the region of filter 

bandwidth indicated between the large group delay peaks is ac-

tually usable. Note that Chebyshev and Elliptic type filters dis-

play a rippled group delay over the passband as seen in Fig. 4, 

whereas Bessel type filters achieve maximally flat group delay 

at the expense of increased shape factor [30]. 

It should be noted that the smaller the percent bandwidth of 

the filter, the larger the group delay in the usable bandwidth re-

gion. Thus, at first glance, it might seem that the 0.1%-band-

width RF channel-select filters targeted by this work are not us-

able in a practical application, since they will have larger group 

delay than the 3%-bandwidth filters typically used in wireless 

handsets. Such worries, however, are mostly unfounded, since 

smaller bandwidth signals can withstand larger group delay var-

iations. In other words, slower bit rates can generally tolerate 

larger delay variations. The important thing is that the bit pe-

riod-to-group delay variation ratio be above a certain threshold. 

The smaller the bandwidth of a signal, the larger its bit period, 

hence the larger the permissible group delay variation. 

Group delay is determined primarily by the filter type, i.e., 

Chebyshev, Butterworth, etc., and bandwidth. Although filter 

type also governs passband insertion loss IL and stopband re-

jection, these very important metrics also depend heavily on the 

performance of the resonators constituting the filter, particu-

larly their quality factor Q and their input/output transducer 

coupling, the latter gauged by the (Cx/Co) ratios of the end res-

onators in Fig. 3(a). In brief, low filter insertion loss requires 

sufficient Q; while proper termination with minimal passband 

distortion and large stopband rejection requires sufficient elec-

tromechanical coupling. 

III. NEEDED Q AND COUPLING 

Whether or not high resonator Q, strong transducer coupling 

(Cx/Co), or a simultaneous combination of both, are needed, de-

pends largely on the percent bandwidth of the filter to be real-

ized. In particular, the small percent bandwidth filters needed 

for the aforementioned RF channel-selection application re-

quire resonators with large Q to avoid excessive insertion loss, 

but do not require large (Cx/Co). 

A. Needed Quality Factor 

The insertion loss of a front-end filter is perhaps its most im-

portant performance metric. Indeed, the positioning of this filter 

directly after the antenna and before the low noise amplifier, cf. 

Fig. 1, means that its loss cannot be attenuated by amplifier 

gain. As a result, the filter insertion loss ends up adding directly 

to the receiver noise figure, so often has the greatest impact on 

overall receiver sensitivity. 

The insertion loss of any coupled-resonator filter is primarily 

determined by the ratio of constituent resonator Q to overall fil-

ter quality factor Qf [29], or 

 𝑞𝑜 =
𝑄

𝑄𝑓

 (1) 

where Qf takes the form 

 𝑄𝑓 =
𝑓𝑜

𝐵
 (2) 

where fo and B are the filter center frequency and 3dB band-

width, respectively. The filter type and order set the minimum 

qo required to achieve a desired insertion loss. Here, filter cook-

books [29] readily provide qo values for various filter types and 

insertion losses. For example, the minimum qo required for less 

than 2dB insertion loss for a 2nd order Chebyshev filter is 9.7; it 

increases to 18.6 and 31.1 for third and fourth order filters, re-

spectively [29]. Note that the relation between the quantity set 

by (1) and the filter insertion loss is independent of the resona-

tor technology used to implement the filter. 

Equation (1) implies that the higher the filter Qf, i.e., the nar-

rower the fractional bandwidth, the higher the constituent reso-

nator Q needed to maintain low insertion loss. Thus, high reso-

nator Q becomes especially important for the small percent 

bandwidth RF channel-selecting filter targeted, here—much 

more so than a conventional 3% band-select filter used in to-

day’s wireless handsets. 

Fig. 5 illustrates the Q dependency by comparing simulated 

frequency responses of a three-resonator, 0.5dB-ripple, Cheby-

shev filter operating at 433MHz for band-select and channel-

select cases with 3% and 0.1% fractional bandwidths, respec-

tively, with varying constituent resonator Q’s. For these simu-

lations, Co = 0 in order to isolate the effect of Q. Here, large 

 

Fig. 4: Graphs defining metrics that gauge bandpass filter performance. (a) 

Zoom-in on the 3dB passband. (b) Wide-span frequency response. (c) Group 

delay response. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TUFFC.2018.2881727

U.S. Government work not protected by U.S. copyright.



resonator Q clearly minimizes insertion loss, regardless of the 

percent bandwidth. However, to achieve the same insertion 

loss, a filter with a smaller percent bandwidth requires resona-

tors with larger Q than one with a large percent bandwidth. For 

example, the filter with 3% 3dB-bandwidth shown in Fig. 5(a) 

requires resonator Q’s of 590 to achieve an insertion loss of 

2dB. However, when the bandwidth shrinks to the 0.1% re-

quired for RF channel-selection (at 433MHz with a 433kHz 

bandwidth), the required Q for 2dB insertion loss increases to 

17,500 as shown in Fig. 5(b). The requirement becomes more 

stringent as frequencies increase or bandwidths decrease. For 

example, a 30-kHz bandwidth at 433MHz corresponds to a per-

cent bandwidth of 0.007%, for which the Q required for less 

than 2dB insertion loss rises to 240,000. The need for Q be-

comes less stringent as the filter order reduces. For example, a 

second order version of the 0.1%-bandwidth, 433-MHz filter 

requires resonator Q’s of only 9,600 to achieve less than 2dB of 

insertion loss. 

B. Needed Electromechanical Coupling Strength 

The electromechanical coupling requirement governs proper 

impedance termination of a given filter. In particular, the flat 

passbands shown in Fig. 3(d) and Fig. 4(b) are achieved via ter-

mination resistors RQ’s that load the input and output ports, as 

shown in Fig. 3(a). Here, the RQ’s essentially load the Q’s of the 

filter end resonators, smoothing out the passband ripple in the 

process. 

The 50 convention for many discrete parts, e.g., antenna, 

often stipulates that the RQ for filters at an RF front-end match 

to this value. Once past the antenna, however, impedances 

larger than 50, in the range of 200-400, can offer perfor-

mance enhancements for active circuits. At the intermediate fre-

quency (IF) of super-heterodyne receivers (still used in military 

applications), impedances in the kilo-ohm range are common. 

Low power applications also benefit from impedances this high. 

In summary, the wide variance in application needs calls for a 

wide range of desirable RQ’s, and in turn a filter design meth-

odology poised to accommodate. 

If the filter had no shunt capacitance Co at its input and out-

put, then the value of RQ can be as large or small as needed, with 

no limit. The presence of Co, however, places an upper limit on 

the value of RQ. In an actual physical realization, load capaci-

tance CL from leads or other electrically connected structures to 

the substrate joins Co to further limit RQ. In particular, RQ and 

(Co+CL) combine to form a low pass filter (LPF) that greatly 

attenuates and distorts the filter response if its cut-off frequency 

 

Fig. 5: Simulated frequency characteristics for a 433-MHz three-resonator fil-

ter with varying constituent resonator Q’s, illustrating how resonator Q governs 
the insertion loss of a filter. (b) For an insertion loss less than 2dB, resonator 

Q’s must be larger than 590Ω for a 3% bandwidth filter. (c) When the filter 

bandwidth shrinks to 0.1%, even higher resonator Q >17,500, is needed. 

 

Fig. 6: Simulations illustrating the degree to which low-pass filtering by shunt 

parasitic capacitance impacts passband flatness for a three-resonator filter, cf. 

Fig. 3, operating at center frequency fo = 433MHz. Here, the filter response 

curves in (b) correspond to the parasitic low-pass filter cases in (a), for which 
(i) fFOM = 0.5 fo. (ii) fFOM = 1.5 fo. (iii) fFOM = 2.5 fo. and (iv) fFOM = 5 fo. 
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is below the filter center frequency fo, such as depicted by curve 

(i) in Fig. 6(a), which distorts the filter passband as shown in 

Fig. 6(b). Here, the low pass cut-off frequency is labeled fFOM 

to emphasize its role as a figure of merit for a given resona-

tor/filter design, where the higher its value, the less passband 

distortion incurred. Even if fFOM is higher than the filter’s center 

frequency, cf. curve (ii) with simulated response in Fig. 6(b), 

phase shift from the LPF can still generate significant passband 

distortion that may or may not be acceptable, depending upon 

the application. Thus, it is not enough for fFOM to just be higher 

than fo. As a rule of thumb, for the case of a three-resonator 

Chebyshev BPF, the amount of passband distortion introduced 

by the parasitic LPF is generally acceptable when fFOM is more 

than 2.5 times the BPF center frequency, as shown by curves 

(iii) and (iv). 

For the case where Co dominates over CL, the quantity (Cx/Co) 

becomes a very convenient figure of merit for comparison of 

electromechanically transduced resonators used in a filter. In 

this case, a rule of thumb to avoid passband distortion upon 

proper termination stipulates that the transducer coupling at the 

input and output resonators of a given filter should satisfy 

 
𝐶𝑥

𝐶𝑜

> 𝛾𝑃𝐵𝑊  (3) 

where PBW is the percent bandwidth of the filter given as B/fo; 

and γ is 2.5 for a low insertion loss 3-resonator Chebyshev filter, 

and ~6 for a 3-resonator linear phase filter.  

Fig. 7 illustrates the dependence of passband distortion on 

(Cx/Co) by plotting simulated responses for (a) a 3% bandwidth 

and (b) a 0.1% bandwidth 3-resonator Chebyshev filter with 

0.5dB designed ripple for varying values of transducer (Cx/Co). 

As shown, the passband of the filter in Fig. 7(a) remains rela-

tively undistorted until the transducer (Cx/Co) drops to below 

7.5%, at which point an amount of extra ripple equal to the orig-

inal 0.5dB ripple appears in the passband for a total of 1dB rip-

ple. On the other hand, the passband ripple of the 0.1% band-

width filter of Fig. 7(b) worsens to 1dB when (Cx/Co) drops to 

a much smaller 0.25%. Note that the passband distortions for 

both filters conform to the guideline of (3). Table I presents 

more information on what values of fFOM and (Cx/Co) maintain 

ripple to acceptable values. 

From Fig. 7, the smaller the percent bandwidth, the smaller 

the needed (Cx/Co). In particular, for a 0.1% bandwidth suitable 

for RF channel-selection, (Cx/Co) need only be ~0.25%. It is im-

portant to note that the needs of a 0.1% RF channel-select filter 

differ significantly from those of conventional 3% band-select 

filters used in today’s handsets. In particular, conventional 3% 

filters put a premium on strong coupling, where (Cx/Co) ~7% is 

common, and not so much on Q, for which 600 is often accepta-

ble as in Fig. 5(a). On the other hand, a 0.1% RF channel-select 

filter places a high premium on Q, which must often be greater 

than 10,000, and not so much on (Cx/Co), for which values of 

only 0.25% are often acceptable. 

IV. SIMPLIFIED DESCRIPTION OF VIBRATING DISK FILTER 

OPERATION 

TABLE I: MINIMUM fFOM / fO AND CX /CO RATIOS THAT ADD LESS THAN 0.5dB RIPPLE TO THE 

DESIGNED NOMINAL RIPPLE VALUE FOR 0.1% BANDWIDTH FILTERS OF DIFFERENT ORDERS 

Filter Type 

Filter Order 

2 3 4 5 

fFOM /fo Cx /Co γ fFOM /fo Cx /Co γ fFOM /fo Cx /Co γ fFOM /fo Cx /Co γ 

Chebyshev 

(0.5dB Ripple) 
2.36 0.12% 1.2 4.70 0.25% 2.5 5.90 0.32% 3.2 6.75 0.37% 3.7 

Chebyshev 

(0.1dB Ripple) 
1.82 0.13% 1.3 3.75 0.26% 2.6 4.47 0.33% 3.3 4.98 0.38% 3.8 

Legendre - - - 2.95 0.25% 2.5 4.79 0.44% 4.4 5.54 0.58% 5.8 

 

Fig. 7: Simulated plots of responses for (a) a 3% bandwidth and (b) a 0.1% 

bandwidth 3-resonator Chebyshev filter with 0.5dB designed ripple for varying 

values of transducer (Cx/Co). Here, the simulations use resonator Q’s of 2,500 
in (a), and 50,000 in (b). 
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The mechanical filter of this work is much like the filter of 

Fig. 4(b), except that instead of LCR tanks constrained to Q’s 

below 100, it uses mechanically coupled arrays of vibrating mi-

cromechanical resonators [23] capable of achieving Q’s ex-

ceeding 10,000. As shown in Fig. 8, each such resonator com-

prises an electrically conductive disk surrounded by electrodes 

spaced by small gap spacing do from its perimeter, and sup-

ported at its center by a stem post, as described in Fig. 8(c). 

