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ABSTRACT

Third-order, micromechanical bandpass filters comprised of
three folded-beam resonators coupled by flexural mode
springs are demonstrated using an IC-compatible, polysili-
con surface-micromachining technology. The use of quar-
ter-wavelength coupling beams attached to resonators at
their folding-trusses is shown to suppress passband distor-
tion due to finite-mass nonidealities, which become increas-
ingly important on this micro-scale. A balanced, 300 kHz,
prototype, three-resonator micromechanical filter is demon-
strated with filter Q=590 and stopband rejection greater
than 38 dB.

I.  INTRODUCTION

Vibrating mechanical tank components, such as crystal
and SAW resonators, are widely used to implement band-
pass filters in the RF and IF stages of heterodyning trans-
ceivers. Due to orders of magnitude higher quality factor Q,
filters utilizing such technologies greatly outperform com-
parable filters implemented using transistor technologies, in
insertion loss, percent bandwidth, and achievable rejection
[1]. However, being off-chip components, these mechanical
devices must interface with integrated electronics at the
board level, and this constitutes an important bottleneck to
miniaturization and performance of heterodyning transceiv-
ers. 

The rapid growth of micromachining technologies,
which yield high-Q on-chip mechanical resonators [2] may
now make miniaturized, single-chip heterodyning trans-
ceivers possible. With Q’s of over 80,000 [3] under vacuum
and center frequency temperature coefficients in the range
of -10 ppm/oC (several times less with nulling techniques)
[4], polycrystalline silicon micromechanical resonators
(abbreviated “µresonators”) can serve well as miniaturized
substitutes for crystals in a variety of high-Q oscillator and
filtering applications [3,9]. To date, two-resonator (i.e., sec-
ond-order) prototypes of such filters have been demon-
strated from LF (e.g., 20 kHz [5]) to HF (e.g., 8.5 MHz [6]).
For use in communications, however, sharper roll-offs and
larger stopband rejections are required, and thus, much
higher order must be achieved. For the majority of mechan-
ical bandpass filter designs, the order is synonymous with
the number of resonators used. However, due to increased
susceptibility to passband distorting mismatches and para-
sitics, micro-scale mechanical filters utilizing three or more
resonators have not yet been achieved. The present work
extends the order of µmechanical filters to third, reporting
on the design, fabrication, and performance of a prototype,
planar IC-processed, three-resonator micromechanical
bandpass filter centered at 300 kHz with a bandwidth of
510 Hz, stopband rejection exceeding 38 dB, and 20dB-
down shape factor as small as 1.45.

II.  FILTER STRUCTURE AND OPERATION

Figure 1 presents scanning electron micrographs
(SEMs) of the prototype, 300 kHz, third-order microme-
chanical filter, indicating various components and dimen-
sions. An overhead-view schematic of this fi lter is
presented in Fig. 2(a), which provides additional details and
associated pickoff electronics.

As shown, this mechanical filter is comprised of three
folded-beam µmechanical resonators [2] mechanically cou-
pled at their folding-trusses by soft, flexural-mode springs.
The end resonators, which provide the filter inputs and out-
puts, feature capacitive-comb-transducers for enhanced lin-
earity. In addition, these resonators, as well as the center
resonator, are equipped with parallel-plate-capacitive trans-
ducers capable of tuning their frequencies. The entire µme-
chanical filter structure, including resonators and coupling
springs, is constructed of doped (conductive) polycrystal-
line silicon, and is suspended 2 µm over a uniform, doped-
polysilicon ground plane that underlies the suspended struc-
ture at all points. This ground plane is required to prevent
electrostatic pull-in of the structure into substrate, which
can occur for structure-to-substrate voltage differences
greater than 68 V.

The spring-coupled, three-resonator system of Fig. 2(a)
exhibits three mechanical resonance modes with closely
spaced frequencies that define the filter passband. The cen-
ter frequency of the filter is determined primarily by the fre-
quencies of the constituent resonators, while the spacings

Fig. 1: Wide-angle and close-in SEMs of a prototype, 300
kHz, three-resonator, micromechanical filter.
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between modes (i.e., the bandwidth) is determined by the
stiffnesses of the coupling springs. As shown in Fig. 3, each
mode corresponds to a distinct, physical mode shape: in the
lowest frequency mode, all resonators vibrate in phase; in the
middle frequency mode, the center resonator ideally remains
motionless, while the end resonators vibrate 180o out of
phase; and finally, in the highest frequency mode, each reso-
nator is phase-shifted 180o from its adjacent neighbor. With-
out additional electronics, the complete mechanical filter
exhibits the jagged passband seen in Fig. 3. As will be
shown in Section III, the passband can be flattened by lower-
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Fig. 2: (a) Overhead schematic of the prototype micromechan-
ical filter with operation electronics. (b) Equivalent
lumped parameter mechanical circuit. (c) Equivalent
LCR network.
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ing the quality factor Q of the end resonators, using Q-con-
trolling input and output resistors.

