Robustness of synchronization in coupled Chua’s circuits
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Abstract— This paper addresses the robustness in syn-
chronization by perturbating the system pararneters.
Both mutually and unidirectionally coupled Chua’s cir-
cuits have been used for this investigation. The results
obtained from numerical computation have been found
that the coupled systems is in its most robust form when
the state variable z only is used for coupling, whereas the
state variable z is found to be otherwise. This paper re-
ports a thorough investigation into the effectiveness of
the parametric variations and a number of critical re-
gions have been defined for the classification of the chaos
within the context of synchronization.

I. INTRODUCTION

Synchronization of chaos is a fundamental technique
for engineering and technical applications, such as se-
cure communications. The study in this area is recently
extensive. Despite of the basic property of chaotic be-
havior, the concept of synchronization is to couple two
(or more) chaotic systems, in such a way that their com-
mon signals are asymptotically identical [1}-[2].

To construct such a set of coupled chaotic systems,
a variety of approaches using the well known Chua’s
circuits have been recently reported in literatures [3]-
[4]. Indeed, it has been reported in [3] that the syn-
chronization between two identical Chua’s circuits can
be achieved in both mutual and unidirectional coupling
manner. It has also indicated that the coupling effect
is not state variable dependent, although any combina-
tion of the three state variables, or even only one state
variable, is enough for the synchronization to take place.

However, it is difficult to build two identical physical
Chua’s circuits because of the tolerance and the time-
variant property of components. In this paper, we shall
investigate their robustness during the process of syn-
chronization by assessing the drift in parametric values.
The method of assessment can be made by the common
use of phase plot, which also known as Lissajous Figure,
instead of calculating the Conditional Lyapunov Expo-
nents (CLE). In some cases, it has been shown in [3] that
the syachronization can be reached even when the CLE
values are not all negative. Whereas for the phase plot,
the synchronization can be accurately demonstrated by
the appearance of a straight line. In this way, the per-
formance of the synchronization can thus be vividly ver-
ified.

This paper is organized as follows: The model of ba-
sic Chua’s circuit for the study is introduced in Sec-
tion II. The robustness of synchronization in the sys-
tem of two mutually-coupled identical Chua’s circuits

G. Q. Zhong is on leave from Guangzhou Institute of Electronic
Technology, Academia Sinica, Guangzhou 510070, People’s Re-
public of China.

0-7803-4756-0/98/$10.00 1998 IEEE

436

against the drifts of parameter values is investigated in
Section ITI. The similar examination for the system of
two unidirectionally-coupled identical Chua’s circuits is
carried out in Section IV. Some remarks about the ro-
bustness of synchronization in the systems of coupled
Chua’s circuits are concluded in Section V.

II. MODEL OF CHUA’S CIRCUIT

Chua’s circuit, as shown in Fig. 1(a), is a simple elec-
tronic circuit consisting of a linear inductor L, a linear
resistor R, two linear capacitors C; and Cj, and a non-
linear resistor N yet it exhibits the complex dynamics
of bifurcation and chaos. Since its discovery in 1983 [6]-
(8], the Chua’s circuit has become a universal paradigm
for the study of chaos [9]. The dynamical behavior of
the circuit is governed by the following state equations
[10):
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where ve, and ve, are the voltages across the capaci-
tors C; and Cs, respectively; iz, is the current flowing
through the inductor L; and g(-) is the v — ¢ character-
istic of the nonlinear resistor Ny which is defined as:

9(ur) = Gyom + 5(Ga = Go)llvw + Byl ~ or = Byl] (2

where G, and G} represent the slopes of the inner and
outer regions of v — ¢ characteristic, respectively, B, is
the breakpoint of the piecewise-linear curve shown in
Fig. 1(b).
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Fig. 1. (a) Chua’s circuit (b) v — ¢ characteristic of nonlinear
resistor Ngp

For simplicity, we use the dimensionless state equa-
tions to represent the Chua’s circuit [3]. Its rescaled

parameters for our investigation are as follows: z
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Hence, the normalized system equations are:
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We also choose and fix the following parameter val-
ues of the Chua’s circuits, and the initial conditions
(0.01,0.01,0.001;0.1, 0.1, 0.001) for the system through-
out our investigation so that the Chua’s circuit ex-
hibits a Double-Scroll attractor [3]: C; = 10nF,C; =
100nF,L = 18.75mH,G = 0.599mS,B, = 1V,G, =
-0.76mS,Gy, = -0.41mS; or in their dimensionless
form: a =10,8 = 14.87,a = —1.27,b = —0.68.