To operate the disk, a dc-bias voltage VP is applied to its con-

ductive structure (via terminal 3) and ac voltages vi = Vi 

cos(2πft) are applied at one or both of its electrodes. The com-

binations of DC and AC voltages applied across each affected 

electrode-to-resonator gap generate forces on the disk structure 

at frequency f that then actuate the disk into vibration with am-

plitude governed by its high Q force-to-velocity bandpass bi-

quad transfer function. In particular, when f matches the disk 

resonance frequency fo, the disk responds by vibrating with a 

large (e.g., several nanometers) resonance amplitude in the ra-

dial-contour mode shape depicted in Fig. 8(d), where the disk 

expands and contracts radially around its circumference in a 

motion reminiscent of breathing. Vibration of the disk gives rise 

to time-varying capacitors at each electrode-to-resonator inter-

face. Since these capacitors have dc-bias voltages across them, 

they generate currents given by 
o Pi V dC dt  that can then 

serve as outputs at selected electrodes. 

As shown in Fig. 2 and detailed later in Section VIII, the ac-

tual filter uses arrays of many disk resonators that combine cur-

rents and add stiffnesses to reduce impedance and tailor band-

width, respectively. Ignoring the arraying for now (for simplic-

ity), Fig. 9(a) presents a two-disk version of a micromechanical 

filter for the purposes of explaining its operation. Here, the two 

disks coupled by a single quarter-wavelength extensional mode 

beam are identical in all respects, i.e., they have the same reso-

nance frequency. From a mechanical perspective, mechanical 

coupling of the two resonators creates a two-degree-of-freedom 

mechanical system that effectively splits the originally identical 

resonance frequencies of the disks apart into two mode frequen-

cies, i.e., eigenstates, which now define the passband of the fil-

ter response. The two modes can be characterized as out-of-

phase, where the two resonators vibrate with opposite phase, 

i.e., one expanding while the other contracts at a given instant, 

cf. Fig. 9(b); and in-phase, where the disks expand and contract 

in unison, cf. Fig. 9(c). 

The mechanism by which the quarter-wavelength coupling 

beam splits frequencies follows from study of the electrical 

equivalent circuit for this system, shown in Fig. 9 [14]. Here, 

 

Fig. 8: Pictorial summary for a micromechanical disk resonator with two in-
put/output ports and a resonator body port. (a) Layout view. (b) Perspective 

view in a typical drive and sense configuration. (c) Cross-section view. (d) Ra-

dial-contour vibration mode shape. 

 

Fig. 9: (a) Schematic description of a mechanically coupled two-disk-resonator 

filter. Equivalent circuit models for (b) the lower frequency out-of-phase and 

(c) the higher frequency in-phase filter mode shapes. (d) Motional current spec-

tra for the uncoupled vibrating disk and the lower and higher frequency filter 

modes. 
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LCR tanks model each disk resonator, while a T-network of ca-

pacitors models the quarter-wavelength coupling beam, essen-

tially treating it as an acoustic transmission line. As shown in 

[14] [15], the values of the Lx, Cx, and Rx elements in the LCR’s 

are derived directly from the values of mass, stiffness, and 

damping of the actual resonators. 

In the lower frequency out-of-phase mode described in Fig. 

9(b), the coupling spring experiences no strain, since the adja-

cent disk edges displace in opposite radial directions. In this 

mode, the coupling spring contributes no stiffness, only mass, 

to the total system, which lowers the frequency relative to the 

original resonators. This means the current into the leftmost (in-

put) disk at resonance, given by 

 𝑖𝑥1 =
𝑣𝑖

𝑅𝑥

 (4) 

is positive; and the current going into the rightmost (output) 

disk is negative, i.e., current flows out of the disk into the output 

electrode. Thus, current flows through the device, from input to 

output. This means the motional currents indicated as ix1 and ix2 

in the electrical equivalent circuit flow in the same clockwise 

directions around their respective meshes. They thus cancel in 

the shunt capacitor Cc, which means the voltage drop across the 

shunt arm of the coupling beam T-network equals zero. This 

then yields the half circuit for the system shown in (b), where a 

capacitor of value –Cc adds in series to the motional Cx of the 

mechanical resonator, lowering the mesh frequency from that 

of the original resonator down to the lower mode frequency fL 

given by 

 𝑓𝐿 =
1

2𝜋
√

1

𝐿𝑥

(
1

𝐶𝑥

−
1

𝐶𝑐

) (5) 

   In the higher frequency in-phase mode, where both disks vi-

brate in unison, the coupling spring now experiences strain. 

This adds stiffness to the system, raising its frequency over that 

of the original resonators. From the electrical equivalent circuit 

perspective, the motional currents ix1 and ix2 in each resonator 

tank now flow in opposite directions around their respective 

meshes, which means they add in the shunt Cc arm of the T-

network. Each mesh thus absorbs half of the shunt Cc to yield 

the overall half circuit shown in Fig. 9(c), where now a positive 

Cc adds in series to the motional capacitance Cx. This raises the 

mesh frequency to 

 𝑓𝐻 =
1

2𝜋
√

1

𝐿𝑥

(
1

𝐶𝑥

+
1

𝐶𝑐

) (6) 

   Fig. 9(d) plots the motional current amplitude spectrum for an 

uncoupled individual constituent disk resonating at frequency fo 

alongside the coupled out-of- and in-phase mode frequencies at 

fo-Bsep/2 and fo+Bsep/2, respectively, where Bsep = fH - fL is the 

frequency span that separates the modes. The out-of-phase and 

in-phase resonance transfer functions illustrated in Fig. 9(d) 

correspond to the orthogonal eigenvectors of the coupled two-

resonator system shown in Fig. 9(a).  

The sum of these transfer functions generates the overall fil-

ter transfer function, as illustrated in Fig. 10(c). Note that the 

relative phase between these modes plays a crucial role in shap-

ing the overall filter response. In particular, the out-of-phase 

and in-phase modes have the same phase between the mode 

peaks, so add constructively within the filter passband to form 

a flatter response in this region. Outside the peaks, their phases 

differ by 180o, which means they subtract outside the passband, 

yielding a steeper roll-off to the stopband and a higher overall 

stopband rejection. 

However, as shown in Fig. 10(b), addition in the passband 

will not yield a flat passband if the Q’s of the constituent reso-

nators are too high. Indeed, to permit a flat passband, the signal 

power of each mode spectrum at the frequency directly between 

the peaks must be approximately equal to half that at the peaks 

themselves. This is where the termination impedances shown in 

Fig. 4 and again in Fig. 10(a) become important. These termi-

nation resistors RQ load the Q’s of the resonators, broadening 

their peaks and effectively raising their power levels at frequen-

cies away from resonance. To attain half power between the 

peaks, the resonator Q’s must be reduced to approximately that 

of the filter, or 

 𝑞𝑛𝑄𝑓 = 𝑄 (
𝑅𝑥

𝑅𝑥 + 𝑅𝑄

) → 𝑅𝑄 = 𝑅𝑥 (
𝑄

𝑞𝑛𝑄𝑓

− 1) (7) 

where qn is a modification factor that depends upon the filter 

order and type, i.e. Chebyshev, Butterworth, and that can be 

found in filter cookbooks [29]. Upon inclusion of termination 

resistors RQ, the flattened passband response in Fig. 10(c) en-

sues. 

From (7), note that for a properly designed filter, RQ tracks 

Rx. In other words, a filter designed for a large RQ uses resona-

tors with large Rx; and if designed for a small RQ, the resonators 

have small Rx. Because of this, the insertion loss of a properly 

designed filter using (7) is ultimately independent of RQ. To 

elaborate using equations, the insertion loss for this two-reso-

nator filter takes the form 

 𝐼𝐿 =
𝑅𝑄 + 𝑅𝑥

𝑅𝑄

=
𝑄

𝑄 − 𝑞𝑛𝑄𝑓

 (8) 

 

Fig. 10: (a) Mechanically coupled two-resonator filter with termination resistors 

RQ added for Q-control. (b) Illustration showing addition of in-phase and out-
of-phase resonator frequency responses to create the unterminated filter re-

sponse. (c) Illustration showing the mechanism for filter response formation 

after Q-control with appropriate termination resistors RQ. Note that the plots are 
not to scale, as the unterminated response would normally be several dB below 

the terminated response, as depicted in Fig. 3 and described in [14]. 
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where tracking of RQ and Rx effectively cancels them, leaving a 

rightmost expression that depends only on Q parameters. Thus, 

insertion loss depends primarily on the resonator Q and the fil-

ter Qf. 

From Fig. 10(c), it is clear that with quarter-wavelength cou-

pling the center frequency of the Fig. 10 filter equals the (com-

mon) frequency of its constituent resonators; and its 3dB band-

width is a bit more than the total separation Bsep afforded by the 

coupler strength, captured by the value of Cc. Using (5) and (6), 

the mode peak separation takes the form 

 𝐵𝑠𝑒𝑝 =
𝐶𝑥

𝐶𝑐

𝑓𝑜 =
𝑘𝑐

𝑘𝑚

𝑓𝑜  (9) 

where the last form recognizes that Cx and Cc are proportional 

to the inverse dynamic stiffnesses km and kc of the resonators 

and coupler, respectively  [14]. Since filter bandwidth is gener-

ally the 3dB bandwidth, a modification factor kij applied to (9) 

yields the more common form 

 𝐵 =
𝑘𝑐

𝑘𝑚𝑘𝑖𝑗

𝑓𝑜  (10) 

where B is the 3dB bandwidth, and kij refers to the modification 

factor needed for the coupler between the ith and jth resonators  

in a multi-resonator filter. kij values are widely tabulated in filter  

cookbooks [29] for a variety of filter types and orders. 

It is worth mentioning here that for this electrically driven 

and sensed filter the RQ’s serve as source and load impedances. 

While the RQ’s do effectively load the Q’s of the resonators, the 

resonators themselves must have high Q to start with in order 

to have motional resistances Rx’s sufficiently smaller than RQ to 

preserve low insertion loss. In other words, one cannot start 

with low Q resonators and expect low insertion loss; the reso-

nator Q’s must be high to start with.  

V. ACTUAL FILTER STRUCTURE AND OPERATION 

Although the actual filter demonstrated in Part II essentially 

operates as described in the previous section, its overall struc-

ture is substantially more complicated, all in the interest of max-

imizing performance. Again, Fig. 2 presents the perspective-

view schematic of the entire mechanical filter circuit in a pre-

ferred differential input/output configuration, showing all ap-

plied voltages and termination impedances, and pointing out 

key differences with the previous one of [19] that allow the pre-

sent design to achieve much improved performance. As shown, 

the filter comprises 96 disks mechanically coupled by 110 

beams. Many of the disks are surrounded by electrodes spaced 

only 39nm from their edge sidewalls to serve as either in-

put/output or mechanisms for frequency tuning. Array compo-

site resonators are clearly discernable, and their use represents 

a second level of hierarchy in an overall hierarchical design 

reminiscent of those used in complex VLSI transistor circuits, 

but here used to achieve a complex MSI mechanical filter cir-

cuit. Fig. 11 illustrates the four main levels of hierarchy that 

include: 

1st Level:  Radial-Contour Mode Disk Resonator  

The polysilicon contour mode disk resonator depicted in Fig. 

8 and described in Section VII comprises the unit element and 

1st level of hierarchy in the mechanical circuit. In Fig. 2, all 

disks are h=3m-thick with R=12.1m radii, so share a com-

mon radial-contour mode resonance frequency that sets the cen-

ter frequency of the overall filter. 

2nd Level: Disk Array-Composite 

To reduce termination impedance and raise stiffness to facil-

itate small bandwidth, four array-composites of half-wave-

length coupled disks make up the 2nd level of hierarchy. Each 

combines and raises currents, thereby reducing motional re-

sistance, hence, filter termination impedance. 