To operate this filter, a dc-bias VP is applied to the sus-
pended, movable structure, while differential ac signals, vi
and −vi, are applied through Q-controlling input resistors
RQ11 and RQ12 to opposing ports of the input resonator, as
shown in Fig. 2(a). The differential inputs applied to sym-
metrically opposing ports generate push-pull electrostatic
forces on the input resonator, inducing mechanical vibra-
tion when the frequency of the input voltage comes within
the passband of the mechanical filter. This vibrational
energy is imparted to the center and output resonators via
the coupling springs, causing them to vibrate as well.
Vibration of the output resonator creates dc-biased, time-
varying capacitors between the resonator and respective
port electrodes, which source output currents given by

, (1)

where x is displacement (defined in Fig. 2(a)), Cn is the res-
onator-to-electrode capacitance at port n of resonator i, and
VPn is the dc-bias voltage applied across Cn.

As shown in Fig. 2(a), the differential output currents
ix31 and ix32 are directed through output Q-controlling resis-
tors RQ31 and RQ32 forming voltages across these resistors
which are sensed by buffers A1 and A2, then directed to the
differential-to-single-ended converter A3.

III.  FILTER DESIGN

Figure 4 presents an ideal bandpass filter spectrum and
defines parameters typically used for filter specification.
Design techniques that yield such filter responses using LC
ladders are quite mature, and large databases governing LC
ladder filter design are readily available [7].

For this reason, and for ease of simulation, the micro-
mechanical filter of Fig. 2(a) is realized by first designing
an LC ladder version to fit the desired specification. The
elements in the LC ladder design are then matched to
lumped mechanical equivalents via electromechanical anal-
ogy, where inductance, capacitance, and resistance in the
electrical domain equate to mass, compliance, and damp-
ing, respectively, in the mechanical domain. Figure 2(b)
explicitly depicts the equivalence between the actual
mechanical filter and a lumped mass-spring-damper sys-
tem, which in turn, equates to an LC ladder network
(Fig. 2(c)) corresponding to the required bandpass filter
specification. As shown, for this particular electromechani-
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cal analogy (the current analogy), each constituent resona-
tor corresponds to a series LCR tank, while each coupling
spring ideally corresponds to a T-network of capacitors,
with the whole coupled network corresponding to an LC
ladder bandpass filter.

To minimize susceptibility to planar IC fabrication tol-
erances, the resonators comprising a µmechanical filter
should have identical resonance frequency and should oth-
erwise be identical in so much as possible (i.e., identical
spring stiffnesses and effective masses). In addition, sym-
metrical coupled resonator filter designs that utilize sym-
metrically identical coupling springs on each half of the
filter are most appropriate. These design strategies take spe-
cific advantage of the good matching tolerances achievable
via planar IC fabrication. 

Coupled Resonator Filter Design.
Various filter types can be implemented via LC ladder

polynomial synthesis techniques, including Chebyshev, lin-
ear phase, elliptic, and maximally flat Butterworth.
Although filters can be designed via direct synthesis from
describing polynomials, this procedure is often no longer
required, since all-pole filter designs are widely tabulated in
so called filter cookbooks [7]. For the coupled resonator
µmechanical filters of this work, tables of “normalized k
and q values” are most convenient [7]. Here, the k’s corre-
spond to normalized coupling factors, while the q’s corre-
spond to normalized values of end resonator quality factor.
To de-normalize these tabulated values for a specific filter
with center frequency fo and bandwidth BW, the following
relations are used

 and , (2)

where kij and Kij are the normalized and denormalized cou-
pling factors, respectively, between resonators i and j, while
qi and Qi are the normalized and denormalized quality fac-
tors, respectively, required of end-resonator i (i=1,3). Using
these values, the required values of capacitance and induc-
tance making up an LC ladder can be determined. Alterna-
tively, for the case of all-pole filters, the coupling spring
constants can be directly determined without reference to
an LC ladder using

, (3)

where kr is the spring constant of the adjacent resonators
(assumed identical for all resonators).