III. SYNCHRONIZATION IN
MUTUALLY-COUPLED CHUA’S
CIRCUITS

Consider a set of two identical Chua’s circuits
{z,9,2,%, ¥, 2} to be mutually coupled by the linear re-
sistors R, as shown in Fig. 2 (z-coupled route is hid-
den in the diagram), whose parameters are identical as
those listed in Section II. This coupled system can be
expressed by the following state equations:
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(7)
and kz, ky and k, are the coupling factors, Aa, AS, Aa
and Ab are the perturbations of the parameters a, 8,a
and b, respectively.
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Fig. 2. Circuit diagram of two identical Chua’s circuits z,y,2
mutually coupled (z—coupling route not indicated).

For a complete coupled system, we assume that the
coupling factors have identical positive values, i.e., k; =
ky, = k, = 6 > 0. However, should the system be cou-
pled using less than three state variables, the coupling
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factor associated with the uncoupled state variable is
Z€ro.

Obviously, the synchronization is dependent on the
coupling factors k;(j = z,y,2) and the initial condi-
tions, as reported in [11]. It has also indicated that there
establishes a set of critical values k;(j = =z,y,2) = 6*,
of which the synchronization is ensured only when all
d > 6*, except for the coupling of state variable z. In
this case, a confirmed boundary region is existed for the
coupling factors that enables the system to be driven
into synchronization.

A. Robustness of synchronization against drifts of «
and 8 .

In this paper, we address another important issue.
That is the robustness in synchronization based on the
development of Chua’s circuit. In the past, the study
in this area assumed only identical Chua’s circuits for
coupling. However, in practice, two identical Chua’s cir-
cuits are not possible as the tolerance and time-variant
property of the electronic components. A slight mis-
match could lead the coupled Chua’s circuits from syn-
chronization into the various mode of abnormal behav-
iors, such as sub-synchronization, asynchronization and
blow-up.

Therefore to enhance the quality of synchronization,
this subsection is to investigate the robustness of syn-
chronization in the coupled system based on the para-
metric drift Aa and AB. Here, we consider a variation
of 20 percent for Aa and 10 percent for AS. The per-
turbation is operated from the nominal values of a = 10
and B = 14.87 as indicated in Section II, where the con-
ditions for forming a Double-Scroll attractor are clearly
stated. In the mean while Aa and Ab in (7) are set to
be zero.

Furthermore, to allow a large variation in perturba-
tion, the coupling factors are also set to five times of
the critical values [11], i.e., § = 58*, while a mid-range
value for k; is adopted for the z—coupled system.

A total of seven cases of studies have been investi-
gated and the results are summarized as shown in Fig. 3
with the corresponding coupling factors tabulated in
Table I.

TABLE 1
PERFORMANCE AGAINST DRIFTS OF a AND 8 IN
COUPLED SYSTEM

Case | k; ky k; | Behavior
1 0.95 [ 0.95 | 0.95 | Fig. 3(a)
2 2.05(20510 Fig. 3(b)
3 16 {0 1.6 | Fig. 3(c)
] 0 1.3 | 1.3 | Fig. 3(d)
5 16110 0 Fig. 3(e)
6 0 3 0 Fig. 3(f)
k4 0 0 0.61 | Fig. 3(g)

As indicated from Fig. 3, the variations Aa and AS
could lead the coupled system into various mode of be-
haviors. In fact, the results have also shown that there
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Fig. 3. Performance of synchronization against the drifts of «
and # in two mutually coupled Chua’s circuits. Blank region
is in synchronization mode, backslashed regions are in sub-
synchronization mode, slashed region is in asynchronization
mode, and mesh regions are in blow-up. Vertical axis: AfS,
Horizontal axis: Aa. Parameter values are listed in Table I.

are four distinct mode of behaviors which can be caused
by the perturbation in a and 3 :

1) Synchronization Region: When the system is syn-
chronized, the phase plot for the two corresponding
state variables should exhibit a fine straight line, as
shown in Fig. 4(a).