 

Fig. 11: Pictorial breakdown of the four levels of hierarchy in the disk-array 
micromechanical filter design. (a) Level 1: Radial-mode capacitive-gap trans-

duced disk resonator. (b) Level 2: Half-wavelength beam-coupled array-com-

posite of disks making up an “array quadrant”. (c) Level 3: Full-wavelength 
beam-coupled pair of quadrant array-composites for which coupling forces the 

array-composites to vibrate 180o out-of-phase. (d) Quarter-wavelength beam-

coupled differential array-composites that finally make up the total filter. 
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3rd Level: Differential Array-Composite 

To enable differential I/O, a 3rd level of hierarchy couples 

pairs of array-composites via full-wavelength beams. This 

forces them to vibrate 180° out-of-phase, thereby enabling dif-

ferential mode balanced operation that cancels feedthrough to 

enable large stopband rejection. 

4th Level: Coupled Resonator Filter 

A 4th level of hierarchy couples the differential blocks via 

quarter-wavelength beams that split their resonances, generat-

ing the desired passband and promoting signal subtraction in 

the stopband that increases rejection. 

Operation of the filter requires the application of a DC volt-

age VP to the conductive suspended structure to amplify forces 

and electrical outputs; and differential electrical inputs through 

termination impedances (governed by design) to the left-hand 

terminals. These electrical signals convert to mechanical (e.g., 

velocity) signals that process mechanically through the fre-

quency response of the structure and then convert back to elec-

trical signals at the outputs. 

VI. DETAILED FILTER DESIGN 

Given the design hierarchy from the previous section, a sen-

sible design procedure now emerges: 

1) Design the fundamental micromechanical radial-contour 

mode disk building block to resonate at the filter center fre-

quency fo with the needed Q and coupling strength (Cx/Co) 

with given values of dc-bias VP and electrode-to-resonator 

gap spacing do. 

2) Assemble disks into array-composites to achieve a specific 

termination resistance RQ, linearity spec, and bandwidth. 

Here, the array size Ntot is key to maintaining practically re-

alizable filter coupling beam dimensions for the chosen fil-

ter bandwidth B. 

3) Design quarter-wavelength filter coupling beams that yield 

the desired filter passband. 

4) Convert the design from single-ended to differential. 

5) Simulate the filter electrical equivalent circuit and verify 

satisfactory operation in the electrical domain. 

Table II and Table III capture this design procedure and provide 

a preview of the relevant governing equations. 

The remainder of this part now expands on the detailed steps 

and formulations needed to execute each stage of the design 

process. 

VII. RADIAL-CONTOUR MODE DISK DESIGN 

The radial-contour mode disk used in this work offers an ex-

cellent combination of high Q, reasonable electromechanical 

coupling (when small gaps are used), and perhaps equally im-

portant, mechanical circuit design flexibility. The last of these 

derives from the fact that a lateral mode disk like that summa-

rized in Fig. 8 is isotropic around its circumference, i.e., it ide-

ally presents the same loading or response at any point on its 

outside edges. This means that radial beams can attach and cou-

ple to a given disk at any angle and still elicit the same response. 

Such coupling flexibility is quite welcome when complex cou-

pling geometries are required, like the arrays of Fig. 2. 

The literature is abundant with capacitive-gap-transduced ra-

dial-contour mode disk resonators capable of Q’s greater than 

29,300 at 153.9MHz in polysilicon structural material [31], and 

greater than 55,000 at 497.6MHz in polydiamond [32]. Thus, 

from the perspective of achievable frequency and Q, the chosen 

disk resonator design seems adequate for RF channel-selection, 

at least for the example shown in Fig. 5. 

From the perspective of electromechanical transducer cou-

pling strength, however, the disk resonators so far reported in 

the literature have been lacking. For example, the 153.9-MHz 

polysilicon disk of [31] posted a (Cx/Co) of only 0.00048%, 

while a higher frequency 497.6-MHz diamond one was even 

poorer, on the order of only 0.00005% [32]. Section III.B men-

tioned that (Cx/Co) need not be large for RF channel-selection, 

but these values are abysmal. If disk resonators are to be useful, 

their design must allow several orders of magnitude improve-

ment in these numbers. 

Fortunately, the literature provides comprehensive and ex-

perimentally confirmed models for radial-contour mode disk 

resonators that allow accurate prediction of design-driven per-

formance improvements. Fig. 12 and Table II summarize the 

equivalent circuit and expressions for elements from [33], re-

spectively, which details the most recent radial-contour mode 

disk model using a negative capacitance concept. Using formu-

lations from [33], the electromechanical coupling factor for a 

radial-contour mode disk takes the form 

 
𝐶𝑥

𝐶𝑜

=
𝑉𝑃

2

𝑑𝑜
3

𝜀𝑜𝑅𝜃𝑜𝑣

𝜋3𝜒𝐾𝑚𝑎𝑡
2 𝐸

  (11) 

where VP is the dc-bias applied between the disk resonator and 

the surrounding electrodes, do is the electrode-to-resonator gap 

spacing, εo is the permittivity of vacuum, R is the disk radius, 

θov is the angular overlap between the electrode and the disk in 

radians, and E is the Young’s modulus of the resonator struc-

tural material. Fig. 8 schematically illustrates these design var-

iables. is a constant that relates the static mass Mtot of the disk 

to its dynamic mass mm as 

 𝑚𝑚 = 𝜒𝑀𝑡𝑜𝑡 = 𝜒𝜌𝜋𝑅2ℎ (12) 

 

Fig. 12: Negative capacitance small-signal AC equivalent circuit for a two-port 

capacitive gap transduced micromechanical resonator, such as that of Fig. 8, 

when operating in the radial-contour mode 
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where ρ is the resonator structural material density.  can be 

derived by consideration of the total kinetic energy of the reso-

nant disk structure and its radial velocity at the disk edges and 

equals =0.763, 0.967, 0.987 for a disk operating in its first, 

second, and third radial-contour modes, respectively [33]. 

Since (11) depends on disk radius R, it is a function of disk 

resonance frequency fnom that derives from the simultaneous so-

lution of [33] 

 
𝜁

𝜉

𝐽0(𝜁/𝜉)

𝐽1(𝜁/𝜉)
= 1 − 𝜎,   𝜉 = √

2

1 − 𝜎
 (19) 

and 

 𝜁 = 2𝜋𝑓𝑛𝑜𝑚𝑅√
𝜌(2 + 2𝜎)

𝐸
 (20) 

where σ is the Poisson ratio of the structural material, and J0 and 

J1 are Bessel functions of the first kind of order zero and one, 

respectively. Although the solution of (19)-(20) as described 

provides an accurate value for the contour-mode resonance fre-

quency, it does not readily impart design insight. To provide 

better insight to variable dependencies, rearrangement and sim-

plification of (19)-(20) yields the closed form 

 𝑓𝑛𝑜𝑚 =
𝛼𝐾𝑚𝑎𝑡

2𝑅
√

𝐸

𝜌
 (21) 

where α is a mode-dependent scaling factor that accounts for 

higher order modes, i.e., 1, 2.64, and 4.61 for the 1st, 2nd, and 3rd 

radial-contour mode, respectively, and Kmat is a dimensionless 

frequency parameter that depends upon the structural material 

and is independent of radius [33]. For polysilicon Kmat=0.654. 

Solving for R and then inserting into (11) yields the expression 

for electromechanical coupling as a function of resonance fre-

quency 

 
𝐶𝑥

𝐶𝑜

=
𝑉𝑃

2

𝑑𝑜
3

𝛼

𝑓𝑛𝑜𝑚

𝜀𝑜𝜃𝑜𝑣

2𝜋3𝜒𝐾𝑚𝑎𝑡√𝐸𝜌
  (22) 

From (22), a reduction in electrode-to-resonator gap spacing 

do is clearly the most effective approach to raising (Cx/Co), 

given the third power dependence. In fact, reducing do from the 

80nm used for the 163-MHz disk of [19] to 40nm would in-

crease (Cx/Co) from 0.022% to 0.177% for a 14V dc-bias volt-

age—an 8× increase that makes possible a 0.177%-bandwidth 

two-resonator filter at this frequency. At higher frequency, the 

dependence on radius shown in (11) reduces the efficacy of gap 

scaling. In particular, for the fundamental mode 1.156-GHz 

disk of [23] the same 40nm gap and 14V yield a (Cx/Co) of only 

0.024%. An even smaller gap remedies this, where use of the 

fundamental mode together with 20.6nm and 14V recapture the 

(Cx/Co) of 0.177%. This gap sounds small and was  indeed once 

considered impractical, but no longer in light of recent 13-nm 

gap polysilicon wine-glass disk resonators, which at 60-MHz 

with 5.5V dc-bias posted a (Cx/Co) of 1.62% with a Q of 29,640 

[34]. Gaps like this should extend the frequency range of disk-

array filters well beyond the 223.4 MHz of the Part II paper. 

TABLE II: RADIAL-CONTOUR MODE DESIGN EQUATIONS AND PROCEDURE SUMMARY 

Objective/Procedure Parameter Relevant Design Equations for a Given Parameter Eq. 

 

Resonance 

Frequency 

𝑓𝑛𝑜𝑚 =
𝐾(𝑅,𝑚),𝑚𝑎𝑡

2𝑅
√

𝐸

𝜌
 where 𝐾(𝑅,𝑚),𝑚𝑎𝑡 =

𝜁(𝑅,𝑚),𝑚𝑎𝑡

𝜋√2(1+𝜎)
 

where R denotes the disk radius, E and  are the Young’s 

modulus and Poisson ratio, and m = mode number.

 

(13) 

Solve For ζ 

𝜁

𝜉

𝐽0(𝜁/𝜉)

𝐽1(𝜁/𝜉)
= 1 − 𝜎, 𝜁 = 2𝜋𝑓𝑛𝑜𝑚𝑅√

2𝜌(1 + 𝜎)

𝐸
,

𝜉 = √
2

1 − 𝜎
 

(14) 

Given: fnom, VP, Rx  

Find: radius R, electrode-to-reso-

nator gap spacing do 

1. Choose E, , and  by choice 

of structural material. 

2. Choose thickness h. 

3. Use (13) to find the R needed 

to achieve fnom. Use (14) to 

get  in the process. 

4. Use (15) to find the do 

needed to achieve Rx. 

5. (16)-(18) yield all needed 

values in the transformer-

based negative Co equivalent 

circuit. 

Motional 

Resistance, Ca-

pacitance, and In-

ductance 

𝑅𝑥 =
𝑟𝑥

𝜂𝑒
2

, 𝐶𝑥 = 𝑐𝑥𝜂𝑒
2, 𝐿𝑥 =

𝑙𝑥

𝜂𝑒
2

 
 

(15) 

Core Equiv. Cir-

cuit 

Elements 

𝑙𝑥 = 𝑚𝑚(𝑅) =
2𝜋𝜌ℎ ∫ 𝑟𝐽1

2(𝜙𝑟)𝑑𝑟
𝑅

0

𝐽1
2(𝜙𝑟)

, 𝜙 = 𝜔0√
𝜌

𝐸
(1 − 𝜎2)

  
𝑐𝑥 =

1

𝑘𝑚(𝑅)
=

1

𝜔𝑛𝑜𝑚
2 𝑚𝑚

, 𝑟𝑥 = 𝑏𝑚(𝑅) =
√𝑘𝑚𝑚𝑚

𝑄
=

𝜔𝑛𝑜𝑚𝑚𝑚

𝑄
   

(16) 

Static Overlap 

Capacitor 
𝐶𝑜 =

𝜀𝑜𝜃𝑜𝑣𝑅ℎ

𝑑𝑜
  (17) 

Electromechanical 

Coupling Coeff. 
𝜂𝑒 = 𝑉𝑃

𝐶𝑜

𝑑𝑜

 (18) 
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Fig. 13 plots (Cx/Co) versus gap spacings below 100nm for 

radial-contour mode disks at various frequencies and dc-bias 

voltages. The chosen VP voltages are all well below the pull-in 

voltage for the devices determined both via the classic electrical 

stiffness pull-in expression and by FEM simulation. Still, other 

factors might also limit the permissible VP, e.g., weak stem an-

chor or electrical breakdown, so the higher voltage plots of Fig. 

13 do require validation. Assuming for now that they hold, the 

plots predict that capacitive-gap transducers with gaps ap-

proaching 10nm have potential to achieve (Cx/Co) ~10% at us-

able RF frequencies. Electromechanical coupling this high is 

actually not unheard of for capacitive-gap transducers. For ex-

ample, the clamped-clamped beam resonators used in the HF 

filter of [15] posted (Cx/Co)’s on the order of 14.8% at VP=35V. 

