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Implementation of Chua’s Circuit
with a Cubic Nonlinearity

Guo-Qun Zhong

Abstract—This paper reports an implementation of Chua’s circuit with
a smooth nonlinearity, described by a cubic polynomial. Some bifurcation
phenomena and chaotic attractors observed experimentally from the
laboratory model and simulated by computer for the model are also
presented. Comparing both the observations and simulations, the results
are satisfactory.

I. INTRODUCTION

The well-known Chua’s circuit shown in Fig. 1, in which the
nonlinearity of the Chua’s diode is described by a piecewise-linear
function, has been studied worldwide since it was invented by Chua
in 1983 and confirmed by computer simulation and experimental
observation, respectively, [1]-[4].

The state equations describing the circuit are as follows:

dv

E@* = %[%(vcz = Ve1) — {J(vcl)]

G2 = glelva —ve) +ir] m
d—;f‘ = %[—%2 - RoiL]

where g(vr) is a piecewise-linear function defined by
1
9(vr) = Goor + 5(Ga = Gh)llvr + E| - v — El] ()

and R, denotes the small positive resistance of the inductor'. Most
interesting chaotic phenomena and chaotic dynamics can be described
by this piecewise-linear Chua’s equation.

Recent numerical simulations reveal, however, that not all features
of a real circuit are captured correctly by this piecewise-linear circuit
[6]. It is therefore desirable to realize a smooth nonlinearity described
by the following cubic polynomial for Chua’s circuit:

g(vr) = ao + avr + buk + cvy 3)

In Section II we present a practical implementation of this cubic
nonlinearity. Some bifurcation sequences and chaotic attractors ob-
served experimentally and simulated via the software INSITE are
presented in Section IIIL.

II. PRACTICAL IMPLEMENTATION OF A CUBIC POLYNOMIAL

The basic circuit we use to realize the cubic polynomial (3) is a
multiplier circuit with a feedback loop, as shown in Fig. 2(a). The
equivalent circuit of the muitiplier circuit is shown in Fig. 2(b). By
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UIn the recent global unfolding of Chua’s circuit [5], Ro may assume any
positive or negative value. This generalization is now called Chua’s oscillator
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Fig. 1. Chua’s circuit.
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Fig. 2. (a) The multiplier circuit with a feedback loop. (b) The equivalent

circuit of the multiplier circuit of (a).

applying Kirchhoff’s Voltage Law to the equivalent circuit, we have
_hv ]l

v~ R
where the factor 10V is an inherent scaling voltage in the multiplier,
and vp is a dc voltage. Obviously, when v2 = v, and ve = v, we
obtain '

@

i=[v1

v}

i1 =[n1 - oV UO]R &)
and
3
O ot
respectively.

By adding (5) and (6), we obtain the following desired cubic
polynomial:

2 3
i=ao + avy + bvy + cvy (@)

e 2 _ 2 4 _ 1.1 _ _1_1
where i = i1 +i2,a0 = —f,a= 5,b= -y c= "%V
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Fig. 3. A circuit implementation for a cubic-polynomial Chua’s diode.
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Fig. 4. (a) Practical circuit for realizing a cubic polynomial v — ¢ character-
istic. (b) The calculated v — 2 characteristic of Chua’s diode N with a cubic
nonlinearity ¢ = av + cv3, where a = —0.599mS, ¢ = 0.0218mS/V?2.
Horizontal axis v, scale: 1V/div. Vertical axis 7, scale: 0.5mA/div. (c) The
measured v — ¢ characteristic of Chua’s diode Nr with a cubic nonlinearity
i = av + cv®. Horizontal axis v, scale: 1V/div. Vertical axis i, scale;
0.5mAldiv, a = —0.59mS,c = 0.02mS/V?2,
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The circuit implementation for the cubic polynomial (7) is shown
in Fig. 3.

Note from the procedure above that any polynomial with higher-
order terms and real coefficients can be realized in the same way.
By choosing the signs of the resistors R; and R>, the signs of the
coefficients ao, a, b, and c can be changed, respectively.

