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Studying Chaos via 1-D Maps—A Tutorial

Chai Wah Wu, Student Member, IEEE, and Nikolai F. Rul’kov

Abstract—In this introductory tutorial paper, we show how
1-D maps can be useful in analyzing experimentally the chaotic
dynamies and bifurcations of circuits and systems. We illustrate
this by means of Chua’s circuit.

I. INTRODUCTION

NE OF THE WAYS to make a complex system easier
Oto analyze is by reducing the system to a simpler
system that still captures the important features of the original
system. For example, in a continuous-time dynamical system,
a Poincaré map (also called a first-return map) living in a lower
dimensional manifold can provide much insight to the system.
In other words, a lower dimensional discrete-time dynamical
system is constructed from the original system. As the theory
of one-dimensional (1-D) maps is well developed, it will be
useful if an appropriate 1-D map can be constructed from
the system under study. In this tutorial paper, we demonstrate
how an approximate 1-D map can be used to analyze the
complex dynamics and bifurcation phenomena of the 3-D
Chua’s circuit, which is described by a system of ordinary
differential equations (state equations). In Section II we use
the logistic map as an example of a 1-D map and show
the complicated dynamics that it possesses. In Section III we
illustrate how maps can be constructed from some systems of
ordinary differential equations (ODE), in particular, on how
a 1-D map can be generated from Chua’s circuit. In Section
IV we give an experimental analysis of the complex dynamics
in Chua’s circuit by means of 1-D maps. In Section V we
discuss briefly other numerical and theoretical works done on
1-D maps related to Chua’s circuit.

II. EXAMPLE OF 1-D MAP: THE LOGISTIC MAP

A simple and well-studied example of a 1-D map that
exhibits complicated behavior is the logistic map from the
unit interval [0, 1] into [0, 1], parameterized by pu:

ful®) = pa(1 - z)

where 0 < p < 4. This map constitutes a discrete-time
(semi)dynamical system in the sense that the map f,: [0; 1] —
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[0, 1] generates a semigroup through the operation of com-
position of functions. The state evolution is described by
Zp+1 = fu(zy). We denote

fM=fofo-of.

n times

For all € [0, 1], we can generate a “discrete-time” tra-
jectory {;}%2,, where 2; = f((x). The set of points
{®o, 1, --+} C [0, 1] is called the (forward) orbit of z. A
periodic point of f is a point z € [0, 1] such that z = f(")(x)
for some positive integer n. The least positive integer n such
that this occurs is called the period of x. A periodic point of
period 1 is called a fixed point. If a point is a periodic point
of f of period n, then it is the fixed point of f(). If x is
a fixed point of f(), then it is a periodic point of f whose
period divides n. For differentiable f, a periodic point z with
period n is stable if

[[f @] <1
i=1
and unstable if
[1// )| >1
i=1
where #; = f®(z). If z is a periodic point of period n,

then so is f(z). For each fixed p, the map f, can possess
stable or unstable periodic points and chaotic attractors, among
others. As the parameter y is varied, changes in the qualitative
behavior of the system, also called bifurcations, can occur.
In the logistic map, as p is varied from O to 4, a period-
doubling bifurcation occurs. In the region p € [0, 3], the
map f,, possesses one stable fixed point. As g is increased
past 3, the stable fixed point becomes unstable, and two new
stable periodic points are created of period 2. As g is further
increased, these stable periodic points in turn become unstable,
each spawning two new stable periodic points of period 4.!
Thus the period of the stable periodic points is doubled at
each bifurcation point. Each period-doubling episode occurs
in a shorter “parameter” interval each time, decreasing at a
geometric rate, converging at a finite y to an infinite number
of period-doublings at which point chaos is observed. This
is depicted in the bifurcation diagram in Fig. 1, where the
bifurcation parameter y is plotted on the horizontal axis, and
the attractor(s) of the map is plotted on the vertical axis. Since
there is at most one periodic attractor in the logistic map [1],
we can show the attractor by plotting the trajectory of an initial

"Note that all the periodic points on the same orbit becomes unstable at
the same parameter value due to the chain rule.
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Fig. 1. Bifurcation diagram of the logistic map f,.(r) = pr(1 —r).

point after a large number of transient iterations. This is the
algorithm used to generate Fig. 1. The first few bifurcation
points ,, where the n-periodic stable periodic points lose
stability and 2n-periodic stable periodic points emerge are
shown in the figure. For maps with a quadratic extremum,
as in the case with the logistic map, the nth bifurcation point
occurs at successive intervals asymptotically proportional to
6™, where 6 X 4.669. In other words,

. M2n+l — M2n
lim
n—oc p2n+2 b ll“zn'l

=0.

As p is further increased, there is a region of parameter
space where a stable period-3 periodic point exists (p3 in
Fig. 1), which undergoes a period-doubling bifurcation as y is
increased. An interesting theorem of Sarkovskii says that for a
continuous 1-D map on the real line, the existence of a period-
3 periodic point implies the existence of periodic points of any
period [1]. In the logistic map at the parameter ps, all other
periodic points are unstable, so that most initial conditions will
converge towards the stable period-3 periodic point. We will
see later that this region of parameter space around y¢3 contains
very interesting phenomena such as intermittency and crisis.

III. GENERATING MAPS FROM ODE’S

From a system of n ordinary differential equations we can
obtain a Poincaré map (or first return map) from R™ ! into
R™! as follows: First, an (n — 1)-D hyperplane is chosen.
Given a point on this hyperplane, the Poincaré map maps this
point to the next point on the trajectory through this point
which intersects this hyperplane in the same direction.” The
orbit of the Poincaré map can be thought of as the inter-
section between the intersecting plane and the trajectory. For
a periodic trajectory which is transversal to the hyperplane?
this map is well defined locally around the intersection of the
trajectory and the hyperplane. For example, in Fig. 2, we show
a periodic orbit intersecting a hyperplane transversally. The
point x1 is mapped by the Poincaré map to x2 and vice versa.
In Chua’s circuit, shown in Fig. 3, which is a 3-D system, the
corresponding Poincaré map will be a 2-D map.