2) Sub-synchronization Region: A weak synchroniza-
tion phenomenon is observed in the sense that the tra-
jectories are mostly tracking with some phase error.
Hence, the phase plot for the two corresponding vari-
ables looks like a stretched oval as shown in Fig. 4(b).

8) Asynchronization region: The system is no longer
synchronized, and the phase plot for the two cor-
responding variables has a complicated structure, as
shown in Fig. 4(c).

4) Blow-up Region: The trajectory is no longer a Dou-
ble Scroll attractor; it diverges and becomes a large limit
cycle due to the eventual passivity.

Hence, based on these classifications, it can be noted
from Fig. 3 that the robustness in synchronization for
variations of Aa and AS can be summarized as follows:

1. a robust system exists when the state variable z
only is coupled, see Fig. 3(e);
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Fig. 4. Phase plot for two corresponding state variables of two
coupled Chua’s circuits. Vertical axis: &, Horizontal axis:
z. Parameter values: (a) kz = 16.1,ky = k; = 0,Aa =
0.5,A8 = 1.0 (synchronization); (b) kz = ky = 2.05,k,
0,Aa = 1.1,AB = 0 (sub-synchronization); (c) kz = k.
0,ky = 3,Aa = 1.2,Af = 0 (asynchronization); (d) ks =
ky = 4.25,k; =0, Aa = AB = 0.5 (almost synchronization).

T

2. any other combination of couplings, whether it is a
single state variable 2, y, or the combination among z, y,
and z, the synchronization is fragile, particularly when
the state variable z coupling is neglected. These can be
clearly shown in Figs. 3(d), (f), and (g), respectively;
and

3. the effect of variation in Af is found to be less
important to the z—coupled system, see Figs. 3(a)-(c)
and (e). Furthermore, any change in A is somewhat
counteracting the effect of the Aa.

B. Robustness of synchronization against drifts of a and

b

Apart from the a and 3, the behavior of Chua’s cir-
cuit depends also upon the parameters a and b as ex-
pressed in (4). Therefore, a similar treatment was con-
ducted for assessing the robustness in synchronization
against the drifts of @ and b. In this case, the maximum
drifts considered for both Aa and Ab are 10 percent of
the nominal a and b, respectively. Meanwhile, Aa and
Ap in (5) are set to be zero. The coupling factors used
for the seven cases remain the same as those listed in
Table 1.

The results obtained are illustrated in Fig. 5 and can
be classified as shown in Table IIL

TABLE I1

PERFORMANCE OF SYNCHRONIZATION AGAINST
DRAFTS OF @ AND & IN COUPLED SYSTEM

Case Mode Figure
5 Synchronization 5(b)
1,2,3 | Sub-synchronization | 5(a)
6 Asynchronization 5(c)
4,7 | Blow-up 5(d)

It can be seen from both Fig. 5 and Table II that
only the z—coupled system will ensure synchronization
with respect to the changes in both a and b. For any
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Fig. 5. Performance of synchronization against the drifts of a
and b in two mutually coupled Chua’s circuits. Blank re-
gion is in synchronization mode, backslashed region is in sub-
synchronization mode, slashed region is in asynchronization
mode, and mesh region is in blow-up. Vertical axis: Ab, Hor-
izontal axis: Aa. Parameter values are listed in Table I and
1I.

other state variable coupling without the participation
of z variable, the changes in both @ and b are extremely
sensitive to the process of synchronization, which could
cause the system to be in the mode of asynchronization
and even blow up, as shown in Figs. 5(c) and (d).

IV. SYNCHRONIZATION IN
UNIDIRECTIONALLY-COUPLED CHUA’S
CIRCUITS

In this section, we examine the synchronization in the
system of two identical Chua’s circuits unidirectionally
coupled, as shown in Fig. 6. The state equations de-
scribing this system are the same as (5)—(7), but the
terms with k;(j = z,y,2) are missing in the subsystem
{%,9,%}, i.e:

-

8 = aly-z- f(2)) + k(& -2)
y = z-y+z2+k{@-yv)
2 = ~0By+k.(2-2)
i = (a+Aa)j-2-f(2) ®
j = E-j+%
i = —(B+apy
where
f@) =bz+3@=-Blls+1~lz-1]  (9)
and

£(8) = (b+ AB)3+ 2 (a+0a) ~ (b+ AD)[&-+1] - [5-1]
(10)

The selection for the coupling factors k; (§ = z,v, 2)
is the same as that mentioned in Section III.