Thus, from (2) and (3), a µmechanical bandpass filter
with center frequency fo and bandwidth BW can be realized
using a structure comprised of identical resonators, each

with resonance frequency fo, coupled by springs with stiff-
nesses ksij.
Micromechanical Resonator Design.

The folded-beam micromechanical resonators used in
this design operate at frequencies higher than previously
reported and differ from previous versions in that their sus-
pending beams and folding trusses are similar in size.
Closed form equations [2] no longer accurately predict their
resonance frequencies, so distributed matrix techniques are
utilized for analytical design, with verification by finite ele-
ment simulation.

The effective lumped mass mr and spring constant kr of
a folded-beam resonator are functions of the location y (see
Fig. 2(a)) on the resonator and can be defined by

 and , (4)

where vc is the velocity at some point y = yc. KEtot is the
total kinetic energy in the spring-mass system given by [8]

, (5)

where

(6)

is the effective equivalent mass seen at any point on the res-
onator shuttle, Xo is the shuttle displacement amplitude, and
Mp, Mt, and Mb are the masses of the shuttle plate, folding
truss, and the sum of all folded beams, respectively.

With knowledge of the equivalent lumped mass mr and
stiffness kr of the constituent resonators, the equivalent
LCR circuit elements for each resonator are as follows [3]:

, (7)

where Q is quality factor, and ∂Cn/∂x is the change in reso-
nator-to-electrode capacitance per unit displacement at
input port n (n=1,2). To design the mechanical resonators
comprising a µmechanical filter, kr, mr, and ηn are chosen
to match values of Cx and Lx required by the tanks of an
appropriate LC ladder, or vice versa.
Coupling Beam Design.

The equivalent mechanical circuit shown in Fig. 2(b)
models an ideal case, where the springs coupling the reso-
nators are massless. In reality, the coupling springs have
finite mass that, without special design precautions, can add
to adjacent resonators, shifting their frequencies and caus-
ing distortion of the filter passband. In particular, as shown
in Fig. 5, unequal spring mass additions to the center reso-
nator relative to the end resonators cause mismatches in res-

Fig. 4: Parameters typically used for filter specification.
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onator frequencies, which then lead to passband distortion.
Note that this phenomenon is absent for two-resonator fil-
ters, but can have a major impact on higher-order filters, as
illustrated by Fig 6, which presents SPICE simulations
modelling the effect of increases in center resonator mass
over that of the end resonators for a three-resonator filter.

The influence of finite coupling spring mass can be
greatly suppressed by design methods that model coupling
beams as impedances and that strategically take advantage
of the distributed, transmission-line behavior of flexural-
mode coupling beams at the filter center frequencies of
present interest. Due to this distributed behavior, the amount
of mass (and stiffness) added to the adjacent resonators by a
given coupling beam is a function of its length, Lij. When Lij
corresponds to an effective quarter-wavelength of the filter
center frequency, the impedance of the coupling beam as
seen by adjacent resonators is effectively massless. Thus, by
restricting the coupling beam lengths to effective quarter-
wavelengths, center frequency shift and passband distortion
of high-order filters is avoided, and the equivalent mechani-
cal and electrical circuits for the µmechanical filter of this
work return to those shown in Fig. 2.

The flexural mode coupling beam used in this design
corresponds to a quarter-wavelength when its length Lij and
width Wij are chosen to simultaneously satisfy the following
expressions [8]

(8)

, (9)

where α=Lij(ρAωο
2/E/I)0.25, I=hWij

3/12, A=Wijh, and ksij is
given by (3).

The above quarter-wavelength spring design technique
is especially important for high-order micro-scale mechani-
cal filters, which have coupling beam masses on the same
order as that of the resonators. This becomes an increasing
problem as frequencies scale upwards, since resonator mass
must continue to shrink to accommodate, while coupling
beam mass reduces much more slowly [9].

Low Velocity Coupling.
Rather than attach coupling beams to resonator shuttle

masses, as has been done in previous two-resonator work

[5], this filter design couples resonators at their folding
trusses, which are moving at half the velocity of their shuttle
masses. Given that the magnitude of the shuttle mass veloc-
ity is Vo = ωoXo, (4) yields

 and , (10)

where ko is the effective spring stiffness seen at the shuttle
location. Thus, both mr and kr are four times larger at the
truss than at the shuttle. From (3), this means that the cou-
pling spring stiffness must also be four times larger if cou-
pling occurs at the truss rather than at the shuttle, and this
greatly simplifies the coupling spring design problem. With-
out the increase in ksij provided by this low velocity cou-
pling strategy, deep submicron coupling beam widths would
be required for reasonable Lij’s.
Filter Termination.