1II. BIFURCATION AND CHAOS IN CHUA'S
CIRCUIT WITH A CUBIC NONLINEARITY

1. Practical Implementation of Chua’s Circuit
with a Cubic Nonlinearity

Since the desired v — ¢ characteristic of the nonlinear resistor
Ng in Chua’s circuit is an odd-symmetric function with respect to
origin, here we use the cubic polynomial (7) with the coefficients
ap = 0,a < 0,b = 0, and ¢ > 0 for the nonlinearity of Chua’s
circuit in Fig. 1, i.e.,

ir = g(vr) = avr + vy ®)

where @ < 0 and ¢ > 0.
The practical circuit for realizing the cubic polynomial (8) is shown
in Fig. 4(a). The two-terminal nonlinear resistor Nr consists of one
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Fig. 5. Bifurcation sequence with respect to the parameter R. (a), (d), (), (j), (m), and (p) Phase portraits in the v¢1 — vee plane. Horizontal axis ver, scale:
1V/div. Vertical axis veo, scale: 0.2V/div.  (b), (e), (h), (k), (n), and (q) Time waveforms. Horizontal axis ¢, scale: (b), (¢), and (h) 500xS/div, (k), (n), and (q)
1mS/div. Vertical axis vea (top) and ve1 (bottom), scale: 0.5V /div for vez, 2V/div for vey. (€), (), (i), (1), (0), and (r) Spectra of voltages vcy, scale: 10db/div.
Parameter values: C; = TnF,Cy = 78nF.L = 18.91mH. Ry = 14.99Q) (the internal resistance of the inductor L), a = —0.59m S, c = 0.021715/"'2.
(a)=(c) R = 220082, (a) period-1 limit cycle. (d)—(f) R = 2103€2, (d) period-2 limit cycle. (g)~(i) R = 209012, (g) period-4 limit cycle. (j)-(I) R = 20834,
(j) intermittency of type 1. (m)~(0) R = 20332, (m) spiral Chua’s attractor. (p)-(r) R = 19642, (p) Double-Scroll Chua’s attractor.

Op Amp, two multipliers and five resistors. In the circuit, we utilize ~Amp AD711kN and the resistors R, Iz, and I3 form an equivalent
two analog multipliers AD633JN and an Op Amp AD711kN, both negative resistance R, since we have R. = —R; when Ry = Ry
manufactured by Analog Devices, Inc.. The connections of the Op  and the Op Amp operates in its linear region, in order to obtain the
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desired coefficients ¢« < 0 and ¢ > 0 in (8). Inversely, in the case
where R. is a positive resistance, we will obtain @ > 0 and ¢ < 0 in

(8). The driving-point v — / characteristic of Ng is as below:
. 1 Ri+Rs 1 1 .
in=g(vr) = —5-vr + st fs —— v} = avg + v}

Ry R;Ry 10V 10V
)

)

25 KHz
BHW: 158

_ 1 . _ R4tRs 1 1
where a = c 07 07

R C= Far, . The factor 10V is an inherent
scaling voltage in the multiplier, as mentioned above. The network
connected by the resistors R4 and Rs increases the gain of the system
by the ratio R“RLJQ in order to obtain a variable scale factor R“—;‘Rf&.
This ratio is limited to 100 in practical applications”. Usually, choose

R, > 1k, and Rs < 100kS2. Note that the coefficients a and ¢ can

2Refer to Data Converter Reference Manual by Analog Devices.
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Fig. 5. Cont.

be adjusted by tuning the resistance Rj3, and ¢ can independently be
adjusted by tuning the resistance Rs.

In our experimental model, we choose Ry = Ry = 2k, Ry =
1.668k2. Ry = 3.01k$2, and Rs = 7.91k€2. The v —¢ characteristics
of the Chua’s diode Np calculated according to the polynomial
(9) and measured experimentally, based on the parameter values
listed above, are shown in Figs. 4(b) and 4(c), respectively, where

a = —0.599m.S, ¢ = 0.0218m.5/V"2. Note that there is a very good
agreement between the two curves.

2. Bifurcation and Chaos from Chua’s Circuit
with a Cubic Nonlinearity

The state equations for Chua’s circuit in Fig. 1 with a cubic
nonlinearity are as follows:
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Fig. 6. Bifurcation sequence with respect to the parameter C. (a)—(g) Phase portraits in ve1 — ve2 plane. Horizontal axis ve1, scale: 117/div.  Vertical axis
ves, scale: 0.2V7/div.  (h) Spectrum of voltage v.1, scale: 10db/div. Parameter values: Cy = TnF, L = 18.91mH, R = 1964Q. Ry = 14.999) (the
internal resistance of the inductor L), « = —0.59mS,c = ().02m5/V2. (@) Cy = 30nF, dc equilibrium point. (b) C'> = 32nF’, period-1 limit cycle. (c)
(o = 54nF, period-2 limit cycle. (d) C2 = 57nF, intermittency of type I. (e) C, = 64nF, spiral Chua’s attractor. (f) C2 = 78n F, Double-Scroll Chua’s
attractor. (g) C» = 600nF, Double-Scroll Chua’s attractor having a much lower frequency spectrum. (h) Cz = 600nF, spectrum of voltage 1.