It should be mentioned that adequate (Cx/Co) does not guar-

antee an impedance match with the stages before and after the 

eventual filter using a given disk resonator. Unfortunately, the 

tiny size of a single disk relegates it to high impedance. Taking 

the example of a two-resonator 0.5dB-ripple Chebyshev filter 

with qn=1.9497 [29] and Q/Qf =9.5 for less than 2dB insertion 

loss, (7) predicts that a match to a 50 RQ termination requires 

a motional resistance Rx of 12.9; and a match to 200 requires 

that Rx be 51.6. Using (15) in Table II with an aggressive (but 

plausible) gap of do = 20nm, the 163-MHz disk reported in [19] 

with Q = 10,500, h = 3μm, and VP = 14V, has a (Cx/Co) of 1.3% 

(much larger than the 0.06% needed by the filter of [19]) and 

an Rx of 48Ω. So with the 20-nm gap, the motional resistance of 

the 163-MHz case is sufficient to permit a filter with 200 ter-

minations. It, however, is larger than the needed 12.9 for a 

50 termination even though its (Cx/Co) is more than sufficient. 

The solution: Arraying to further lower Rx without affecting 

(Cx/Co).  

VIII. DISK ARRAY-COMPOSITE DESIGN 

Section V and Fig. 2 briefly introduced the strategy of array-

ing Nio disk resonators to attain a combined output current Nio 

times larger than that of a single resonator for the same input 

voltage, i.e., a motional resistance Nio times smaller. Of course, 

the currents of the devices in an array sum constructively only 

if all devices vibrate in phase and at the same frequency. To 

insure this, as depicted in Fig. 14, the disks in the array are me-

chanically strong-coupled by half-wavelength beams that effec-

tively transform the array into a single multi-resonator compo-

site device in which all constituent disks vibrate in unison at one 

mode frequency. Here, the use of half-wavelength coupling 

links ideally selects one desired mode and rejects other modes 

[35]. Its strong coupling also avoids motional resistance reduc-

tions predicted for weakly coupled resonator arrays [36]. The 

result: An array-composite resonator with substantially lower 

impedance and greater power handling than a single one of its 

constituents. 

The action of the half-wavelength extensional-mode coupling 

beams is perhaps best understood by closer inspection of the 

beam itself, depicted in Fig. 16, and its defining chain matrix, 

which relates the force F and the velocity ẋ on both ends of the 

beam (cf. Fig. 16(a)), taking the form  

 [
𝐹1

𝑥̇1
] = [

cos(𝛽𝑙𝑐) 𝑗𝑌𝑜 sin(𝛽𝑙𝑐)
𝑗𝑍𝑜 sin(𝛽𝑙𝑐) cos(𝛽𝑙𝑐)

] [
𝐹2

𝑥̇2
] (23) 

where Zo and β, are the characteristic acoustic impedance and 

propagation constant, respectively, defined in terms of beam 

thickness h, beam width wc, beam length lc, and material prop-

erties E and ρ as  

 𝑌𝑜 =
1

𝑍𝑜

= ℎ𝑤𝑐√𝜌𝐸, 𝛽 =
𝜔

𝑣𝑝

, 𝑣𝑝 = √
𝐸

𝜌
 (24) 

where vp is the acoustic velocity. 

Considering the beam as a mechanical transmission line with 

acoustic wavelength λ at the desired vibration mode frequency 

defined as 

 

Fig. 13: Simulated plot of Cx/Co for a polysilicon contour mode disk resonator 
with fully surrounding electrodes plotted as a function of the electrode-to-reso-

nator gap spacing for four different bias voltages operating at (a) 433MHz, and 

(b) 1.2GHz. 

 

Fig. 14: Illustration of a λ/2 coupled array-composite resonator with dedicated 

tuning electrodes and outer buffer disk-resonators for defensive design against 

in-plane structural film stress. 
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 𝜆 =
1

𝑓0

√
𝐸

𝜌
 (25) 

and setting the coupling beam length lc,λ/2 to half-wavelength, 

given by 

 𝑙𝑐,𝜆/2 =
1

2𝑓0

√
𝐸

𝜌
 (26) 

βlc,λ/2 = βλ/2 = π in (23), which then yields 

 [
𝐹1

𝑥̇1
] = [

−1 0
0 −1

] [
𝐹2

𝑥̇2
],    

𝐹1 = −𝐹2

𝑥̇1 = −𝑥̇2
  (27) 

states that half-wavelength coupling enforces equal force and 

displacement amplitudes with opposite phases at the coupling 

beam-ends. In other words, it forces the disks attached at the 

ends of the extensional coupling to vibrate in unison, i.e., with 

the same phase. From Fig. 9 and the discussion of Section IV, 

this means it forces the highest frequency mode and rejects all 

other modes. Ideally, the in-phase mode would be the only one 

permissible under half-wavelength coupling. Fig. 15(a) pre-

sents the finite element analysis (FEA)-simulated mode shape 

for a 5×3 half-wavelength-coupled array showing identical con-

tour-mode shapes for all resonators. With non-ideal 0.6λ cou-

pling beams, however, apparent mode shape and phase varia-

tion occur between the disks in the coupled array as shown in 

Fig. 15(b). 

To lend more insight into the action of the half-wavelength 

beams, Fig. 16(a) presents alongside the schematic view of a 

λ/2 coupling beam its acoustic transmission line equivalent 

model for which (27) governs the force-to-velocity transfer 

function at the beam ends. Here, the direct electromechanical 

analogy [37] [38] models the force and velocity applied on the 

ends of the beam as the voltages and currents, respectively, 

across the ports of the transmission line. It is important to note 

that the width of the λ/2 beam does not affect its network prop-

erties defined by (27). Thus, the width of the λ/2 couplers typi-

cally equals the minimum achievable critical dimension of the 

fabrication technology. A wider beam width would still mathe-

matically satisfy (27), but would risk perturbing the vibration 

mode shape of the adjacent connected disks. 

To provide a more visual circuit model, Fig. 16(b) equates 

the λ/2 beam to a two-port network using the ABCD matrix of 

(27), which then further simplifies to the electrical equivalent 

circuit of Fig. 16(c). This cross-coupled circuit clearly shows 

that the λ/2 beam acts to invert the phase of the motions at its 

ends, consistent with the previous discussion. 

A. Non-I/O Disks 

Upon closer inspection, the Fig. 14 array-composite contains 

additional disks in the array-composite beyond those used for 

input/output (I/O). These include disks whose electrodes accept 

frequency tuning voltages rather than I/O inputs in order to cor-

rect for practical issues caused by finite fabrication tolerances 

that introduce device mismatch; as well as electrodeless buffer 

disks that alleviate fabrication stress that otherwise could debil-

itate a large mechanical circuit like that of Fig. 2. These non-

I/O disks add to the total disk count in an array-composite, so 

further raise the impedance seen into each individual disk (ei-

ther electrically or mechanically). As will be seen, they also 

lower the effective electromechanical coupling of a disk array-

composite. Part II of this paper will further detail the need for 

these extra disks, but for now, any array-composite model must 

include them. 

B. Array-Composite Equivalent Circuit 

The electrical equivalent circuit for the simple λ/2-coupled 

 

Fig. 15: Finite element modal analysis result for a 5×3 disk resonator array cou-
pled by (a) ideal λ/2 length beams, and (b) non-ideal 0.6λ length beams with 

process variations. The color map legend indicates local mode shape displace-

ment with arbitrary units. 

 

Fig. 16: (a) Schematic view of a λ/2 array extensional mode coupling beam and 
its acoustic transmission equivalent representation with acoustic impedance Zo 

and electrical length βlc = π. (b) ABCD matrix representation for the acoustic 

transmission line formed by the λ/2 beam. (c) Electrical equivalent circuit rep-

resentation of the λ/2 beam. 
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two-disk array-composite of Fig. 17(a) results via simple com-

bination of the electrical equivalent circuit representations of 

the λ/2 beam presented in Fig. 16(c) and the circuit model of a 

single disk resonator presented in Fig. 12. Fig. 17(b) does just 

this. Redrawing the circuit then yields the visually simpler ver-

sion of Fig. 17(c) that better elucidates the series and parallel 

connected components. Here, it is no surprise that the core LCR 

elements modeling the vibrating disks cascade in series, since 

λ/2-coupling forces the disks to vibrate in-phase with identical 

mode shapes. The result: Their dynamic stiffnesses, masses, 

and damping losses add linearly. Similarly, since the electrodes 

modeled by the transformers are in parallel, the forces exerted 

by the electrodes add cumulatively to generate a total combined 

force Nio times larger than that of a single electrode, where Nio 

is the number of driven input/output (I/O) electrodes, each fully 

surrounding a disk to the extent possible. 

Fig. 14 presents a more complex scenario, since some disks 

contribute to I/O, while others do not, as they might serve fre-

quency tuning or other purposes; and any resonator may be used 

to mechanically couple to another mechanical structure, as in-

dicated by the dashed beam on the right. The total effective 

equivalent circuit for an Ntot-resonator λ/2-coupled array-com-

posite with Nio I/O disks, Nt tuning disks, and Nb buffer disks 

becomes that presented in Fig. 18, where expressions for the 

elements and turns ratios now take on the following forms: 

 

𝜂𝑒𝐴 = 𝑁𝑖𝑜 × 𝜂𝑒 

𝜂𝑡𝐴 = 𝑁𝑡 × 𝜂𝑒  

𝑟𝑥𝐴 = 𝑁𝑡𝑜𝑡 × 𝑟𝑥 

𝑙𝑥𝐴 = 𝑁𝑡𝑜𝑡 × 𝑙𝑥 

𝑐𝑥𝐴 =
1

𝑁𝑡𝑜𝑡

× 𝑐𝑥 

(28) 

where ηeA and ηtA are the electromechanical coupling coeffi-

cients at the array-composite’s input-output and tuning elec-

trodes, respectively. Similarly, rxA, lxA, and cxA represent the 

core-LCR values that model the equivalent damping, dynamic 

mass, and inverse dynamic stiffness of the array-composite, re-

spectively. The mechanical coupler turns ratio c is 1 for the 

present case where mechanical couplers attach only at the edges 

of disks, but can be different from 1 when the velocity at the 

core or reference point for the LCR circuit differs from that at 

the coupling location [14], [15]. 

The Fig. 18 circuit shows four terminals: one that goes to the 

electrodes of all disks involved with I/O; one that goes to the 

electrodes of all disks intended for frequency tuning; one that 

goes to a mechanically coupled next stage; and one that goes to 

the movable structure. The circuit, of course, is general enough 

that many of the electrodes are re-assignable to other purposes 

at will. 

C. Array-Composite Motional Resistance 

With I/O electrodes in parallel and all disks vibrating in 

unison, the currents flowing into the I/O electrodes now add in 

phase, allowing for a total current Nio times that of a single elec-

trode fully surrounding a single disk. Since the current increases 

for the same input voltage, the motional resistance of the struc-

ture decreases to 

 

Fig. 17: (a) Schematic view a two-resonator network coupled with a half-wave-

length beam. (b) Electrical equivalent circuit representation of the two-resona-
tor array-composite that combines the circuits presented in Fig. 12 and Fig. 

16(c); and (c) the same circuit after combining series elements. 

 

Fig. 18: General electrical equivalent circuit for the structure of Fig. 14.  
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 𝑅𝑥𝐴 =
𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2 𝑅𝑥 (29) 

where RxA and Rx represent the motional resistance of the array-

composite and a single disk resonator, respectively. The corre-

sponding expression for the filter termination resistance follows 

from inserting (29) in (7) as 

 𝑅𝑄 = (
𝑄

𝑞𝑛𝑄𝑓

− 1)
𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2 𝑅𝑥 ≅

𝑄

𝑞𝑛𝑄𝑓

𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2

𝑟𝑥

𝜂𝑒
2
 (30) 

where rewriting the single resonator’s damping term rx in terms 

of the resonator Q, dynamic mass mm, and electromechanical 

coupling coefficient ηe leads to 

 𝑅𝑄 =
1

𝑄𝑓

𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2

2𝜋𝑓𝑜𝑚𝑚

𝑞𝑛𝜂𝑒
2

 (31) 

Rewriting mm and ηe of (31) in terms of the fundamental design 

variables yields 

 𝑅𝑄 =
𝑓𝑜

𝑄𝑓

𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2

𝑑𝑜
4

𝑉𝑃
2

2𝜋2𝜒𝜌

𝑞𝑛ℎ𝜀𝑜
2𝜃𝑜𝑣

2
 (32) 

The right-hand-most form of (30) addresses the specific case 

where the filter insertion loss is low, i.e., the resonator is Q 

much larger than the filter Qf. In this case, the value of RQ is 

independent of the unloaded resonator Q, and the knobs that 

best specify its value become the electrode-to-resonator gap 

spacing do (with a 4th power dependence) and the dc-bias volt-

age VP (with a square-law dependence). 