2This is called the one-sided Poincaré map in [2].

3 A plane and a curve intersect transversally in IR* if and only if the curve
crosses the plane non-tangentially [3].

Poincare plane

Limit cycle

pus

Fig. 2. Poincaré map generated from systems of ODE’s.
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Fig. 3. Chua’s circuit.

1V. EXPERIMENTAL ANALYSIS OF THE COMPLEX
DYNAMICS IN CHUA’S CIRCUIT BY MEANS OF 1-D MAPS

One of the goals of an experimental study of the nonlinear
dynamics of self-excited oscillators is to find bifurcations
which can explain the intrinsic oscillation properties of the
system. In order to understand the complicated bifurcation
scenarios occurring in some dynamical systems with chaotic
behavior we need to carry out the analysis of the bifurcations
in at least a 2-D parameter subspace. In this case, one can point
out the bifurcations of codimension 2,* which can give rise to
the complicated structure of bifurcations of codimension 1. It
is essential that the topological properties of the structures in
the neighborhood of the codimension 2 bifurcations are well
studied in the theory of bifurcations. The results of this theory
can then be effectively applied to experimental studies.

As the experimental tools for the study of autonomous
systems with chaotic behavior is well developed (see, for
example, |4], [5]), we can use a physical circuit such as
Chua’s circuit which possesses a rich repertoire of chaotic
dynamics to demonstrate some significant results of modern
bifurcation theory. It has been shown in numerical simulations
[6], [7] and in experimental study [5] that due to the strong
dissipative compression of the phase space the return map for
the trajectories of some attractors in Chua’s circuit can be
approximated by means of a 1-D map. In the sequel, the first
return map we refer to will not be the 2-D Poincaré map,
but the 1-D map that is constructed from the 2-D map by
means of a projection. In the figures of experimental results,
the return map will be shown by plotting the trajectory using

4 A bifurcation of codimension 2 refers to the fact that the set of bifurcation
points form a manifold in the parameter space with codimension 2, where

codimension is the dimension of the parameter space minus the dimension of
the manifold.
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the coordinates (;, f(z;)), where f is the return map and z;
are the successive points of the trajectory on the 1-D map.

The experimental tools used in this paper include the
visualization of 2-D projections of the attractors, the plotting
of the Poincaré cross-sections and their corresponding 1-D
return maps, visualization of the bifurcation diagram, and the
periodical switching of the circuit to the (unstable) fixed point
for studies of the homoclinic and heteroclinic orbits.

For the experimental demonstrations of the bifurcation
phenomena produced by Chua’s circuit it is convenient to use
the parameters C; and R as control parameters (see diagram
of Chua’s circuit in Fig. 3). Because in previous studies the
parameters R and C; were not used as control parameters of
the system let us briefly consider the simplest bifurcations in
the parameter plane (R, C}). As the inductor has some finite
series resistance, we will consider Chua’s oscillator [8], [9],
which is Chua’s circuit with a linear resistor added in series
with the inductor. In our case, the resistance of this resistor
is small and positive.

The state equations of Chua’s oscillator are [10]

dve
€125 = G(ue, - ver) - glvcs)
Cz 1:1(t) = G(’UC] - ’1,7(72) + iL (2)
LY = —ve, — Ryir

where G=1/RR and the nonlinear function g{vc, ), which de-
fines the v—z characteristic of the nonlinear resistor Np (called
Chua’s diode [11]), is described by the piecewise-linear func-
tion

9(ve,) = Gyue, + 3(Ga — Go)llve, + Byl — v, — Byll-

The parameters of the function ¢ in the experimental setup,
which we keep fixed, are

Go =—-0.756 mS, Gy =-0.409mS, B,=105V.

The parameter values of the linear elements of Chua’s
oscillator which we keep fixed are L = 37.56 mH, Cy = 215
nF and the measured resistance of the inductor L is equal to
Ry = 30 Q.

4.1. Bifurcations of Equilibrium States in
the Parameter Plane (R, C1)

The coordinates of the equilibrium states in the phase space
of the system (1) are given by the solutions of the equations:

Glve, — 1‘)C1) = 9(ve,) =0
G(ve, —ve,) +ip =0 3
ve, + Roig, = 0.

The origin is always an equilibrium state. The number of
equilibrium states is equal to the number of solutions of

Ry B
G(RO +R — 1) ve, — g(llcl) =0. (4)

For example, in the case of when Ry = 0, G, < Gy <
0, G > 0 (such as the case considered in [6]), if R <
-1/G, or R > —1/G, then the system (1) has only one
equilibrium state Og(0, 0, 0). When —1/G, < R < —1/G,
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Fig. 4. Stability borders of the equilibrium points 0_,04+ in (R,C1)
parameter plane.

there are two additional equilibrium states 0+(v2,1., ”2‘27 i9)
and O_(—vg , —v2,, —i}) in the phase space of the system.

In the general case, the coordinates of the points Oy and
O_ are given by the expression:
(Gy—~Ga)RB,

0 _ ~ (G —G.)RB,

Ve, = 1+RGb—m@Ir ~ 1+RG»

0
0 _ _Ry .0 &)
Vo, = Rimy ey A0

0 ~ =1,0

i} = TR Ve, ¥ RV,
where the approximations are given for the case when Ry is
small relative to R. In the sequel, we will only consider the
parameter region restricted by the condition R < —1/Gy.
The eigenvalues of the linear system in the regions of the
points O and O_, which we shall call the outer regions, are
given by the characteristic equation:

LCyCap® + (C1C2 Ry + LCLG + LC3G + LC2Gy)p?
+ [(CIG + CoG + Csz)Ro + LGGy + Cl]p
+ RyGyG+ G+ Gy = 0.