dv., ) 4
Lo = *C‘v—l[%(ugz = ve1) — g(var)] g(ver) = aver + cv, (11
G2 = glrlva —ve) +id] 10)

dJ;‘ = %[*“CZ — Roiy] Fig. 5(a)-(r) shows the bifurcation sequence with respect to I? and

the chaotic attractors observed experimentally from our experimental
where setup , including the time waveforms and the spectra of voltages vc1
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Fig. 7. Simulated bifurcation sequence with respect to the parameter R. Phase portraits in v¢; — veo plane. Horizontal axis v.;. Vertical axis v.y. Parameter
values: ('} = TnF.Co = 78nF,L = 18.91mH, Ry = 14.99% (the internal resistance of the inductor L), a = —0.59mS,c = 0.02mS/V?. (a)
R = 220042, period-1 limit cycle. (b) R = 21402, period-2 limit cycle. (c) R = 21342, period-4 limit cycle. (d) R = 2131%2, period-8 limit cycle. )
(e) R = 2083Q, spiral Chua’s attractor. (f) R = 1964(), Double-Scroll Chua’s attractor.

relative to these phase portraits. Note from these oscilloscope pictures
that there is a period-doubling route to chaos similar to that observed
from Chua’s circuit with a piecewise-linear function.

By adjusting parameters C,C>, and L, a similar bifurcation
phenomenon can also be observed, respectively. As an example,
we present the bifurcation sequence with respect to capacitor C'y in

Fig. 6(a)—(h). It can be noted from these observations that there is a
much wider range of the bifurcation with respect to Cs, e.g., a Double
Scroll Chua’s attractor can still be observed when 'z increases up to
600n F', as shown in Fig. 6(g). In this case the components of high
frequencies in Fig. 6(h) are reduced, as expected. This feature will
probably be of interest in sound synthesis.
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In addition, we do some simulations. of this smooth model using
the software INSITE. The periodic orbits and chaotic attractors
are presented in Fig. 7(a)«(f). Note that the simulations confirm
completely our experimental observations.

IV. CONCLUDING REMARKS

It is well known that Chua’s circuit can exhibit a wide variety
of nonlinear behaviors, it has become an attractive paradigm for
experimental investigation of chaotic dynamical systems. Though
most of the interesting chaotic phenomena can be described by Chua’s
circuit with a piecewise-linear Chua’s diode, some subtle features of
the real circuit may be missed by the piecewise-linear approximation.
The implementation of a smooth nonlinearity with a cubic polynomial
(with even higher order terms) presented in this paper contributes
a robust model, with which a more complete experimental model
of Chua’s circuit can be used for experimental -investigations. This
model is robust and can be easily integrated in a chip. Furthermore,
this method can also be used to design Chua’s diodes with almost
any smooth nonlinearity. :
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The Use of Parasitic Nonlinear
Capacitors in Class E Amplifiers

Michael J. Chudobiak

Abstract— The most common class E amplifier configuration uses a
single transistor with a shunt capacitor and a series resonant output
filter. Until now a linear shunt capacitance has been assumed. However,
to achieve operation at 900 MHz and above, it is of interest to rely
solely upon the nonlinear parasitic collector-substrate capacitance of the
transistor. An analytical theory for operation at 50% duty cycle and
nonlinear capacitance is presented in this correspondence, and the effects
on the power capability of the amplifier are discussed.

I. INTRODUCTION

Class E tuned power amplifiers have gained widespread acceptance
since their introduction [1] due to their simplicity, high efficiency,
excellent designability, and relative intolerance to circuit variations
[2]. Fig. 1 shows the most common class E configuration.

The transistor acts as a switch, rather than as an amplifier. When the
transistor switch is closed, the collector voltage ideally is zero, and a
large collector current can exist. When the switch is open, no current
flows, but a large collector voltage can exist. Thus, simultaneous
nonzero voltage and current is avoided, eliminating transistor power
losses in the fully-open and fully-closed states. The capacitor C
acts to hold the collector voltage v at zero volts during the on-to-
off switch transition, to avoid switching losses. The Cr,Lr,j X, R
network is designed such that the collector voltage falls back to
zero just before the off-to-on transition, again to avoid switching
losses. Typical collector or drain voltage and current waveforms for
an optimally tuned class E amplifier are shown in Fig. 2.

This circuit has been extensively analyzed [1]-[11], however these
analyses have all assumed that the shunt capacitance was constant.
As operating frequencies reach 900 MHz and beyond, the shunt
capacitance predicted by these analyses may become comparable to
the parasitic collector-to-substrate capacitance of the transistor. For
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