A single polysilicon disk resonating at 433 MHz with a Q of 

20,000, 40-nm gaps, 26V dc-bias, thickness h of 3μm, and fully 

surrounding electrodes, i.e. θov=2π, would exhibit a motional 

resistance Rx of 364Ω, which after assembly into a filter circuit 

is much too high to match to adjacent stages in a conventional 

receiver. In contrast, combination of 20 of these same resona-

tors into a disk array-composite (with 12 I/O resonators, 8 buff-

ers) with all I/O resonators hooked in parallel allows summation 

of output currents to reduce the motional resistance down to 

50Ω. According to (32), a two-resonator 0.1% bandwidth 0.5-

dB-ripple Chebyshev filter using this array-composite requires 

a termination resistance of 470Ω. Reducing gaps to 20-nm and 

dropping the dc-bias voltage to 9V reduces the needed number 

of array-composite resonators to 10 (with 6 I/O) to achieve the 

same filter response, but with an RQ of 49.  

Fig. 19 plots termination resistance RQ versus number of 433-

MHz based resonators in the array-composite for three different 

gap spacing examples of 80nm, 40nm, 20nm, and 10nm used in 

two- and three-resonator 0.5dB-ripple Chebyshev filters, show-

ing the large range over which gap spacing and array size 

choices specify the filter termination resistance. Note that 10-

nm gaps are not unreasonable, given recent demonstrations of 

13-nm gaps [34]. 

D. Array-Composite Power Handling 

In addition to motional resistance, the power handling of an 

array-composite improves over that of a single constituent res-

onator. This is obvious, given that the current now distributes 

among Nio devices, so any detrimental effects, e.g., heating, 

lessen by approximately the factor Nio. 

Third-order intermodulation distortion is often a good gauge 

for the largest input power acceptable to a given circuit element 

or system block. For practical applications, the third-order in-

termodulation intercept point IIP3, defined as the input power 

at which the output powers due to an input at the carrier fre-

quency and at two frequencies equally spaced from it, i.e. f1 = 

f0 - Δf and f2 = f0 - 2Δf, are equal, is a good metric for device or 

circuit linearity. [39] already developed an expression govern-

ing the IIP3 of a radial-contour mode disk resonator, repeated 

here for convenience as follows [40] [25]: 

 

 𝑃𝐼𝐼𝑃3
= 𝑃𝑉2𝑋 ǁ 𝑃𝑉𝑋2  ǁ 𝑃𝑋3  (33) 

This compact IIP3 power expression comprises the parallel con-

nection of three resonator non-linearity sources given by 

 

𝑃𝑉2𝑋 =
4𝜋𝜀𝑜𝑓𝑜𝑄𝑉𝑃

2𝐴𝑜

𝑑𝑜(2𝛩1 + 𝛩2
∗)

=
4𝜋𝜀𝑜𝑓𝑜𝑄𝑉𝑃

2𝑅ℎ𝜃𝑜𝑣

𝑑𝑜(2𝛩1 + 𝛩2
∗)

 

𝑃𝑉𝑋2 =
4𝜋𝑓𝑜𝑄𝑑𝑜

2𝑘𝑟𝑒

3𝛩1(𝛩1 + 2𝛩2
∗)

=
16𝜋4𝑓𝑜

3𝑄𝑑𝑜
2𝑅2ℎ𝜒𝜌

3𝛩1(𝛩1 + 2𝛩2
∗)

 

𝑃𝑋3 =
2𝜋𝑓𝑜𝑄𝑑𝑜

5𝑘𝑟𝑒
2

3𝜀𝑜𝐴𝑜𝑉𝑃
2𝛩1

2𝛩2
∗ =

32𝜋7𝑓𝑜
5𝑄𝑑𝑜

5𝑅3ℎ𝜒2𝜌2

3𝜀𝑜𝜃𝑜𝑣𝑉𝑃
2𝛩1

2𝛩2
∗  

(34) 

where starred variables indicate complex conjugates, Ao is the 

overlap area between the electrode and the disk, kre is the effec-

tive stiffness of a single disk at the edge, Θ1 and Θ2 model the 

degree to which the resonator’s amplitude transfer function at-

tenuates the blocker input tones and take the form 

 

𝛩1 =
1

1 − (𝑓1/𝑓0)2 + 𝑗(𝑓1/𝑄𝑓0)
 

𝛩2 =
1

1 − (𝑓2/𝑓0)2 + 𝑗(𝑓2/𝑄𝑓0)
 

(35) 

Here, the PV 
2
X and PVX 

2 terms derive from nonlinear interac-

tions between voltage and displacement, while the PX 
3 term is 

purely displacement-derived. 

 

Fig. 19: Simulated plots of filter termination resistance vs. number of 433-MHz 
disk resonators in a half-wavelength-coupled array-composite calculated for 

three different gap spacing cases assuming two- and three-resonator 0.5dB-rip-

ple Chebyshev filter designs. For these simulations, VP = 15V, h = 3m, 

PBW = 0.1%, Ntot = Nio, = 2300kg/m3, = 0.763 (1st mode), ov = 2π, qn (2
nd 

order) = 1.9497, qn (3
rd order) = 1.8638. The curves show only small differences 

between 2nd and 3rd order. 
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For an array-composite like that of Fig. 14 with Nio I/O elec-

trodes and Ntot electrodes, the expression for IIP3 becomes 

 𝑃𝐼𝐼𝑃3
= 𝑁𝑡𝑜𝑡 [𝛽𝑃𝑉2𝑋 ∥ 𝑃𝑉𝑋2 ∥

𝑃𝑋3

𝛽
] (36) 

where  = Nio/Ntot. If all disks are I/O disks, then the improve-

ment in IIP3 becomes linear with Ntot. 

E. Array-Based Mechanical Impedance Tailoring 

Equation (29) already showed how the number of resonators 

Ntot used in a mechanically coupled array-composite acts as a 

knob to control the electrical resistance presented by any one 

(or group) of its resonators. Note further that coupling all reso-

nators in this way does more than merely add together currents 

to lower electrical motional impedance and raise power han-

dling. In fact, one of the most useful characteristics of an array-

composite for filter design is the degree to which it can tailor 

the mechanical impedance, i.e., as governed by the effective 

stiffness and mass, presented to a mechanical input/output port. 

The amount of stiffness tailoring available is readily apparent 

when determining the impedance seen into the mechanical port 

in the array-composite equivalent circuit of Fig. 18 with the 

other ports grounded. In particular, grounding terminals 1, 2, 

and 3 of this circuit leaves port 4 essentially coupled to an ef-

fective resonator with mass, stiffness, and damping values all 

Ntot times as large as that of a single resonator. This means the 

stiffness presented to a mechanical structure, e.g., a coupling 

beam, attached to a disk’s edge, is Ntot times as large as that of 

a single disk resonator. Thus, Ntot acts as a knob to control the 

mechanical impedance presented by any one of its resonators. 

As will be seen, the dynamic stiffness presented at a coupling 

location very much controls the bandwidth of a given filter de-

sign. The ability to raise the presented stiffness by arraying 

equates to an ability to decrease the percent bandwidth of a 

given filter, such as needed for RF channel-selection. 

IX. MINIMUM ELECTROMECHANICAL COUPLING STRENGTH 

REQUIRED FOR THE CHOSEN BANDWIDTH 

Although array size strongly influences the impedance pre-

sented by the combined array-composite input terminal, it does 

not raise the electromechanical coupling strength gauged by the 

ratio of motional-to-static input capacitance (CxA/CoA). For the 

case where all disks possess I/O electrodes and all electrodes 

are hooked in parallel, i.e. Ntot = Nio, (CxA/CoA) follows readily 

by simply taking the ratio of 

 𝐶𝑥𝐴 = 𝑁𝑡𝑜𝑡𝜂𝑒
2𝑐𝑥 = 𝑁𝑡𝑜𝑡

𝑉𝑃
2

𝑑𝑜
4

ℎ(𝜀𝑜𝑅𝜃𝑜𝑣)2

𝜋3𝜒𝐾𝑚𝑎𝑡
2 𝐸

 (37) 

and 

 𝐶𝑜𝐴 = 𝑁𝑡𝑜𝑡𝐶𝑜 = 𝑁𝑡𝑜𝑡

𝜀𝑜𝑅𝜃𝑜𝑣ℎ

𝑑𝑜

 (38) 

which yields 

 
𝐶𝑥𝐴

𝐶𝑜𝐴

=
𝑉𝑃

2

𝑑𝑜
3

𝜀𝑜𝑅𝜃𝑜𝑣

𝜋3𝜒𝐾𝑚𝑎𝑡
2 𝐸

 (39) 

Here, (CxA/CoA) does not change with the number of I/O disks. 

If, on the other hand, non-I/O disks are included, as described 

in Section I, the expression for electromechanical coupling 

strength becomes 

 
𝐶𝑥𝐴

𝐶𝑜𝐴

=
𝑁𝑖𝑜

𝑁𝑡𝑜𝑡

𝑉𝑃
2

𝑑𝑜
3

𝜀𝑜𝑅𝜃𝑜𝑣

𝜋3𝜒𝐾𝑚𝑎𝑡
2 𝐸

 (40) 

where Ntot is the total number of mechanically coupled disks 

that include both the I/O and non-I/O disks, which means the 

Nio/Ntot term in (40) is always less than one. In (40), the only 

other adjustable variables are VP and do, as the rest are fixed by 

the chosen center frequency fo. In most practical cases, it is up 

to the dc-bias VP and electrode-to-resonator gap do scaling to 

insure adequate electromechanical coupling (CxA/CoA) to meet 

the requirement of (3) [24]. 

 To gauge how the minimum CxA/CoA that avoids passband 

distortion for a given filter bandwidth B scales with frequency, 

one can use (21) and (40) to rewrite (3) as 

 
1

𝐵
(

𝑉𝑃
2

𝑑𝑜
3

) (
𝜀𝑜𝜃𝑜𝑣𝑁𝑖𝑜

2𝜋3𝜒𝐾𝑚𝑎𝑡𝑁𝑡𝑜𝑡√𝐸𝜌
) > 𝛾 (41) 

The terms in the rightmost parentheses in (41) comprise mate-

rial, resonator, and filter design constants that are fixed for a 

given filter response and technology choice. This again leaves 

the bias voltage VP and electrode-to-resonator gap spacing do as 

the primary design knobs to satisfy (41) for a given desired 

bandwidth B. It is important to observe that (41) is independent 

of disk radius, and thus, of the filter center frequency fo. Thus, 

if the needed bandwidth stays constant for a bank of filters over 

a range of frequencies—which is often the case for RF channel-

selection—then so do the needed gap do and bias voltage VP for 

each filter in the bank. 

X. FILTER PASSBAND SPECIFICATION 

Section IV described how mechanical coupling of two iden-

tical single disk resonators—or more preferably identical array-

composites that behave as single disks with reduced Rx—cre-

ates a two degree of freedom system with two closely spaced 

modes that define a filter passband, as described in Fig. 9. A 

more explicit expression for the bandwidth of the filter follows 

from (10), which accounting for the stiffness transformation af-

forded by arraying described by (28), yields 

 𝐵 =
𝑘𝑐,𝑖𝑗

𝑘𝑟𝑒𝐴

𝑓𝑜

𝑘𝑖𝑗

=
𝑘𝑐,𝑖𝑗

𝑘𝑟𝑒

𝑓𝑜

𝑁𝑡𝑜𝑡𝑘𝑖𝑗

 (42) 

where kreA is the effective stiffness of a disk array-composite, 

and kc,ij is the stiffness of the filter coupling beam between ith 

and jth resonators in a multi-resonator filter. While any coupling 

beam length can be chosen to provide the dynamic stiffnesses 

kc,ij for the required filter bandwidth in (42), beams with lengths 

matching odd multiples of the quarter-wavelength, i.e. λ/4, form 

a special case that minimizes the sensitivity of the filter re-

sponse to variations in beam dimensions, e.g., caused by finite 

fabrication tolerances. This resilience against process variations 

arises from the fact that λ/4 dimensions zero out the derivative 

of the dynamic beam stiffness with respect to the beam length 

[38]. 
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A. Electrical Equivalent Circuit for a λ/4 Coupling Beam 

Like other components of a mechanical filter, the behavior of 

a λ/4 coupling beam follows the prediction of its equivalent 

electrical circuit. As described in Section VIII, the characteris-

tics of a small cross-section coupling beam vibrating in its ex-

tensional mode are similar to the behavior of an electrical trans-

mission line, and in ABCD matrix form conform to (23). The 

special case of a quarter-wavelength coupling beam with lc = 

λ/4 sets the electrical length of the transmission line equivalent 

representation of the beam to βlc = π/2 in (23), which then yields 

the ABCD matrix expression for a λ/4 coupling beam 

 [
𝐹1

𝑥̇1
] = [

0 𝑗𝑌𝑜

𝑗𝑍𝑜 0
] [

𝐹2

𝑥̇2
]  (43) 

Here, the λ/4 coupling beam behaves as an impedance inverter 

commonly used in ladder filter design [41]. 