Using the Routh method, one can find that the equilibrium
states O, and O_ are stable if the parameter values of the
system (2) satisfy the following condition:

[C1(C2Ry + LG) + LC2(G + Gy))
- [(ClG + CzG + Csz)RO + LGGb + Cl]
> LCng(RonG + G+ Gb) 6)

On the parameter plane this border of stability is shown

by the curve S, (see Fig. 4). The line S; on the plane

corresponds to the border where the equilibrium states O
and O_ disappear:

(G(l - R0R+O R) N _G“)'

In any physical implementation, Chua’s oscillator has a
Chua’s diode whose v-i characteristic is smooth. If we assume
that there are at most three equilibrium points, then the
equilibrium points O and O_ do not disappear suddenly
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Left-hand side of (4) for different values of R.

but approach and merge into the origin. This is shown in
Fig. 5, which plots the left hand side of (4) for different
parameter values. Therefore, the stability border S, consists
of a single curve instead of the two lines S, S5. Furthermore,
due to other parasitic components which we did not take into
account, the stability border Se¢, found in the experiment
deviates slightly from S; and S;. The curve S, corre-
sponds to the loss of stability of OL and O_ through an
Andronov-Hopf bifurcation.® In the model (2) S corresponds
to an Andronov—Hopf-like bifurcation as well and S indicates
the birth of an unstable equilibrium point and a stable limit
cycle due to boundary effects of the piecewise-linear function
9(z).

Due to the odd-symmetry of the nonlinearity of Chua’s
diode Ng the model of Chua’s circuit is invariant with
the state variable transformation Ts: (ve,, ve,, i) —
(—ve,, —ve,, —ir). As a result of this symmetry every
nonsymmetric (with respect to the origin) limit set in the
phase space of the circuit coexists with a similar limit set
obtained from the first one by means of the transformation
Ts. In order to distinguish between these nonsymmetric limit
sets we will use the subscript “—” and “+”. For example O_,
O4 will denote the two equilibrium points, Py and P_ denote
two limit cycles and CA, and C'A_ denote any two chaotic
attractors which are symmetric with respect to each other.
With the exception of O, the symbols for the symmetric limit
sets will not contain such subscripts.

3 An Andronov—Hopf bifurcation says that an equilibrium point gives birth
to a periodic solution when a pair of complex eigenvalues of the linearized
system crosses the imaginary axis nontangentially as some parameter is varied.
In the literature, the Andronov-Hopf bifurcation is proved for sufficiently
smooth systems.

We will now show the results of our experimental study of
bifurcation phenomena occurring in Chua’s circuit.

4.2. Experimental Setup

In our experiments we synthesize the Chua’s diode Ng
using the approach described in [11].

The setup for generating the Poincaré cross section and the
1-D map is shown in Fig. 6(a). The Poincaré cross section
circuit finds when the state crosses the Poincaré plane and
records a projection of the state. In our case, the projection
is just v, (t). This projection is then used by the 1-D map
circuit to generate the 1-D map, by recording the projections
of subsequent crossings of the trajectory through the Poincaré
plane.

The setup for generating the bifurcation diagrams is shown
in Fig. 6(b). A sawtooth waveform is used to control a
voltage-controlled capacitor in order to periodically sweep
the parameter space. This waveform is also used for tracking
control in the oscilloscope. For more details on these circuits,
the reader is referred to the Appendix.

The setup for generating pictures of homoclinic and hete-
roclinic orbits is shown in Fig. 6(c). A periodic pulse is used
to periodically set the initial state near the origin by short-
circuiting the active Chua’s diode Ng (making the origin in
the resulting system asymptotically stable) via a relay.

In Fig. 7, we show how the 1-D map is generated experi-
mentally. In Fig. 7(a), Us = U, denotes the Poincaré plane
which is parallel to the 73 axis. The numbers 1 to 3 shows
three trajectories originating from the points y* to 3> on the
Poincaré plane respectively. These trajectories intersect the
Poincaré plane again at the points z! to z3. The projection
of these points on the ve, axis (ie., y' is projected to z!,
etc.) will be used in the 1-D map, whose graph is shown in
Fig. 7(b).

We note in Fig. 7(a) that the projection is not one-to-one.
Two points in the Poincaré cross section are projected onto the
same point. Thus the Poincaré cross section is not completely
flat. This is what is meant by the 1-D map being only an
approximation for the 2-D map. We also note that the 1-D
map in Fig. 7(b) is not invertible, because it is not one-
to-one. For 1-D maps, not being one-to-one is an important
ingredient for generating chaotic and bifurcation behaviors, as
it generally implies stretching of the phase space by the map.
This is especially true for continuous 1-D maps, as injective
continuous 1-D maps are necessarily monotone and thus does
not have much interesting dynamics. As Chua’s circuit has
a piecewise-linear vector field, we have global uniqueness
and existence of trajectories. Therefore, the Poincaré map as
defined is one-to-one. Thus in order for the 1-D map obtained
not to be one-to-one, the projection should not be one-to-one as
well. This give some justification why the projection “should”
not be one-to-one.

4.3. Period-Doubling Route to Chaos

In Fig. 8, we show our results of the experimental study
in the two-parameter plane (R, C1p). It has been shown in a
number of papers (see, for example, [6]) that a period-doubling
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Fig. 6. Schematic diagram of experimental setup: (a) Setup for analyzing
Poincaré cross section on oscilloscope 1 and 1-D map on oscilloscpe 2 of
the attractors; (b) setup for generating bifurcation diagrams on oscilloscpe
2. Oscilloscpe 1 is used to control the Poincaré cross sections; (c) setup for
generating pictures of homoclinic and heteroclinic orbits.
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n+1

Fig. 7. Construction of 1-D map through a projection of the Poincaré cross
section in the experimental study: (a) Projection of attractor from 2-D Poincaré
cross section onto 1-D line; (b) graph of 1-D map.

sequence from a pair of periodic orbits P, and P_ precede
the appearance of chaos in Chua’s circuit.

