
SUMMARY

High frequency, fourth-order, micromechanical bandpass fil-
ters, with tunable frequency and bandwidth, and filter Q’s in the
thousands, are demonstrated in a polysilicon surface microma-
chining technology. These filters utilize a parallel-resonator
architecture, in which properly phased outputs from two or
more micromechanical resonators are combined to yield a
desired filter spectrum. Design formulas are given for Butter-
worth, Chebyshev, and Bessel filters, and each of these filter
types are demonstrated with center frequencies close to 14.5
MHz and filter Q’s ranging from 830 to 1600.
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I.  INTRODUCTION

The recent explosion in the demand for wireless capabili-
ties has spurred great interest in the miniaturization of trans-
ceivers used in wireless networks. Historically, the size of the
off-chip SAW and ceramic components used for frequency
selection and reference generation in heterodyning transceivers
has long been one of the major bottlenecks against miniaturiza-
tion. As a result, the majority of approaches to miniaturization
have explored alternative transceiver architectures, that do
reduce the number of off-chip components, but suffer in perfor-
mance [1]. Very recently, however, an alternative strategy for
transceiver miniaturization has surfaced, in which high perfor-
mance heterodyning architectures are retained, and miniaturiza-
tion is achieved by replacing the aforementioned off-chip, high-
Q mechanical resonator components with IC-compatible,
micromechanical versions. To this end, a fourth-order, 8.37
MHz, spring-coupled micromechanical bandpass filter was
recently demonstrated, with a filter Q of 340 and an associated
insertion loss of less than 5 dB [2].

This paper describes an alternative mechanical filter archi-
tecture in which constituent micromechanical resonators are
coupled electrically, rather than mechanically. By dispensing
with rigid mechanical spring coupling, this parallel-resonator
filter architecture both alleviates fabrication complexity associ-
ated with coupling springs (which often require submicron reso-
lution for small filter bandwidths), and introduces real-time
reconfigurability and bandwidth-tuning capabilities previously
unavailable with spring-coupled architectures. After a brief
introduction to parallel-resonator filter operation, this paper
presents design equations for a variety of fourth-order bandpass
filters, then verifies them via fabrication and testing of proto-
type bandpass filters centered at 14.5 MHz.

II.  FILTER ARCHITECTURE AND OPERATION

Figure 1 presents the perspective view schematic of this
parallel filter architecture, identifying key components and
specifying the required bias and excitation scheme for proper
filter operation. As shown, this filter is comprised of two HF
micromechanical clamped-clamped beam resonators [2] (“µres-

onators”), fabricated side-by-side, with identical geometries and
vibrational resonance frequencies. Conductive strips underlie
the central regions of each resonator and serve as capacitive
transducer electrodes. The resonator beams are suspended
1000Å above the substrate and electrodes, and are electrically
connected together via a conductive strip, which also serves as
the output electrode for this device. 

Under normal filter operation, a dc-bias voltage VP is
applied to each resonator through large resistor RP, and buffered
ac voltage input signals of opposite polarity, vi and −vi, are
applied to each of the underlying electrodes. When the fre-
quency of the applied ac input signal vi enters the passband of
one or both of the constituent resonators, the resonator(s)
vibrate in a direction perpendicular to the substrate, creating dc-
biased time varying capacitors between the resonators and their
respective underlying electrodes. Currents are thus generated
between the electrodes and resonators, given by ixn=VPn(∂Cn/
∂t), where VPn is the dc voltage between resonator and electrode
at port n, and Cn is the electrode-to-resonator overlap capaci-
tance at port n. The currents from both resonators are then
summed at the common output node and directed through ac
coupling capacitor Cc into sense resistor RQ, which then con-
verts the current to an output voltage.

The mechanical resonators comprising the filter can be
modelled in the electrical domain via electromechanical anal-
ogy, where each mechanical resonator corresponds to an equiv-
alent series LCR circuit. The equivalent circuit representing the
filter and electrode configuration is also shown in Fig. 1, along
with equations for the elements. Using this circuit in combina-
tion with the electronics in Fig. 1, the filter is seen to operate via
combination of the properly phased current outputs of the indi-
vidual resonators. As shown in Fig. 2, inputs vi at frequencies
between the resonances of the microresonators generate output
currents that are in phase, and thus, add, creating a flat passband
in this frequency range. Those at frequencies outside this inter-
val generate output currents 180o out of phase, which subtract
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Fig. 1: Parallel-resonator filter schematic, showing biasing and
excitation scheme, and identifying key components.
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to provide a steeper roll-off and improved stopband rejection.
As shown, a two-resonator filter made in this manner provides a
fourth-order bandpass characteristic. Higher order filters, with
sharper roll-offs and larger stopband rejections, can also be
implemented using the same principles with a larger number of
micromechanical resonators.