As introduced in Section IV, a T-network of capacitors (cf. 

Fig. 9) aptly captures the electrical equivalent lumped circuit 

model of the λ/4 coupling beam. Fig. 20 presents the transmis-

sion line representation of this circuit, where ZA, ZB, and ZC 

model the series and shunt arm impedances. Equating the 

ABCD matrices of the circuit presented in Fig. 20 [41] with that 

of (43) leads to 

 
1

𝑍𝑐

= 𝑗𝑍𝑜 → 𝑗𝜔𝑜𝑐𝑐 =
𝑗

ℎ𝑤𝑐√𝜌𝐸
 (44) 

which then yields the expression for the dynamic stiffness of a 

λ/4 coupling beam in terms of beam dimensions: 

 𝑘𝑐 =
1

𝑐𝑐

=
𝜋𝐸

2

ℎ𝑤𝑐

𝑙𝜆/4

  (45) 

where wc is the width of the coupling beam, and lλ/4 is the beam 

length equal to  

 𝑙𝜆/4 =
𝜉

4𝑓𝑜

√
𝐸

𝜌
 , 𝜉 = 1, 3, 5, …  (46) 

where the presence of ξ indicates that any odd multiple of the 

quarter-wavelength also provides the desired variance resili-

ence. 

B. λ/4 Coupling Beam Width & Array Size  

Inserting (25) and (45) in (42) provides the filter bandwidth 

expression in terms of fundamental device geometry and mate-

rial properties: 

 𝐵 =
𝑤𝑐

𝑁𝑡𝑜𝑡

(𝑓𝑜
2

2

𝜉𝜋2𝐾𝑚𝑎𝑡
2 𝜒𝑘𝑖𝑗

√
𝜌

𝐸
) (47) 

The only free variables to set the filter bandwidth B in (47) are 

the λ/4 beam width wc and the array size Ntot, where the remain-

ing terms given in the parentheses are fixed by other filter spec-

ifications.  

It is important to observe from (47) that very small band-

widths may require excessively narrow beam widths. This be-

comes especially true if the array-composite design approach is 

not used, i.e. if Ntot=1. Interestingly, use of array-composites 

with large enough Ntot becomes critical to maintaining wc wider 

than the critical dimension wc,min that can be reliably manufac-

tured, as governed by 

 𝑤𝑐 = 𝑁𝑡𝑜𝑡 (
𝐵

𝑓𝑜

)
𝜉𝜋2𝐾𝑚𝑎𝑡

2 𝜒𝑘𝑖𝑗

2𝑓𝑜

√
𝐸

𝜌
> 𝑤𝑐,𝑚𝑖𝑛  (48) 

Taking as an example the 433-MHz disk resonator of Section 

VIII.C, the use of stand-alone polysilicon disk resonators to 

form a second order Chebyshev filter with 0.5dB ripple not only 

demands an impractically high termination resistance (exceed-

ing 10kΩ), but also requires a very narrow λ/4 coupling beam 

width of 22nm with kij =0.7225 and Ntot=1 in (48). Here, in-

creasing the array size to N=24 adjusts the beam width to wc = 

534nm that can now be reliably patterned and etched into 3μm-

thick polysilicon using DRIE, with the added benefit of low 

sub-1kΩ filter termination resistances. So arraying is critical to 

successful filter realization. 

 Equation (48) further indicates that filters with very small 

fractional bandwidth PBW = B/fo, such as needed for RF channel-

selection [7], must use resonator array-composites with size Ntot 

greater than a minimum number Nmin set by wc,min according to 

 𝑁𝑡𝑜𝑡 ≥ 𝑁𝑚𝑖𝑛 =
𝑤𝑐,𝑚𝑖𝑛

𝑃𝐵𝑊

2𝑓𝑜

𝜉𝜋2𝐾𝑚𝑎𝑡
2 𝜒𝑘𝑖𝑗

√
𝜌

𝐸
 (49) 

regardless of other filter specifications such as filter termination 

resistance or layout area. Fig. 21 uses (49) to plot the minimum 

achievable fractional bandwidth PBW for a 2nd order polysilicon 

Chebyshev filter operating at 1GHz for different minimum fil-

ter coupling beam widths. These curves demonstrate the wide 

fractional filter bandwidth range achievable by mechanically 

coupled disk filters, where larger array sizes enable smaller 

fractional bandwidths desired for channel-select applications. 

The large number of λ/2 coupled disks indicated in Fig. 21 

may at first glance raise area and cost concerns; however, the 

disks that form the array have tiny dimensions that scale in-

versely proportional to frequency. For example, a 0.1% frac-

tional bandwidth 2nd order polysilicon filter operating at 1GHz 

with 0.25μm wide coupling beams requires Ntot=25 λ/2 coupled 

resonators per array-composite. As illustrated in Fig. 2, a sec-

ond order differential filter comprises four array-composites, 

which in this case leads to Ntot=25 resonators in each quadrant. 

This 100-coupled disk resonator circuit would consume only 

110μm × 110μm die area (assuming electrode routing is done 

in another layer as in CMOS), where each disk has a diameter 

of only 5.4μm. To put this tiny footprint in perspective, one 

could amass 2,025 similar filters on a 5mm×5mm chip, perhaps 

towards devising a low cost, programmable mode-selectable 

RF channelizing filter bank for a very flexible receiver front-

end capable of satisfying nearly any communication standard. 

Though this paper focuses on channel-selecting filters, note 

that larger bandwidth filters, e.g., 3% for band-selection, can 

employ multiple wider coupling beams to raise the spring-to-

 

Fig. 20: Transmission line model equivalent of the λ/4 beam electrical equiva-

lent circuit. 
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resonator array-composite ratio. 

XI. DIFFERENTIAL MECHANICAL DESIGN 

A differential filter with electrically and mechanically sym-

metric drive and sense has two advantages over a single-ended 

one: 

1) Symmetric (i.e., differential) design suppresses spurious 

modes close to the filter center frequency generated by 

complex mechanical circuit non-idealities [19]. 

2) Common-mode feedthrough currents flowing through par-

asitic elements, e.g., capacitors formed by electrode-disk 

overlaps and substrate couplings, cancel. 

Much like differential transistor pair design, if the microme-

chanical resonator circuit could encompass two symmetric 

halves forced to resonate at the same vibration frequency but 

180° out of phase, this would yield the desired differential op-

eration with the stated benefits. Similar to the analysis pre-

sented in Section VIII for λ/2 beams that enforce in-phase vi-

bration, the electrical transmission line analogy outlined by (23) 

also reveals the coupling beam design needed to enforce differ-

ential vibration. Here, setting the beam length lc to the full 

wavelength λ so that the electrical length becomes βlc = βλ = 2π 

yields the ABCD matrix 

 [
𝐹1

𝑥̇1
] = [

1 0
0 1

] [
𝐹2

𝑥̇2
] ,    

𝐹1 = 𝐹2

𝑥̇1 = 𝑥̇2
  (50) 

With reference to Fig. 22(a), the ẋ1 = ẋ2 condition in (50) is only 

possible when one of the coupled disks contracts while the other 

expands to keep the displacement magnitude and direction on 

both ends of the coupling beam identical. As a result, λ-coupled 

disks assume the same vibration frequency but out-of-phase 

displacement. 

Similar to Fig. 16 that explains the in-phase λ/2 coupler 

model, Fig. 22 illustrates the equivalent circuit model for the 

full-wavelength differential coupler. Here, the width of the λ 

differential coupler does not change its network properties at 

resonance, much like the λ/2 coupler, and typically equals the 

minimum critical dimension to avoid loading the disk resona-

tors by unnecessarily wide coupling beams. 

 Fig. 23 illustrates the electrical equivalent circuit for a λ-cou-

pled differential disk pair, which combines the equivalent cir-

cuit of a single disk resonator given by Fig. 12 and the circuit 

model for the λ coupler given by Fig. 22(c). Similar to the λ/2 

coupled case presented in Fig. 17(c), the core-LCR circuits of 

the λ-coupled disks add in series. However, in contrast to the 

λ/2 coupled case, the electrodes of the λ-coupled pair combine 

in parallel with differential polarity. Therefore, the electrodes 

must drive differentially, i.e. with 180° phase difference relative 

to each other, to avoid cancelling the motional currents gener-

ated by the individual disks. 

A. Differential Filter Topology 

To convey how the overall differential filter structure func-

tions, Fig. 24 presents the expected properly terminated filter 

frequency response for a simplified 4-disk-array version of this 

design, with dotted lines to show its unterminated response, and 

with FEA-simulated vibration mode shapes corresponding to 

each peak of the response. Here, the λ/2 beams combine four 

disk resonators in each quadrant to create four array-composites 

that act like four single disks, but with 4× less Rx. Note how all 

disks in a given array-composite vibrate with the same phase 

and mode shape—a result of /2-coupling. 

To induce differential operation, λ-coupling of the array-

composites in the upper and lower halves of the mechanical cir-

cuit enforces out-of-phase motion between left-half top and bot-

tom array-composites (which comprise the input devices) and 

right-half ones (comprising the output devices). Fig. 24 clearly 

shows how the upper and lower array-composites in the left and 

right halves move with opposite phase when the whole structure 

 

Fig. 21: Simulated curves of minimum achievable fractional bandwidth as a 
function of array size for different minimum coupling beam widths for a 2nd 

order polysilicon Chebyshev filter operating at 1GHz. 

 

Fig. 22: (a) Schematic view of a λ extensional-mode coupling beam and its 

acoustic transmission equivalent representation with acoustic impedance Zo and 
electrical length βlc = 2π. (b) ABCD matrix representation for the acoustic trans-

mission line formed by the λ beam. (c) Electrical equivalent circuit representa-

tion of the λ beam. 
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vibrates, no matter the mode. A consequence of this is that (ide-

ally) common-mode input forces cannot excite this filter; only 

differential ones within the passband can, which means only 

differential signals can pass through the structure. 

To maintain symmetry, /4 beams connect the left and right 

differential array-composites, serving to split their frequencies 

to form peaks that define the filter passband. In particular, the 

mode that actuates the /4 beams the least generates the low 

frequency peak, cf. Fig. 24(a); while the mode that flexes these 

couplers the most specifies the high frequency one, cf. Fig. 

24(b). Upon filter termination, loading of the resonators widens 

their frequency response spectra, allowing them to add con-

structively between peaks and subtract outside, yielding the de-

sired filter response. 

The filter response simulations in Fig. 24 are not only con-

sistent with Fig. 10’s depiction of passband flattening via ter-

mination, it further more accurately depicts the reduction of in-

sertion loss expected when one properly terminates a filter [14]. 

In essence, the termination resistors RQ serve as source and load 

resistors. The bigger they are, the less attenuation by the finite 

filter resistance, so the smaller the insertion loss. Of course, 

they should not be larger than the filter design value, since this 

would introduce undue peaking in the passband, compromising 

its flatness. 

XII. FILTER ELECTRICAL EQUIVALENT CIRCUIT MODEL 

Much like their transistor circuit counterparts, the design of 

micromechanical circuits benefits immensely from behavioral 

models that capture their electrical response in circuit simula-

tors, such as SPICE [42]. It is to this end that previous sections 

employed electromechanical analogies to capture the function-

ality added by each level of hierarchy. The overall filter equiv-

alent circuit combines these sub-circuits as modules and accu-

rately captures the filter electrical behavior for arbitrary termi-

nations. 