In our experimental study on the parameter plane (R, C}),
this bifurcation scenario is observed if we vary the parameters
along a curve which intersects the curves hq, hs, and hep 8
In this case, the stable limit cycles I’} and P_, appearing
through an Andronov-Hopf bifurcation from the equilibrium
states O, and O_, undergoes a period-doubling bifurcation
at the curve h;, where these limit cycles lose stability and
new stable periodic orbits 2P, and 2P_ appear that has
approximately a period twice as long. In order to distinguish
between the different periodic orbits generated by Chua’s
circuit, we use a numerical index before the symbols Py or
P_. This index shows the number of revolutions before the
periodic orbit returns to its starting point. This corresponds
to the number of intersection points with an appropriate
Poincaré cross section. For an appropriately chosen Poincaré
map there is then a correspondence between a periodic limit

6The symbol h is used to denote the border where a period-doubling
bifurcation occurs. The symbol h, denotes bifurcation points at which the
stable period-n limit cycles loses stability when one characteristic multiplier
crosses the value —1.
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cycle nP, of the continuous-time flow and a periodic point
of period n of the Poincaré map. Since the limit cycle moves
when we vary parameters, in the experiment we adjust the
Poincaré cross section to follow this motion in order to get
an appropriate Poincaré cross section. The projections of the
limit cycles P, (before the bifurcation) and 2P, (after the
bifurcation) onto a 2-D display and the corresponding first-
return maps of these periodic orbits are shown in Fig. 9(a)(b).
The parameters values denoted by a through f on the line b f in
Fig. 8(a) correspond to the attractors shown in Fig. 9(a)-(f),
respectively.

The next period-doubling bifurcation takes place when we
vary the parameters of the circuit across the curve ha. As a
result of this bifurcation the limit cycles 2P, and 2P_ lose
their stability and new stable periodic orbits 4P, and 4P_
appear (Fig. 9(c)).

Due to the influence of physical and measurement noise
only three or four consecutive bifurcations can usually be
observed in experiments before chaos emerges on the curve
her, although theoretically, an infinite number of bifurcation
occurs between h, and h... Note that the trajectory of the
chaotic attractors appearing immediately after this transition to

chaos produces a return map which has almost a 1-D structure
(Fig. 9(d)(ex)).

Varying the parameters further towards more developed
chaos shows that the experimentally obtained return map can
be well approximated by a 1-D map which is very close to the
logistic map. This means that the behavior of the trajectories
on the attractors and the bifurcations of the attractors with
respect to parameter variations in the vicinity of the curve he,
are in accordance with the Feignbaum scenario.

Fig. 10 shows an experimentally obtained bifurcation dia-
gram with the parameter C; decreasing along the line bf in
Fig. 8. From this bifurcation diagram we see that the sequence
of bifurcations is very similar to the bifurcations occurring in
the logistic map (Fig. 1).

After the appearance of chaos further parameter variation
reveals a sequence of chaotic and stable periodic regions. In
the experimental bifurcation diagram one can see a region of
stable period-3 limit cycles located between chaotic regions.
The narrow regions of the parameters corresponding to stable
periodic limit cycles surrounded by regions of chaos are called
periodic windows.

4.4 Intermittency and Periodic Windows

Let us consider the bifurcations bordering the period-3
window. The results of the experimental study of the period-3
windows in the two-parameter plane (R, C1) are presented in
Fig. 8(b). This figure is the enlargement of area A from Fig.
8(a). The attractor projections and corresponding return maps
for the parameter values taken along the line b f, which crosses
the period-3 window, are shown in Fig. 11. These attractors
are presented in the order of decreasing Ci. The points a
through e on the line bf in Fig. 8(b) are parameter values
which corresponds to the attractors shown in Fig. 11(a)-(e),
respectively.

Immediately before the appearance of a stable limit cycle
3P, an intermittent phenomenon is observed, as is shown
in Fig. 11(a). This phenomenon is a form of chaos. This
form of chaos is called intermittency because except for an
irregular appearance of short intervals of spurious bursts, the
time waveforms are virtually periodic. This can be seen in
Fig. 12, where the discrete time trajectory of the attractor
taken from the 1-D map is shown. This route to chaos, where
intermittency appears after the bifurcation, is referred to as
the intermittency route to chaos.

The curve 73 denotes the bifurcation parameters associated
with the appearance of a period-3 limit cycle.” The phase
portrait of the stable limit cycle 3P} is shown in Fig. 11(b).

The analysis of 1-D maps obtained from limit cycles and
intermittent chaotic attractors enables us to conclude that on
the curve 73 the limit cycle 3P] loses stability because one
of its characteristic multiplier crosses the value +1. This
conclusion follows from the fact that at the critical parameter
value, two points (an even number) of this cycle lie on the
decreasing part of the return function; see Fig. 11. As a result,

"The symbol 7 is used to denote bifurcation points where a tangent
bifurcation takes place.
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Fig. 9. Attractors in period-doubling route to choas. The Poincaré cross section is shown by bright points on the oscilloscope screen along with the
trajectory (left picture). The corresponding 1-D map is shown in the right picture.

we can say that the above intermittent behavior corresponds
to an intermittency of type 1 [12].

When the parameters of the system approach the curve
73 (see Fig. 8(b)) the appearance of irregular bursts in the
waveform becomes less frequent. It follows from the theory
of intermittency (see, for example, [12]), that for the type
of intermittency considered above, the average time between
bursts grows proportionally to (& — )~ 1/2, where ag is
the critical parameter value when the oscillations cease to be
periodic. In our case the values of the control parameters Ror
C, can be considered as the parameter v, and the parameter
values taken on the curve 73 as ;.

On the border 73 the stable limit cycle 3P§ merges with
an unstable limit cycle 3P} and disappears. This means that a
tangent bifurcation has taken place on the curve 73 and at least
four periodic limit cycles 3P§, 3P¢, 3P, and 3P coexist in
the phase space of Chua’s circuit when the parameter values
are chosen inside the period-3 window. The occurrence of a
tangent bifurcation is shown in Fig. 13(a), where a map is
shown for three different parameter values. The stable and
unstable fixed points are denoted by s and u respectively. As
the parameter is varied, the stable and unstable fixed points
merge and disappear as the characteristic multipliers approach
1. In Fig. 13(b) we show the third iterate (f®)) of a computer-
generated 1-D map from Chua’s oscillator right after 3Py
has merged with 3P} and disappeared. As can be seen from
the figure, a tangent bifurcation has indeed taken place. This
mechanism also occurs in the period-3 window of the logistic
map.