III.  PARALLEL-RESONATOR FILTER DESIGN
A. General Filter Design

The design of a given filter often begins with specification
of a polynomial transfer function that approximates the desired
filter characteristic. For a given filter order, the approximating
polynomial generally takes on a specific form, which differs for
the various filter types (i.e., Butterworth, Chebyshev, Bessel,
etc.) only in the values of certain coefficients. For the particular
case of the fourth-order (i.e., two-pole) bandpass filters of main
interest here, the approximating polynomial takes the form

(1)

where ωo is the center frequency of the filter, and the coeffi-
cients A, a, b, and c are functions of the filter type, as well as of
the center frequency fo and of filter quality factor Qf. Normal-
ized values for of these coefficients are readily available from
data tabulated in filter cookbooks [3].

As mentioned, the output for the described parallel-resona-
tor filter is derived by summing the properly phased current out-
puts of its constituent resonators. Given that each resonator
realizes a second-order bandpass biquad voltage-to-current
transfer function of the form

, (2)

where ωo is the radian center frequency, and Q is the quality
factor of the resonator, the output of the filter may then be writ-
ten as

(3)

where ωn is the resonant frequency of resonator n and the Q’s of
each resonator are assumed to have the same value, Qr. Com-
paring (3) with (1), it is apparent that the numerators cannot be
made to match. This is of little consequence, however, since the
numerator is still of lower order than the denominator, and thus,
it still introduces loss poles only at zero and infinity. 

By expanding the denominator in (3) and equating coeffi-
cients of like powers of s with those in (1), expressions for the

constituent resonator center frequencies (fn’s) and Q’s required
to implement a given filter characteristic can be derived. Doing
so yields:

(4)

(5)

(6)

where Qf and fo are the Q and center frequency of the filter, and
the new denormalized coefficients α, β, θ, and δ, once again
depend on the type of filter. Table I summarizes these parame-
ters for maximally-flat Butterworth, 1 dB equiripple Cheby-
shev, and linear-phase Bessel filters. Given desired filter
parameters, fo and Qf, a straight forward application of (4), (5),
and (6) yields a parallel-resonator filter design in terms of f1, f2,
and Qr. 

Figure 3 presents plots of ideal filter spectra (dots) along
with filter approximations given by (3), (4), (5), and (6) (solid
line) for each of the filter types summarized in Table I. The
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Fig. 2: Spectra depicting the mechanism behind filter operation.
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Table I: Filter Approximation Coefficients

Butterworth (maximally flat)
α = 1, δ = 

β = 

θ = 

Chebyshev (equiripple) w/ 1 dB ripple
α = 1.103, δ = 1.098

β = 

θ = 

Bessel (Linear Phase)
α = 3, δ = 1.098

β = 

θ = 
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Fig. 3: Basic passband filter types and their approximations
according to (3), (4), (5) and (6). 
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phase of the Bessel filter is also plotted. As shown in Fig. 3, the
shapes of all three approximations are indistinguishable from
the ideal filters within the passbands, although the Bessel filter
does show a 90o phase shift from ideal. Also, the approximation
curves in Fig. 3 have been shifted vertically for better visual
comparison of shapes with the ideal filter responses. In actual-
ity, the Chebyshev and Bessel filters do suffer from some inher-
ent insertion loss over the ideal cases. In the case of the
Chebyshev filter, the insertion loss is equal to the amount of rip-
ple, and for the Bessel filter it is approximately 1.25 dB.

B. Resonator Design
As seen from the above discussion, the frequency response

of a parallel-resonator filter is determined primarily by the reso-
nance frequency and Q’s of its constituent resonators. For the
case of clamped-clamped beam resonators with negligible axial
stress, the resonance frequency is determined largely by geome-
try and material properties, and is given by

(7)

where kr and mr are the respective spring constant and mass of
the beam, h is the thickness, L is the length, E is the Young’s
modulus of the structural material, and ρ is its density. As thick-
ness h is determined by the process, the length L represents the
main design variable. Table II summarizes the relevant physical
design data for resonators used in the filters of this work.

As mentioned, these filters are intended to be reconfig-
urable, in both type of response and bandwidth. Thus, rather
than designing constituent resonators with a predetermined fre-
quency separation, the resonators are made identical, and their
frequency separation is adjusted after fabrication to meet the
requirements of (4) and (5). Frequency tuning for this filter is
achieved via the well-known electrostatic spring constant, ke,
that arises due to nonlinearity in the capacitive transducers [6],
and that subtracts directly from the mechanical spring constant

kr in (7). The amount of frequency shift from the nominal
mechanical resonance frequency is governed by the equation

, (8)

where fo is the purely mechanical resonance frequency, and 
is the modified resonance frequency. Separate tuning of the res-
onators is achieved by applying a dc offset V∆f to resonator 1
(c.f., Fig. 2), resulting in a net bias voltage of VP - V∆f, which
then separates the frequency of the resonators by 

. (9)

Finally, the bandwidth of a given filter is set by RQ, which
effectively loads the Q’s of the constituent resonators. To satisfy
(6) for a given filter, RQ should be chosen as 

, (10)

where Qres is the unloaded quality factor of the constituent reso-
nators, and Rx is defined in Fig. 1.