Fig. 25(b) presents the electrical equivalent circuit for the 2nd 

order differential filter of Fig. 25 (a), which is simpler than that 

of Fig. 2 for illustrative purposes. Here, each five-resonator λ/2-

coupled array-composite equates to a circuit similar to that of 

Fig. 18(b). Here, Nio=2 in (28), since only two electrodes in each 

array-composite bear I/O electrodes, the third reserved for fre-

quency tuning. Buffer devices to alleviate stress-related issues 

mentioned earlier in Section I and detailed more extensively in 

 

Fig. 23: (a) Schematic view of a two-resonator network coupled by a full-wave-
length beam. (b) Electrical equivalent circuit representation of the two-resona-

tor differential array-composite that combines the circuits presented in Fig. 12 

and Fig. 22(c); and (c) the same circuit after combining series elements. 

 

Fig. 24: FEA simulation of mode shapes of disk resonators coupled by various 

wavelength optimized beams, where λ-coupling enforces differential vibration 
of upper and lower halves, and λ/4 beams realize (a) out-of-phase (lower fre-

quency 1st mode) and (b) in-phase (higher frequency 2nd mode) filter modes. 

Here, the terminated filter plot simulation used RQ = 600 (i.e., the design value 

of Part II), while the unterminated plot used RQ = 10. 
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Part II, Section II also book-end each array. The λ/4 filter cou-

pling beams that adjoin the upper and lower array-composites 

equate to T-networks like that of Fig. 20. Finally, the differen-

tial operation imposed by the λ coupling beams between upper 

and lower array-composites is captured by the electrically bal-

anced differential drive and sense for the symmetric upper and 

lower half-circuits presented in Fig. 25. 

Note that the corresponding circuit for the design of Fig. 2 is 

identical to that for Fig. 25(a), except that Nio is 14, and Ntot is 

24. 

XIII. FILTER DESIGN PROCEDURE 

Table III presents a procedure for designing a complete filter 

in the topology of Fig. 2 alongside example design values that 

illustrate the design of the actual filter demonstrated in Part II. 

As is often the case with complex circuit designs, there is no 

one solution that achieves a given filter specification, but rather 

several valid solutions, where which one ensues depends upon 

choices made during the design process. The design process 

thus becomes an exercise in making choices that optimize a 

given desired outcome, e.g., smallest size, most tunable, etc. 

Thus, this section focuses on guidelines for choosing appropri-

ate initial values. The design procedure of Table III does just 

this. 

Any design of course begins with a specification. For a filter, 

this includes the center frequency fo, bandwidth B, type (e.g., 

Chebyshev, Butterworth, etc., essentially specified by k and q 

values [29]), order, desired termination resistance RQ, and the 

structural material set that specifies material constants and Q. 

Table I of Part II includes these specifications for the demon-

strated 224-MHz filter of Part II. 

Given the hierarchical nature of the Fig. 2 circuit, it makes 

sense to start with the base device, i.e., the disk resonator, then 

work to build the larger circuit. Design of the disk essentially 

boils down to determining its radius assuming (for now) no ap-

plied voltages, which simplifies things by removing considera-

tion of electrical stiffness. Once known, the disk radius yields 

its dynamic mass and stiffness. For the demonstrated 224-MHz 

design of Part II, the radius, mass, and stiffness are 12.1m, 

2.42×10-12kg, and 4.79MN/m, respectively. 

At this point, one must start making choices. The first things 

to choose are the electrode-to-resonator gap spacing do and the 

dc-bias voltage VP. Each of these variables comes with con-

straints: manufacturing constraints for the former and break-

down or pull-in constraints for the latter. One good approach is 

to just choose a gap spacing, e.g., 40nm, and then let the (Cx/Co) 

spec govern the dc-bias voltage. A good rule of thumb here is 

to choose a do and VP combination that yields a (Cx/Co) about 

1.5 times the filter fractional bandwidth ( from (3)). For the 

Part II filter, the intended do of 40nm leads to an initial VP 

choice of 16V. If the needed VP ends up too high, then reduc-

tions in do can help to lower VP. 

The next most logical design parameter to choose is the num-

ber of resonators in each of the four /2-coupled array-compo-

site quadrants. Assuming a symmetric design like that of Fig. 2, 

this comes down to choosing the number of rows Nrow and col-

umns Ncol of disks and ultimately the number of disks used for 

I/O, tuning, and stress buffering in each quadrant. Here, one 

should start by simply choosing the number of rows. Since each 

row associates with two buffers in the Fig. 2 design, i.e., 

Nb = 2Nrow, the smaller the number of rows chosen, the smaller 

the array. Choosing only one row per quadrant, however, makes 

for a long and thin filter for which long distances between disks 

might worsen fabrication mismatch issues. Choosing a larger 

number of rows makes for a more compact square-like quad-

rant, leading to a filter shape like Fig. 2, while also providing 

more points at which /4 coupling beams might be placed (in 

parallel) for larger bandwidth designs. But at the cost of more 

resonators. The chosen number of rows is 4 for the Part II filter, 

which Fig. 2 in this part depicts in an illustration. 

Determination of the number of columns requires first the 

number of I/O resonators needed to insure the termination re-

sistance value RQ. The number of I/O resonators needed follows  

 

Fig. 25: (a) Schematic description of a 2nd order differential filter. (b) Electrical 

equivalent circuit for a 2nd order differential filter. 
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TABLE III: FILTER DESIGN PROCEDURE WITH EQUATIONS 

Given the following parameters: 

Design Goals: fo, B, RQ 

Filter Constants: qn, kij, γ 

Resonator & Material Constants: 

Q, E, ρ, κmat, θov, χ, σsingle
*

  

Dimension Constraints: wc,min, do, 

h 

Voltage Constraints: Vmax
⸙ 

 

Find: R, Ntot, Nio, Nt, VP, λ, wc. 

 

1. Find the disk radius R using 

(51). 

2. Solve (52) for Vp to achieve 

sufficient Cx/Co with corre-

sponding γ value from Table 

I. 

3. Pick the number of rows 

Nrow in a quadrant. 

4. Use (53) to determine the 

number of I/O electrodes 

needed for RQ. Assume 

Nt = 0 for now. 

5. Use (54) to determine the 

number of columns Ncol. 

6. If σsingle is known, use (55) 

and (56) to determine the 

minimum number of tuning 

electrodes for the desired 

yield. If needed, increment 

VP or Ncol. 

7. Determine RQ using (57). 

Adjust VP or Ncol to match 

the spec, if needed. 

8. Use (58) to confirm correct 

center frequency after array-

ing. 

9. Determine the acoustic 

wavelength λ by (59) for the 

λ/4 filter, λ/2 array-compo-

site, and λ differential cou-

plers. 

10. Determine the coupling 

beam dimension wc that 

meets the desired filter 

bandwidth B specification 

using (60).  

11. Assemble the fully balanced 

structure of Fig. 2. 

12. Use (61)-(64) to generate the 

equivalent circuit of Fig. 25, 

then simulate to confirm the 

correct filter response. 
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Disk Radius 𝑅 =
𝐾𝑚𝑎𝑡

2𝑓𝑜

√
𝐸

𝜌
 (51)  

Approx. Re-

quired Bias Volt-

age for Sufficient 

Array Cx/Co 

𝑉𝑃
2 ≥ 1.5𝛾

𝑃𝐵𝑊𝑘𝑚𝑑𝑜
3

𝜀𝑜𝐴𝑜

= 1.5𝛾𝑑𝑜
3

2𝐵𝜋3𝜒𝐾𝑚𝑎𝑡√𝐸𝜌

𝜀𝑜𝜃𝑜𝑣

 (52) 

Total No. of 

Disks to Attain 

Spec’ed Termina-

tion 

Impedance RQ 

𝑁𝑖𝑜 =
𝛤

2
+ √(

𝛤

2
)

2

+ 𝛤𝑁𝑏   

where 𝛤 =
2𝜋𝐵𝑚𝑚

𝑞𝑛𝜂𝑒
2𝑅𝑄

=
𝜋𝜒𝜌𝜔𝑜

𝑄𝑓𝑞𝑛ℎ𝜀𝑜
2𝜃𝑜𝑣

2

𝑑𝑜
4

𝑅𝑄𝑉𝑃
2  ,  𝑁𝑏 = 2𝑁𝑟𝑜𝑤    

(53) 

No. of Columns 

Needed 
𝑁𝑐𝑜𝑙 >

𝑁𝑖𝑜+𝑁𝑏

𝑁𝑟𝑜𝑤
  (54) 

No. of Tuning 

Electrodes 
𝑁𝑡 = 𝑁𝑐𝑜𝑙𝑁𝑟𝑜𝑤 − 𝑁𝑖𝑜 − 𝑁𝑏  (55) 

No. of Tuning 

Electrodes 

Needed for % Per-

fect-Tuned Yield⸭ 

𝑁𝑡 ≥ 𝑖𝜎𝑠𝑖𝑛𝑔𝑙𝑒
√2𝑁𝑡𝑜𝑡𝑘𝑚𝑑𝑜

3

𝜀𝑜𝐴𝑜𝑉𝑇(2𝑉𝑃−𝑉𝑇)
= 𝑖𝜎𝑠𝑖𝑛𝑔𝑙𝑒

√2𝑁𝑡𝑜𝑡𝜋3𝐾𝑚𝑎𝑡
2 𝜒𝐸𝑑𝑜

3

𝜀𝑜𝜃𝑜𝑣𝑅𝑉𝑇(2𝑉𝑃−𝑉𝑇)
  

where 𝑖 = 1 (68.3%), 2 (95.4%), 3 (99.7%), … 

(56) 

Termination 

Impedance RQ 
𝑅𝑄 = (

𝑄

𝑞𝑛𝑄𝑓
− 1)

𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2

𝑟𝑥

𝜂𝑒
2 = (

𝑄

𝑞𝑛𝑄𝑓
− 1)

𝜔𝑜

𝑄

𝑁𝑡𝑜𝑡

𝑁𝑖𝑜
2

𝑑𝑜
4

𝑉𝑃
2

𝜋𝜒𝜌

ℎ𝜀𝑜
2𝜃𝑜𝑣

2   (57) 

Array Quadrant 

Center Frequency 
𝑓𝑜 =

1

2𝜋
√

𝑘𝑚

𝑚𝑚
√1 −

𝜀𝑜𝐴𝑜

𝑑𝑜
3𝑘𝑚

{
𝑁𝑖𝑜

𝑁𝑡𝑜𝑡
𝑉𝑃

2 −
𝑁𝑡

𝑁𝑡𝑜𝑡
(𝑉𝑃 − 𝑉𝑇)2}  (58) 

Wavelength for 

Coupling Beam 

Designs
𝜆 =

1

𝑓𝑜
√

𝐸

𝜌
  (59) 

/4 Coupling 

Beam Width to 

Attain Filter 

Bandwidth B 

𝑤𝑐 = 𝑁𝑡𝑜𝑡
𝐵𝑚𝑚

ℎ

2𝜋𝜉𝑘𝑖𝑗

√𝐸𝜌
=

𝜉𝑁𝑡𝑜𝑡𝜋2𝐾𝑚𝑎𝑡
2 𝜒𝑘𝑖𝑗𝑃𝐵𝑊

2𝑓𝑜
√

𝐸

𝜌
 where 

𝜉 = 1, 3, 5, … 

(60) 
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λ/4 Coupling 

Beam Lumped El-

ement 

𝑐𝑐 =
2(𝜉𝜆/4)

𝜋𝐸ℎ𝑤𝑐
=

𝜉

ℎ𝑤𝑐𝜔𝑜√𝐸𝜌
 where 𝜉 = 1, 3, 5, …  (61) 

Array-Compo-

site Core-LCR El-

ements 

𝑟𝑥𝐴 = 𝑁𝑡𝑜𝑡
𝑚𝑚𝜔𝑜

𝑄
= 𝑁𝑡𝑜𝑡

𝜒ℎ𝐾𝑚𝑎𝑡√𝐸𝜌𝜋2𝑅

𝑄
  

𝑙𝑥𝐴 = 𝑁𝑡𝑜𝑡𝑚𝑚 = 𝑁𝑡𝑜𝑡𝜒𝜌𝜋𝑅2ℎ  

𝑐𝑥𝐴 =
1

𝑁𝑡𝑜𝑡𝑚𝑚𝜔𝑜
2

=
1

𝑁𝑡𝑜𝑡𝜋3𝐾𝑚𝑎𝑡
2 𝜒𝐸ℎ

 

(62) 

I/O Electrode 

Elements 

𝜂𝑒𝐴 = 𝑁𝑖𝑜𝑉𝑃
𝜀𝑜𝜃𝑜𝑣𝑅ℎ

𝑑𝑜
2   

𝐶𝑜𝐴 = 𝑁𝑖𝑜

𝜀𝑜𝜃𝑜𝑣𝑅ℎ

𝑑𝑜

 
(63) 

Tuning Elec-

trode Elements 

𝜂𝑡𝐴 = 𝑁𝑡(𝑉𝑃 − 𝑉𝑇)
𝜀𝑜𝜃𝑜𝑣𝑅ℎ

𝑑𝑜
2   

𝐶𝑡𝐴 = 𝑁𝑡

𝜀𝑜𝜃𝑜𝑣𝑅ℎ

𝑑𝑜

 

(64) 

* σsingle is the single disk resonator’s frequency standard deviation. 