Fig. 10. Experimentally obtained bifurcation diagram. The horizontal axis is
the parameter 'y =21.6 nF down to ('} =20.4 nF. The vertical axis is ve, .
The resistance of R is 1543 2.

Detailed analysis of the 1-D map shows that when the
parameter values changes from the border 73 down to the
border ks, the lowest point of the limit cycle moves through
the minimum of the 1-D map and enters the interval where
this map has a positive slope. After that only one point (odd
number) of the limit cycle is located on the decreasing part of
the map. This means that the characteristic multiplier of the
limit cycle becomes negative. When the limit cycle loses its
stability on the border hg, the characteristic multiplier stays
negative and goes through the value —1. As a result of this
the period-doubting bifurcation gives birth to a stable limit
cycle 6P,. Then a sequence of period-doubting bifurcations
leads to the appearance of the 3-band chaotic attractor CA+
shown in Fig. 11(c).
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(b)

Fig. 11. Phase portraits of attractors generated by Chua’s oscillator in the
vicinity of period-3 window: (a) and (b).

@

(®
(Continuved): (c)—(e).

Fig. 11.

Further evolution of chaos by parameter variation results in
a crisis phenomenon which leads to the sudden extension of
the three-band chaotic attractor C A, (Fig. 11(c) and (d)), in
the sense that the trajectory which was confined to 3 disjoint
regions suddenly occupies a large area of phase space. This
phenomenon is explained by the collision of the 3-band chaotic
attractor C A4 with the unstable limit cycle 3P{. This collision
is the result of complicated phenomena caused by interactions
between the stable and the unstable manifolds of the limit cycle
3P¢ (13]. In the intermittency scenario considered earlier, the
trajectory becomes intermittently periodic and chaotic (Fig.

Fig. 12. One-dimensional map iterates versus time corresponding to Fig.
11{a). We see long periods of period-3 behavior interrupted by irregular

chaotic bursts.
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Fig. 13. (a) Occurence of tangent bifurcation. The stable fixed point s and
the unstable fixed point v merges and disappears as a parameter is varied;
(b) computer-generated third iterate of 1-D map from Chua’s oscillator after
period-3 points have disappeared.

12). In the case here, after the collision, the trajectory is
intermittent in the region where the 3-band chaotic attractor
used to be, and in a much larger region of phase space,
moving chaotically in each region. This is called chaos—chaos
type intermitiency. In Fig. 14(a), we show the discrete-time
trajectory of the 1-D map of the 3-band chaotic attractor C A4
before the collision. In Fig. 14(b), we observe intermittency
after the collision, where the trajectory stays in the 3-band
region most of the time, but sometimes leaves this region. In
Fig. 14(c), the parameter is further varied and the attractor fills
up a larger region of the phase space. Again, this phenomena
occurs in the period-3 window of the logistic map as well.
We have considered the bifurcations on the borders of the
period-3 window obtained by varying the parameter C; along
the line bf. In the parameter range considered, the function of
the 1-D map model has a simple shape with a single extremum
(Fig. 11(e)). This function can be approximated by a quadratic
function and, as a result, the dynamics of the system in the
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Fig. 14. One-dimensional map iterates versus time of attractors shown in
Fig. 11(c)~(e): (a) Three-band attractor C' A1 before collision with unstable
periodic limit cycle (Fig. 11(c)); (b) intermittency occuring after collision (Fig.
11(d)); (c) 1-D map iterates fill up large area of phase space (Fig. 11(e)).
Trajectory is not confined to the a-band region.

vicinity of the window can be understood with a one-parameter
study. However, when we consider the dynamics in a larger
region of the parameter space, we find that the function of
the 1-D map becomes more complicated. In particular, new
extrema of the function appears which plays a role in the
behavior of the attractors (see Fig. 15(a)). Due to this fact,
a two-parameter study is required in order to understand the
bifurcation scenario.

Consider Fig. 8(b). We can see that the region of stability
of 3P, and 3/°_ has four long and narrow branches. Two of
these branches overlap starting from the point o 1. The point al
corresponds to a bifurcation of codimension 2. This bifurcation
gives rise to a tangent bifurcation of codimension 1, which are
indicated by the curves 4. These tangent bifurcations lead to
the appearance of pairs of additional limit cycles of period 3:
3P{, 3P, 3P}, and 3P". Hence the region of the parameters
located in the polygon between 74§ and hy corresponds to
the case where there are at least eight period-3 limit cycles
coexisting in the phase space of the system.

The experimental results presented here demonstrate com-
mon features of periodic windows in dynamical systems
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(a) (b

Fig. 15.  Phase portraits, the corresponding 1-D maps, and detailed views of
the 1-D maps near discontinuity for C'44 and C'A. The parameter values are
denoted in Fig. 8(b): (a) Point a2 in Fig. 8(b); (b) point b2 in Fig. 8(b).

described by 1-D maps with more than one extrema. The
theoretical background of these results can be found in [14],
[15].

4.5. 1-D Maps of the Double Scroll Chua’s Attractor

To further explore the intrinsic properties of 1-D maps
generated by Chua’s circuit let us consider the evolutions
of the attractors and the corresponding 1-D maps when the
parameter C is in the region of the double scroll Chua’s
attractor. The results of this experiment are presented in Fig.
15.