Once the values of RQ and Rx have been determined, the
filter insertion loss readily follows and is determined by the
resistive divider between Rx and RQ:

(11)

IV.  EXPERIMENTAL RESULTS

Side-by-side resonators suitable for parallel-resonator filter
implementation were designed to the specifications of Table II
and fabricated using a POCl3-doped, polysilicon surface-micro-
machining process [2]. The scanning electron micrograph
(SEM) for a 14.5 MHz pair of resonators is presented in Fig. 6.
Die containing the resonator pairs were then attached to a
printed circuit board containing the output electronics and
bonded directly to it. Careful layout procedures were followed
to minimize parasitics. The pc board was placed in a custom-
built vacuum chamber and pumped down to pressures on the
order of 10 µTorr using a turbomolecular pump, and transmis-
sion spectra were taken using an HP4195A Network Analyzer.

Figure 5(a) shows the measured spectrum for a single reso-
nator at 14.5 MHz. The extracted Q here is 1600, which is low
for polysilicon resonators, but is consistent with recent data
showing substantially lower Q for POCl3-doped versus
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Table II: Resonator Design Data

Parameter Value Parameter Value

L 30 µm h 2 µm

W 8 µm d .1 µm

Con 7.1 fF dC/dx 70.8 nF/m
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Fig. 4: (a) Transmission spectrum for a single resonator with a Q of 1600 at 14.5
MHz. (b) Plot of resonator frequency versus bias voltage.
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implant-doped polysilicon resonators [7]. Figure 5(b) shows a
plot of resonator center frequency versus the tuning bias voltage
VP, and indicates a tunable frequency range of 500 kHz, or
3.4%. 

Figure 6 shows the measured transmission spectrum for a
parallel-resonator filter configured to a maximally flat (Butter-
worth) response centered at 14.54 MHz. The measurement was
made at 23 mTorr, with VP = 40V, V∆f = 2.63V, vi=5mV, and RQ
= 10kΩ. The resulting filter Q is 1000 with 13 dB insertion loss
(I.L.) and 24 dB of stopband rejection (As). Figures 7(a) and (b)
present more spectra for the same pair of resonators, this time
configured to a 1 dB ripple Chebyshev filter and a linear phase
Bessel filter, respectively. In addition, the phase of the Bessel
filter is given in Fig. 7(c), and relevant performance data are
provided throughout the figure.

Two problems became apparent during testing. The first
was the high insertion loss shown in Figures 6 and 7(a) and (b).
For Rx = 3.12 kΩ and RQ = 10 kΩ, the insertion loss estimated
by (11) is 2.36 dB—much lower than the measured insertion
loss. The second problem involved an inability to control the
Q’s of the constituent resonators via changes in RQ. The filter
Q’s shown in Fig. 7 are well above the theoretically calculated
and simulated values for RQ=10kΩ, which were as low as 230
for maximally flat passbands. 

Both of the above phenomena are largely a result of para-
sitic capacitance in parallel with RQ, as shown in Fig. 8, which
plots simulated frequency spectra for the case of (1) a filter ter-
minated with RQ = 10 kΩ; (2) another terminated with RQ = 10
kΩ in parallel with a 5pF capacitor; and (3) another terminated
as in case (2), but frequency-tuned to achieve a flat passband.
Note that the bandwidth in (3) must be significantly reduced to
achieve a flat passband, and this then introduces additional

insertion loss. The effective filter bandwidth shrinks mainly
because parasitic capacitance in parallel with RQ reduces the
total resistance seen in shunt with the output, thus, reducing Q-
loading ability of RQ. In addition, shunt parasitic capacitance
also introduces a low frequency pole, causing the frequency
response of the circuit to roll-off prematurely. SPICE simula-
tions indicate that this can be a dominant mechanism by which
insertion loss is degraded.

V.  CONCLUSIONS

Fourth-order, reconfigurable, micromechanical bandpass
filters based on a parallel-resonator architecture have been dem-
onstrated in a polysilicon surface-micromachining technology.
Using this filter topology, a single pair of clamped-clamped
beam micromechanical resonators were configured to approxi-
mate a variety of fourth-order filter types, including the popular
Butterworth, Chebyshev, and linear phase Bessel filters. 

The filters of this work were found to be greatly affected by
off-chip parasitic capacitance, which reduced the maximum
achievable bandwidth and greatly increased the insertion loss of
these passive filters. More careful board layout or full integra-
tion of circuits and micromechanical resonators are two possi-
ble methods for alleviating the effect of parasitics.
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Fig. 7: Measured filter transmission spectra for (a) a Chebyshev approximation and (b) a Bessel approximation with its associated phase (c).
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