As mentioned in Section II, without the termination
resistors RQin shown in Fig. 2(a), the passband of the µme-
chanical filter would be as shown in Fig. 3, comprised of
three peaks, with excessive ripple. To obtain the designed
value of passband ripple, the Q of the end resonators must
be controlled to equal the calculated values of Eq. (2). For
the design of Fig. 2(a), this is most easily done by placing
resistors RQ1n in series with each input and resistors RQ2n in
shunt with each output. The required resistor values are
given by

, (11)

where Rx is defined in (7), Qinit is the initial, uncontrolled
quality factor of the constituent resonators, Qi is defined in
(2), and n refers to a particular port of end resonator i.

The value of RQin greatly influences the magnitude of
input-referred noise of the filter, as well as the degree of par-
asitic-induced passband distortion. To minimize these
effects, RQin must be minimized. From (11), this is best
accomplished by minimizing the value of Rx, which, with
reference to (7), is in turn best accomplished by maximizing
∂Cn/∂x, assuming that VP is restricted by power supply limi-
tations. ∂Cn/∂x is best maximized by minimizing the gap
spacing between resonator and electrode comb fingers.
Alternatively, if more transducer ports are available, active
Q-control is also possible, which eliminates series resistors
and offers both noise and dynamic range advantages [9].

IV.  PRACTICAL DESIGN ISSUES

In addition to the above theoretical issues, practical
design issues, such as resiliency against fabrication mis-
match and against parasitic elements, must also be consid-
ered. Figure 6 from Section IV showed that even slight
mismatches between constituent resonators can lead to sig-
nificant passband distortion. In addition, as shown in Fig. 7,
parasitic capacitance shunting and connecting the filter
inputs and outputs can also greatly distort the passband. In
particular, shunt capacitance can interact with Q-controlling
resistors to cause excessive phase lag, which then distorts
the passband and can preclude termination-based passband-
flattening.

To correct for fabrication mismatch tolerances, each
resonator comprising the filter is equipped with parallel-
plate-capacitor transducers, which due to their nonlinearity,

Fig. 6: Simulations demonstrating the effect of increasing cen-
ter resonator mass (end resonators remaining constant)
on the filter passband.
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allow frequency tuning of resonators via inherent VP-
dependent electrostatic spring constants [10]. The depen-
dence of frequency on tuning voltage V∆fi for resonator i is
a function of the tuning electrode-to-resonator overlap
capacitance Coi, and is given by

, (12)

where di is the capacitor gap spacing.
To minimize the effects of parasitic feedthrough capac-

itance, the differential drive and sense scheme depicted in
Fig. 2(a) is utilized. Input and output shunt capacitance is
minimized by careful board layout of off-chip electronics.

V.  EXPERIMENTAL RESULTS

Several prototype, 300 kHz, high-order, micromechan-
ical bandpass filters were designed using the methods
detailed in Sections III and IV, and fabricated using a poly-
silicon surface-micromachining technology. Table I sum-
marizes design data for one of the filters, with reference to
the parameters and dimensions indicated in Figs. 2 and 4.

A custom-built vacuum chamber, with pc board sup-
port and feedthroughs allowing electrical connections to
external instrumentation, was utilized to characterize both
µmechanical resonators and filters. Devices under test were
bonded to carefully grounded metal packages and inter-
faced with off-chip electronics at the board-level, taking
special precautions to minimize shunt capacitance at the fil-
ter input and output nodes and to null out feedthrough
capacitance so much as possible. A roughing pump was uti-
lized to evacuate the chamber to pressures on the order of
40 mTorr before testing devices.

Stand-alone, 300 kHz folded-beam, comb-driven µme-
chanical resonators were tested first, using the described
vacuum chamber along with op-amp based transresistance
amplifiers and an HP 4195A Network/Spectrum Analyzer.
From measured transconductance spectra, the resonators
were found to have Q’s greater than 25,000. The average
resonance frequency mismatch for four resonators in close
proximity was found to be 0.7%, which is consistent with
previously measured values [3]. This degree of frequency
mismatch is sufficient to cause significant passband distor-

tion and must be corrected using trimming or tuning strate-
gies to obtain a given filter specification.

To demonstrate the frequency tuning range provided
by the parallel-plate capacitor tuning structures described in
Section IV, Fig. 8 presents a plot of resonance frequency
versus tuning voltage V∆f for a stand-alone end-resonator,
measured using the described set-up. Here, a tuning range
of over 2% is demonstrated for a 50 V range in V∆f— quite
adequate for compensation of measured mismatches.