The main difference between the 1-D maps generated by the
chaotic attractor C A and the double scroll Chua’s attractor
CA is that the 1-D maps of C'A has a discontinuity which
splits the return-map function into two parts. The discontinuity
of the 1-D map results from the behavior of the trajectories in
the neighborhood of the saddle-focus Oy which is located at
the origin of the phase space. Let a be the point where the 1-
D return map has a discontinuity. The trajectories originating
from the Poincaré section of the double-scroll Chua’s attractor
C'A are separated by the 2-D stable manifold of the saddle-
focus Oy into two parts: part A where X > « and part B
where X' < a (Fig. 16). The point a itself lies on the stable
manifold of the origin and its trajectory will not intersect the
Poincaré plane again. Starting from a point on the Poincaré
plane corresponding to part A, the behavior of the trajectories
until the next intersection point in part A of CA is similar



716 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBER 1993

B xn A
(b)
Fig. 16. Construction of 1-D map in double-scroll Chua’s attractor region:
(a) 2-D stable manifold of Og(W5') separates the trajectories of the attractor

into two parts with qualitatively different behavior. 1-D unstable manifold of
(o is denoted W[; (b) graph of constructed 1-D map.

®)
Fig. 17. Examples of the double-scroll Chua’s attractor and the correspond-
ing 1-D maps measured from experiments: (a) C'1= 16 nF, r= 1.59 k€2; (b)

Cy= 16 oF, r= 1.54 k2.

to the trajectories of C A . However, the trajectories starting
from part B can have a rather complicated behavior in the left
part of the phase space, before they intersect the Poincaré plane
again. This behavior give rise to the complicated oscillatory
structure of the 1-D map in the domain X < «a (see Figs. 16(b)
and 17(a), (b)). The complex shape in part B is very sensitive
to parameter changes in comparison with the shape of part A.

As mentioned before, we obtained a 1-D map from the
2-D Poincaré map through a projection. For the projection
we chose, the trajectories of the attractors which go from
the Poincaré cross-section to the stationary state Op map
approximately into the single point a. This enable us to
consider the point a in the 1-D map model as the image
of the 2-D stable manifold of the saddle-focus Op. Due to
physical noise in the experimental set-up, the trajectories on
the manifold can not stay on the stable manifold of the saddle-
focus Oy and they will move along the 1-D unstable manifold
of Oy either to right or to left. If the trajectory goes to the
right, then the next intersection with the Poincaré section
will give us the point f(a), which is the image of the 1-
D unstable manifold W7* intersecting the Poincaré plane. As
we know which trajectories of the 1-D map correspond to the
manifolds of Op, we can study the bifurcations connected with
the manifolds directly from the 1-D map. Such bifurcations
give rise to homoclinic orbits® associated with the saddle-focus
Oq.

In the 3-D phase space of Chua’s circuit these homoclinic
orbits are the trajectories which converge to Op along W' as
t — —o0, and which converge to Og along W3 as t — oc.
From the point of view of the 1-D map model, the homoclinic
orbit is the closed orbit which contains the point a. For
example the image of the homoclinic orbit H,’ in the 1-D
map is the trajectory which satisfy the following conditions:
a= f™(a), f9(a) > a where j =1, --,(n—1). Examples
of 1-D maps which satisfy these conditions are shown in Fig.
18(a), (b) for the cases n = 1 and n = 2, respectively.

Another bifurcation connected with the manifolds of Op
is the crisis phenomenon [16]. As the result of the crisis,
the twin chaotic attractors C A, and CA_ merge together
(C A, is shown in Fig. 15(a)), thereby giving birth to the odd-
symmetric attractor C A shown in Fig. 15(b). In the R, C;
parameter plane the bifurcation curve of the crisis is denoted
by le.. see Fig. 8(a), (b). When the parameters of the circuit
lies on the bifurcation curve [, the trajectory belonging to
the attractor C A and originating from the minimum point on
the 1-D map, is mapped into the point a, ie., a = f(Xm).
where X, = minxeca, {f(X)}.

A detailed analysis of the 1-D map and the topological
properties of the trajectories in the phase space enables one
to make the following conclusions. Before the crisis, a <
Xomin = minys.{f(X)}, thus if X € A, then the trajectory
of X via the 1-D map f remains in A. This means that the 2-D
stable manifold W3$ of Oy separates the basins of attractions
of CAy and CA_. In this case, any trajectory from one side
of the stable manifold can never go to the other side. Observe
that in the 1-D map model the entire stable manifold W35 is
mapped into point a. After the crisis, the trajectories of the
symmetric attractor C'A can go from one side of W3 to the

8 A homoclinic (heteroclinic) orbit is the orbit, both forward and backward,
of a point whose forward time and backward time trajectory both converge
to the same equilibrium point (different equilibrium points). In other words, a
homoclinic (heteroclinic) orbit lies on the intersection of stable and unstable
manifolds of equilibrium points. Typically, when we talk about homoclinic or
heteroclinic orbits the associated equilibrium points are saddle points.

90n the parameter plane, the symbol H,, denotes the parameter set where
the system contains the corresponding homoclinic orbit.
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(b)

Fig. 18. Attractors and 1-D maps generated by the bifurcation parameters
at homoclinicity located on the curves H,: (a) H1: The parameter values
are shown by arrow from H, (Fig. 8(a)); (b) Hy: The parameter values are
shown by right arrow from Ho (Fig. 8(a)).

other. This implies that at least one homoclinic bifurcation
associated with the saddle-focus Oy must occur before the
crisis phenomenon where C A4 and CA_ collide. After the
crisis, @ > Xmin = Minysq{f(X)}. Thus there is a region in
A that will get mapped into B. The size of this region increases
as the parameter is further away from the crisis point. When
this region is small, it means that the trajectory will stay in A
for a time and occasionally switch to B and vice versa. In the
3-D flow, this appears as trajectories which looks like C A4
switching to trajectories which looks like C'A_ and vice versa.
This is also a form of chaos—chaos intermittency.