To examine the robustness of synchronization against
drifts in a, 8,a and b, similar treatment for the inves-
tigations as those mentioned in Section III will remain
unchanged. But the coupling factors as tabulated in

439

L3C TN & Vr Tcl C,0— L

Fig. 6. Circuit diagram of two 2, y, z unidirectionally coupled iden-
tical Chua’s circuits (z—coupling route not indicated).

TABLE III
PERFORMANCE OF SYNCHRONIZATION AGAINST
DRIFTS OF a AND 8 IN MASTER-SLAVE SYSTEM

Case | k. ky k, | Behavior
1 20 |20 |20 | Fig. 7(a)
2 425 [ 4.25 1 0 Fig. 7(b)
3 33510 3.35 | Fig. 7(c)
4 0 2.45 | 2.45 | Fig. 7(d)
5 32510 0 Fig. 7(e)
6 0 65 |0 Fig. 7(f)
7 0 0 2.0 | Fig. 7(g)

Table III are selected for the examination. The perfor-
mances of synchronization against the drifts of @ and 8
observed are presented in Figs. 7(a)—(g).

From the results shown in Fig. 7 and Table III, we
can note that the most robust synchronization against
the changes in a and  is found when the state variable
z only is coupled, see Fig. 7(e). On the other hand,
the system is extremely sensitive to the parameter mis-
match when the state variable z is omitted from cou-
pling in any form. It can be seen from Figs. 7(d), (f)
and (g) that the tolerance of drifts Aa and Ap are very
small for the synchronization in such a system.

It should be noted from Figs. 7(a-c) that an “Almost
Synchronization” region is existed. The performance
in this region is similar to that in Sub-synchronization
region although the former is a slightly better one as
compared with the latter, as shown in Fig. 4(d).

As for the investigation of the drift parameters Aa
and Ab in the unidirectionally coupled system, it has
been found that the results obtained are similar to those
in mutual coupling systems. However, the blow-up phe-
nomenon was not observed here. The overall results are
summarized and tabulated in Table IV.

V. CONCLUDING REMARKS

This paper reports the investigation of the robust-
ness in synchronization for two coupled Chua’s circuits
by perturbating their parameters. This study was car-
ried out using both mutually and unidirectionally cou-
pling techniques. From the results obtained by numer-
ical computation, we can observe and draw up the fol-
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Fig. 7. Performance of synchronization against the drifts of a and
B in two unidirectionally coupled Chua’s circuits. Blank re-
gion is in synchronization mode, backslash-dashed regions are
in almost synchronization mode, slashed regions are in asyn-
chronization mode, and mesh regions are in blow-up. Vertical
axis: AS, Horizontal axis: Aa. Parameter values are listed in
Table III.

lowing concluding remarks:

(1) a coupled system, in which the state variable z is
the only one for coupling, has been found to be the most
robust case against any drift in parameters. Further-
more, the synchronization is independent of the drifts
in @ and b;

(2) to synchronize the system without the use of z
for coupling, the coupled system is extremely sensitive
to the drifts in a and b;

(3) both mutually and unidirectionally coupled sys-
tems achieve similar results in synchronization against
the parametric mismatch, although in some cases, the
unidirectional coupling approach is more favorable;

(4) the use of state variable z for coupling has the
worst performance for synchronization, and it should
not be recommended; and

(5) due to the space limitation of this paper, it should
also be noted that only the positive increase of percent-
age for the parameter drifts were considered. In fact,
the similar phenomena have also been observed should
the process be reversed.

440

TABLE IV

PERFORMENCE AGAINST DRIFTS OF ¢ AND b IN

MASTER-SLAVE SYSTEM

Case Mode figure
5 Synchronization 5(b)
1,2,3 | Sub-synchronization | 5(a)
4,6,7 | Asynchronization 5(c)
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