⸙ Vmax is the maximum voltage allowed in the technology. 

⸭ Derived in Part II of this paper. Assumes VT =VP for maximum tuning. 
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from (53), which derives from (32) using the previously chosen 

values of do and VP and assumes Ntot = Nio+2Nrow. This equation 

essentially insures that there are enough I/O resonators Nio to 

satisfy the termination resistance RQ requirement. Once known, 

the number of columns must be such that the row-column prod-

uct (which equals Ntot) exceeds Nio+Nb. For the current design, 

the number of needed I/O resonators is 15, making the com-

bined I/O and buffer count 23. This requires at least 6 columns, 

making for a total of 24 resonators per quadrant. 

The remaining Ntot – (Nio+Nb) = 1 can then serve as a tuning 

electrode. If the single disk resonator manufacturing resonance 

frequency standard deviation is known, then (55) computes the 

number of tuning resonators needed to attain perfectly tuned fil-

ter fabrication yields of 68.3%, 95.4%, and 99.7% for i equal to 

1, 2, and 3, respectively. The designer can merely increase the 

dc-bias and/or add a column if yield requirements call for more 

tuning resonators. For the Part II demonstrated filter, the addi-

tion of 1V to the design-flow dc-bias to make VP = 17V allows 

reduction of the needed I/O resonator number to 14, allowing 

for 2 tuning resonators while retaining 24 resonators total in a 

quadrant. This is still less than the 3 recommended by (56) for 

68.3% perfect-tuned yield, but is sufficient for the demonstrated 

research prototype. 

This quadrant design yields an RQ of 445 close to the de-

sired 450. Further massaging of dc-bias and row-column 

TABLE IV: 2ND ORDER DIFFERENTIAL CHEBYSHEV POLYSILICON DISK FILTER BANK DESIGN EXAMPLE†
 

Filter Specifications Computed Quadrant Design Variables 

fo 

(MHz) 

B 

(kHz) 

PBW 

(%) IL 

(dB) 

Min. 

Req. Q 

VP 

(V) Cx/Co 

(%) 

do 

(nm) 

RQ 

(Ω) 

R 

(μm) 

lλ/4 

(μm) 

wc 

(nm) 
Ntot Nio Nt 

Array 

Size 

(row x 

col) 

Area 

(μm×μm) 

Area 

(mm2) 

50 30 0.060 2 15,957 5 0.372 20 46 54.2 41.4 1850 16 11 1 2×8 300×1450 0.434 

100 30 0.030 2 31,915 5 0.186 20 46 27.1 20.7 463 16 11 1 2×8 150×724 0.108 

250 500 0.200 2 4,787 9 0.275 20 49 10.8 8.29 4630 60 47 1 6×10 213×366 0.0780 

433 500 0.115 2 8,291 9 0.143 20 50 6.26 4.79 1852 72 51 3 9×8 189×167 0.0316 

700 500 0.071 2 13,404 9 0.089 20 50 3.87 2.96 708 72 51 5 8×9 103×117 0.0121 

900 500 0.056 2 17,234 9 0.071 20 48 3.01 2.30 416 70 51 5 7×10 69×102 0.0071 

1200 1000 0.083 2 11,489 12 0.104 20 48 2.26 1.73 435 65 52 3 5×13 36×100 0.00365 

1800 1000 0.056 2 17,234 12 0.067 20 48 1.51 1.15 208 70 54 2 7×10 35 x 51 0.00177 

2400 1000 0.042 2 22,978 12 0.050 20 48 1.13 0.86 117 70 54 2 7×10 26×38 0.00100 

3000 1000 0.033 2 28,723 12 0.035 20 49 0.90 0.69 75 70 52 4 7×10 21×30 0.00064 

† Assumes h=3m, ov=330o, and fundamental mode resonance. 

 

TABLE V: 2ND ORDER DIFFERENTIAL CHEBYSHEV POLYSILICON DISK FILTER BANK EQUIVALENT CIRCUITS 

Filter Specifications Equivalent Circuit Element Values 

fo 

(MHz) 

B 

(kHz) 

PBW 

(%) 

IL 

(dB) 

RQ 

(Ω) 

CoA 

(pF) 

ηeA 

(µC/m) 

rxA 

(µΩ) 

cxA 

(nF) 

lxA 

(pH) 

cc 

(F) 

CtA 

(pF) 

ηtA 

(C/m) 

50 30 0.060 2 46 4.56 1,140 15.30 13.049 777.27 30.10 0.414 0 

100 30 0.030 2 46 2.28 567 3.82 13.049 194.32 60.20 0.207 0 

250 500 0.200 2 49 3.90 1753 38.24 3.480 116.59 2.408 0.00829 0 

433 500 0.115 2 50 2.44 1098 15.30 2.900 46.64 3.475 0.144 0 

700 500 0.071 2 50 1.51 679 5.85 2.900 17.84 5.619 0.148 0 

900 500 0.056 2 48 1.17 528 3.44 2.983 10.50 7.431 0.115 0 

1200 1000 0.083 2 48 0.90 539 3.60 3.212 5.482 5.335 0.00518 0 

1800 1000 0.056 2 48 0.62 373 1.72 2.983 2.624 7.431 0.00230 0 

2400 1000 0.042 2 48 0.47 280 0.968 2.983 1.476 9.908 0.00173 0 

3000 1000 0.033 2 49 0.35 216 0.774 2.983 0.9446 12.384 0.00276 0 
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choices can get even closer to this target, if needed. 

From here, the dimensions of the coupling beams come read-

ily from the indicated expressions. These then permit assembly 

of the fully balanced structure of Fig. 2, which in turn yields the 

complete equivalent circuit of the filter for SPICE verification 

shown in Fig. 25. Table I in Part II includes all dimensions and 

geometry considerations to allow for the complete layout of a 

filter satisfying the stated specification. 

A. Filter Design Examples 

To give a sense of what types of filters might be desirable in 

an RF front-end bank, Table IV presents example designs for 

various 2nd order Chebyshev differential filters requiring 

RQ=50 and with center frequencies ranging from 50MHz to 

3GHz assuming 3m-thick polysilicon structural material. The 

columns grouped under the ‘filter specifications’ section of Ta-

ble IV specify the filter center frequency, bandwidth, and inser-

tion loss as design objectives. The filter design procedure sum-

marized in Table III then yields the values listed under the ‘Cal-

culated Design Variables’ section of Table IV that satisfy the 

corresponding filter specifications. All designs assume a fabri-

cation process using 3-μm-thick polysilicon structural material 

and 20-nm electrode-to-resonator gaps. Here, three different 

values of dc-bias that increase with increasing center frequency 

help to maintain the needed (Cx/Co)’s. In addition, each design 

assumes the minimum required single-resonator Q value indi-

cated in the table. 

Table IV illustrates the one-to-one relation between example 

RF channel-select communication standard requirements, i.e., 

filter spectral masks, and the geometric dimensions of the final 

on-silicon filter product. The fact that lateral dimensions (in-

stead of the thickness) specify each filter constitutes a key ad-

vantage of this design approach, since it means the whole filter 

bank is amenable to automatic generation by a computer-aided 

design (CAD) program [1]. Such a program could very quickly 

generate the layouts required to achieve all filter responses, 

making realization of a VLSI circuit of such filters as conven-

ient as already the case for transistor IC design. 

Note that several of the lower frequency designs in the table 

use already achievable resonator performance, as evidenced by 

Part II of this paper and by the summary of achieved (Cx/Co) 

and Q combinations in Fig. 21 of [20]. However, this table is 

perhaps most useful in identifying needed resonator attributes 

and challenges at the higher frequencies. In particular, it pre-

dicts that application of already achieved gap spacings (e.g., 

from [34]) to disk resonators should allow channel-select filters 

at the prescribed high frequencies, as long as 12V dc-biases are 

permissible, and as long as the indicated Q minima are attaina-

ble. The jury is still out on polysilicon Q, but CVD diamond 

material readily provides the needed Q [43]. 

It is worth noting that some of the coupling beam widths in 

Table IV for filters past 1.8 GHz become quite small. If too 

small, then one solution is to use coupling beams that are mul-

tiples of a quarter-wavelength. For example, use of 5/4 beams 

instead of /4 takes the needed 1.8-GHz filter coupling beam 

width from 208nm to 1.04m. 

Table V summarizes the Fig. 25 equivalent circuit element 

values for each of the Table IV filter designs. To demonstrate 

the utility of the equivalent circuit, Fig. 26 plots SPICE simu-

lated frequency responses for three of the filters within the 

50MHz to 3GHz frequency range, each properly terminated 

with 50. 

As Table IV demonstrates, capacitive transduced vibrating 

disk filter technology can adapt to challenging channel-select 

filter specifications over a wide frequency range by merely ad-

justing numerous design knobs, such as voltage, electrode-to-

resonator gap spacing, and array size. Table IV makes it clear 

that the combination of capacitive transducer gap scaling and 

array-composite scaling is key to achieving RF channel-selec-

tion at 1GHz and beyond with a small area footprint. While the 

need for 70 resonators in each array-composite in the 3-GHz 

design of the last row might seem daunting, note that the total 

filter quadrant area can be as small as 0.00064mm2, so a 4-quad-

ranat filter consumes 0.00256mm2. Indeed, 9765 of such filters 

(without bond pads) could fit in a 5mm×5mm chip. 

 

Fig. 26: SPICE simulated frequency responses for a 2nd order 50terminated 

0.5dB ripple 2dB insertion loss Chebyshev filter with (a) 30kHz bandwidth at 

50MHz. (b) 500kHz bandwidth at 700MHz. (c) 1MHz bandwidth at 3GHz 
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Still, filters at GHz frequencies will be challenging. Fortu-

nately, there is no need to ponder feasibility at VHF, as Part II 

of this paper demonstrates. 

XIV. CONCLUSION 

This Part I of two papers introduced a design flow for micro-

mechanical RF channel-select filters capable of eliminating 

strong adjacent channel blockers directly after the antenna, 

which greatly reduces power consumption in RF front-ends. 

Electromechanical analogies that model the resonance behavior 

of filter building blocks, such as vibrating disk resonators, ca-

pacitive actuation electrodes, and coupling beams, facilitate the 

use of conventional LC ladder filter design tables and methods 

as the starting point for filter design. This in turn simplifies re-

alization of familiar filter types, e.g., Chebyshev, Butterworth, 

Linear Phase, etc. 

While known filter design methods readily achieve ideal de-

signs, they do not address the non-idealities of micromechanical 

realization, which include high single-device impedance, shunt 

I/O capacitance, finite coupler stiffness, stress, and fabrication 

process variations. The methods described herein address these 

issues via a combination of device scaling and mechanical cir-

cuit design. Specifically, capacitive transducer gap scaling very 

effectively raises electromechanical coupling (Cx/Co) to needed 

values. The use of mechanically coupled resonator array-com-

posites then permits tailoring of impedance values, resonator-

to-resonator coupling, mismatch tolerances, and stress relief to 

outright enable design of practical filters. Finally, balanced dif-

ferential design suppresses both electrical and mechanical spu-

rious responses. These design strategies will likely become in-

dispensable as the frequency and order of micromechanical fil-

ters increase to meet the demands of practical next-generation 

commercial transceivers. 

Perhaps the most significant contribution of this work is its 

demonstration of an intuitive hierarchical mechanical circuit 

design flow that is technology agnostic and that empowers a 

designer in much the same way that intuition facilitates transis-

tor circuit design. Part II of this paper gauges the efficacy of this 

design approach via fabrication and measurement of a 224-

MHz 0.1% bandwidth RF channel-select filter generated via the 

methodology outlined herein. 
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