The analysis of the 1-D maps obtained from the experi-
mental study enables us to make the following conclusions
concerning the structure of the chaotic attractors. Because the
return-map function has many local extremum points (see Figs.
15, 17, 18), many stable limit cycles can exist in the parameter
region corresponding to C A4 and CA. Stable limit cycle
associated with multiple local extrema of a 1-D map can have
long periods and extremely complicated yet very narrow basins
of attraction. These features make them almost unobservable
in experiments and numerical simulations. Despite their local
stability any small noise will throw a periodic trajectory out of
its basin, and as a result, this trajectory will land in a domain
of complicated transient behavior. In this case the oscillations
of the circuit can remain chaotic with the simultaneous co-
existence of stable limit cycles in the attractor. These kinds of
chaotic attractors are called quasiattractors [17].

4.6. Homoclinic and Heteroclinic Orbits
Associated with the Saddle-Focus Oy

As mentioned before, the evolution of the experimentally
measured 1-D maps when a control parameter is varied shows
that there are bifurcation values where homoclinic orbits
originating from Op exist.

(c)

Fig. 19. Behavior of the trajectories located in the 1-D unstable manifold of
the saddle focus (g: (a) Parameter of the circuit is taken from the left and
right of the value on bifurcation curve H; pointed by arrow from H1 in Fig.
8(a); (b) parameter of the circuit is taken from the left and right of the left
arrow of Ho in Fig. 8(a); (c) parameter of the circuit is taken from the left
and right of the right arrow of H> in Fig. 8(a)

In order to demonstrate the structure of the bifurcation
sets corresponding to homoclinicity we show here results of
experiments where Chua’s circuit is periodically switched to
initial conditions in the neighborhood of Og. The topologically
different behaviors of trajectories emanating from 1-D unstable
manifold of Oy in the 3-D phase space are shown in Figs.
19 and 20 in the cases when the parameters of the oscillator
are taken from different sides of the bifurcation curves of
homoclinic orbits H,,.!9 These parameter values are indicated
by the arrows from H,, in the parameter diagram in Fig. 8(a).

Although we consider only a few homoclinic orbits which
are easier to study, the structure of the resulting bifurcation
sets enable us to conclude that our results are in accordance
with well-known theoretical results [18]. This structure of the
bifurcation sets is typical for the case when the bifurcation
curve H, associated with the principal homoclinic orbit has
a point in which the saddle-focus value o, = A+ A
(where A1, A + iws and Ao — two are the eigenvalues of the
equilibrium point Op) changes sign. In Fig. 8(a) the point
osf = 0 on the curve H, is estimated from experimental
study. It was found that only above this point will the stable
limit cycles P_ and P smoothly transform into a pair of
homoclinic orbits originating from Og and then to the stable

10The subscript n refers to the number of loops in the homoclinic orbit.
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() (b)

Fig. 20. Qualitatively different behavior of trajectories in Wit of saddle
focus: (a) Before and after bifurcations H3. The parameters are taken to the
left of the left arrow from Hs, between the two arrows from H3, and to the
right of the right arrow from H3, respectively (Fig. 8(a)): (b) before and after
bifurcations H4. The parameters are taken to the left of the left arrow from
H., between the two arrows from Hy, and to the right of the right arrow
from Hy, respectively (Fig. 8(a)).

odd symmetric limit cycle P when the parameter values cross
the bifurcation curve Hj. As it follows from Shilnikov’s
theorem [19] a stable limit cycle can be spawned from the
homoclinic orbit if o5 < O.

When the parameters of the circuit are taken on the curve
H, below the point o,; = 0, the circuit generates the chaotic
attractor C A whose trajectory passes near Op. This enable us
to conclude that there exists a nontrivial hyperbolic set in the
neighborhood of the homoclinic orbit H;. Hence o,y in this
region is positive [19].

The point o,¢ = 0 on the curve H, is a bifurcation set of
codimension 2. This bifurcation is responsible for the typical
structure of the resulting bifurcation sets of codimension
1, which contains the parameter values associated with the
homoclinic orbits H,, [18], see Fig. 8(a).

The other examples of the bifurcation sets of codimension
2 found from Chua’s circuit are presented in Fig. 21. These
figures show the heteroclinic trajectory which converges to Op
as t — —oo along W}, and which converges to O as ¢ — o0
along the 1-D stable manifold of O_. Due to the symmetry
of the system, there exist a similar trajectory from Og to O
as well.

Taking into account the fact that saddle-foci Op and O_
have 2-D stable and unstable manifolds, respectively, it is
possible that there exists a heteroclinic trajectory which goes

(b)

©

Fig. 21. Behavior of W{* of the saddle focus Op when the parameters of
the circuit are taken in the vicinity of heteroclinic orbits from Og to O_: ()
Ci= 128 nF, R= 1.95 k{; (b) C1= 15.72 nF, R=1.78 k§2; (c) C1=17.2
nF, R= 1.739 k.

from O_ to Op and located on the intersection of these
manifolds, which persists under perturbations, as it is a bi-
furcation of codimension 0. If this is the case, then at the
bifurcation parameter values there can exist heteroclinic loops
which connect the equilibrium points of saddle type Op —
O_ — Op. These heteroclinic loops exist when the control
parameters are taken from the bifurcation sets of codimension
2.

It is known that these bifurcation sets give rise to bifurcation
sets of codimension 1 where the system has homoclinic orbits
either from Og or O_ [20]. In this case the bifurcation sets of
the homoclinicity are located on logarithmic spirals originating
from the bifurcation points of the heteroclinic loops [21], [22].