Micromechanical filters were then characterized, again
using the custom-built vacuum chamber, with board-level
electronics hooked up as in Fig. 2(a). First, two-resonator
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Table I:  Three-Resonator µMechanical Filter Data

Parameter Value Units

µRes. Folded-Beam Length, Lr 32.8 µm

µRes. Folded-Beam Width, Wr 2 µm

Structural Layer Thickness, h 2 µm

µResonator Effective Mass, mr 1.52x10-10 kg

µResonator Spring Constant, kr 135.4 N/m

Comb-Finger Gap Spacing, d 1 µm

Comb-Finger Overlap, Lo 5 µm

Electromechanical Coupling, η 1.48x10-7 VF/m

Coupling Beam Length, L12=L23 75.2 µm

Coupling Beam Width, W12=W23 0.8 µm

Filter Center Frequency, fo (=ωo/2π) 299.42 kHz

Filter Bandwidth, BW 510 Hz

Filter Q 590 —

Filter Stopband Rejection 38 dB

Filter Shape Factor, BW-20dB/BW-3dB 1.45 —

Filter Insertion Loss <3 dB

Young’s Modulus, E 150 GPa

Density of Polysilicon, ρ 2300 kg/m3

Filter DC-Bias, VP 150 V

µRes1 Freq. Tuning Voltage, V∆f1 77.6 V

µRes2 Freq. Tuning Voltage, V∆f2 0 V

µRes3 Freq. Tuning Voltage, V∆f3 77.6 V

Q-Control Resistors, RQ1n=RQ2n 470 kΩ
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filters were tested for later comparison with higher-order
versions. Figure 9 presents the transmission spectrum for a
two-resonator filter, showing a stopband rejection of 21 dB.
Characterization of three-resonator filters was then accom-
plished using the following procedure:

(1) tune resonance frequencies via V∆f to achieve
symmetrical modal frequencies; then

(2) insert proper values of RQin to flatten the filter
passband to the specified ripple.

The measured transmission spectra after each step of this
procedure are presented in Fig. 10.

The measured spectrum of Fig. 10(b) achieves many of
the design specifications, including a bandwidth of 510 Hz,
a 20dB-down shape factor of 1.45, insertion loss less than
3 dB, and a stopband rejection greater than 38 dB—this is
17 dB better than obtained via the two-resonator filter of
Fig. 9. However, it still displays more passband ripple than
desired. As can be seen through comparison with Fig. 7, this
is caused by board-level parasitic capacitance shunting the
filter input and output ports, and interacting with termina-
tion resistors RQin to cause excessive phase lag. Several
strategies are available to alleviate this passband distortion,
including (1) reducing the RQin’s by decreasing the resona-
tor-to-electrode comb-finger gap spacings; and (2) reducing
shunt capacitance by more careful board-layout or by fully
integrating the entire filter, along with sense and Q-control-
ling electronics, onto a single chip. The first of these also
allows more reasonable (smaller) values of dc-bias voltage
VP [6]. These options are both consistent with current trends
in planar IC and MEMS technologies, both of which are
moving towards higher-aspect ratios and increased integra-
tion.

VI.  CONCLUSIONS

High-Q, third-order, bandpass, micromechanical filters
have been designed and demonstrated in an IC-compatible
polysilicon surface-micromachining technology. For design
of these filters, electromechanical analogies proved very
useful and allowed the use of well-established LC ladder fil-
ter design tables as starting points. Passband distortion due
to the finite mass of coupling springs was shown to have
significant impact on high-order filters, especially on the
micro-scale, where resonators and couplers can have com-
parable masses. Parasitic elements were also shown to more

heavily influence the passband of high-order filters. Quar-
ter-wavelength coupling beams, low velocity coupling,
fully-balanced operation, frequency-tunable resonators, and
maximum electromechanical coupling can all greatly allevi-
ate these nonideal effects and are key to successful micro-
scale mechanical filter implementation. These design strate-
gies will likely become increasingly important as the fre-
quency and order of micromechanical fi lters rise to
accommodate today’s cellular needs, and beyond.
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Fig. 9: Transmission spectrum for a
307.8 kHz two-resonator micro-
mechanical filter.

Fig. 10: Measured transmission spectra for the prototype, three-resonator micromechani-
cal filter (a) after frequency tuning to achieved matched resonators; and (b) after
passband correction using Q-controlling resistors.
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