V. NUMERICAL AND THEORETICAL WORK
ON 1-D Map FrRoM CHUA’S CIRCUIT

In this section, we give a brief summary of some recent
work to construct and analyze 1-D maps from Chua’s circuit
numerically and theoretically. These results can be useful in
confirming experimentally obtained results.
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5.1. Calculating 1-D Map from Differential Equations

In the case of the period-doubling scenario to chaos, the
two equilibrium states in the outer regions have a 1-D stable
manifold and a 2-D unstable manifold. The stable eigenvalue
is relatively large resulting in the trajectories being contracted
onto the 2-D eigenplane of the unstable eigenvalues and the
attractors tend to be “flat” in the outer regions, as was observed
in experiments. For a suitable intersection plane in the outer
region, the Poincaré map lives on a thin strip in the intersection
plane. We can then approximate this by collapsing the map
onto a 1-D line, resulting in a 1-D map. The approximate 1-D
map in [23], [6] is obtained in this way. In general systems,
finding the intersection of the trajectory with the Poincaré
plane involves integrating the trajectory in small time steps
until the trajectory is near the Poincaré plane, at which point
an iterative scheme is used to find the intersection point [2].
In Chua’s circuit, the vector field is piecewise linear and
we can find an explicit formula for the trajectory in each
linear region. However, finding the intersection of a trajectory
with a Poincaré map still requires finding the solutions of
transcendental equations. In {23], by choosing an appropriate
1-D line, the method used to compute the 1-D map does
not require solving transcendental equations. Although this
map is approximate, it has been useful in finding both stable
and unstable periodic limit cycles, homoclinic and heteroclinic
orbits and analyzing transitions to chaos.

5.2. Chua Maps and Chua Equations

The 1-D maps discussed above are obtained by making
some simplifying assumptions on the 2-D Poincaré map.

By simplifying the dynamics of Chua’s circuit, a class of
1-D maps can also be found which is similar to the 1-D map
discussed earlier. For example, in [24], Brown starts with the
vector field of Chua’s circuit and shrinking the width of the
middle region. When the middle region has zero width, a 2-
region piecewise-linear vector field is obtained.!! Since the
vector field is odd-symmetric, the phase space is “folded”
in half by associating the points z and —z. Then the stable
eigenvalue is increased to infinity, flattening all the dynamics
to the unstable eigenplane. This 2-D system then gives rise
to 1-D Poincaré maps, called Chua maps in [24], at z = 0.
The map has the form TF where F is the reflection map with
respect to a point on the eigenplane and T' is a map which
takes a point z as initial condition and follow the trajectory of
the 2-D system until it hits the line z=0 using the intersection
point as T'(z).

In [25], a subset of these maps is studied in more detail and
it was found that for certain parameter ranges, the Chua maps
are unimodal with negative Schwarzian derivatives such as the
logistic map. This implies that the dynamics will be similar
to the logistic map.

5.3. Two-Parameter Renormalization Group Analysis

A renormalization group analysis was used by Feigenbaum
[26] to explain the universal period-doubling scenario in

11 Although the vector field is then discontinuous at the plane z = 0, this
can be approximated as closely as needed by a C'*° vector field.
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Fig. 22. Circuit schematic of Poincaré cross-sectoin circuit.

the logistic map which is parameterized by one parameter.
As mentioned before, a two-parameter analysis is required
to understand the bifurcations in a map with more than
one extrema. In [15] the 1-D map, which in the region of
interest is bimodal, is studied when parameterized by two
parameters. The critical points of doubly superstable period-
2™ cycles'? that form bifurcation points of codimension 2 are
found, and a two-parameter renormalization group analysis
is performed, which results in universal properties describing
the self-similarity of bifurcation curves in the two-parameter
plane. Our experimentaily obtained description of the behavior
in the two-parameter plane also shows self-similarity. See [15]
and [27] for more details.

VI. CONCLUSIONS

‘We have seen how 1-D maps constructed from a continuous-
time dynamical system, but experimentally and numerically,
can provide much insight to the bifurcations occurring in the
system. It can provide information about unstable periodic
orbits and other unstable phenomena which a simple phase
portrait analysis cannot provide. This technique of constructing
1-D maps from the trajectories can be applied to many other
systems which are strongly dissipative.

APPENDIX
IMPLEMENTATION OF THE POINCARE MAP
CIRCUIT AND THE 1-D Map CIRCUIT

In this Appendix, we show the implementation details of the
Poincaré map circuit and the 1-D map circuits shown in Fig. 6.

The circuit diagram of the Poincaré map circuit is shown
in Fig. 22, and the circuit diagram of the 1-D map circuit is
shown in Fig. 23.

12 A superstable cycle is a cycle whose characteristic multiplier is smallest

in absolute value, i.e., 0. Thus a superstable cycle must include an extremum
in its orbit. A doubly superstable cycle has two extrema in its orbit.
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Fig. 23.

Circuit schematic of |-D map circuit.

In order to get the Poincaré cross-section of the attractors we
use the adjustable plane in the phase space (vey s Ve, BL)s See
Fig. 7(a). The equation of the plane we use has the following
form:

a1v0, + avc, = Ug. 7

From the Chua’s circuit, the voltage Uz (t) = aive, (1) +
aaug, (t) is calculated in the Poincaré cross-section circuit by
the summing subcircuit. If the voltage Us(t) increases and
crosses the value Uy at ¢,, where

dUs(t)
dt
then the comparator subcircuit will output a rising edge. This
is then used to generate a narrow pulse d at t,. After a very
small time delay 7 the circuit generates the second pulse d,.
We choose 7 small enough so that the state of Chua’s circuit
remains almost constant during this time interval.

The pulse d- is used to “record” the points of the trajectory
(vg, (t), ve, (t)) which is located on the plane (7). To show
these points on the projections of the attractors we use the
pulse d, to modulate the brightness of the beam in oscilloscope
1. This causes the points of the trajectories which are located
in the intersection with the plane to appear as bright points
against the rest of the trajectories.

If the parameters of the plane (a1, a2, and U,) correspond
to a transversal intersections of the plane with any trajectory
of the attractor, then the plane can be used as a Poincaré
plane. In the experiments we check the condition of transversal
intersection by varying the parameters of the plane slightly.
If all points of the attractor on the Poincaré cross section
persist under small parameter variations then the plane has
a transversal intersection with the trajectories of the attractor.

Fig. 23 shows two sample-and-hold circuits which are
cascaded in series. The pulse d is used by the 1-D map circuit
to load the value from the first sample-and-hold circuit onto
a second sample-and-hold circuit. The pulse d, is then used
to load a new value of ve, into the first sample-and-hold
circuit. The value stored in the two sample-and-hold circuits
corresponds to # and f(x) where f is the 1-D map.

lt=tn >0
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