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Abstract

Chua's circuit i3 a third order electrical circuit
resented in Fig.1a, where the nonlinsar resistor R2 is
described by a cubic characteristic. The circuit can
also be presented by athird order limear iink L{s)

with acubical nonlinear feedback f(y) {1.2], Fig.1.b.

Figure la: Electrical scheme of a Chua's circuit
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Figure 1b:Circuit bluck - dingram

It is known [1,2] that the following

behaviors are possible in such circuit:

- stable periodic oscillations with non zero bias
(short period);

- stable points of equilibrium;

- unsiable motions;

autonomous

- stable periodic oscillations with zero bias (long
period);
- limited complex motion (chaos).

Usually analysis of such systems involves  the
determination of regions on parametrical  plane
(parameters of the linear link) corresponding to the
above  behaviors of different kinds of
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bifurcations. There are many research methods for
studing such nonlinear circuits. A technique
for analyzing Chua's circuit was presented in [1.2].
This method involves:
1.Determination of posaible behaviors by the harmonic
balance method and estimation of their stability,
2.Rough estimation of possible distortions for
determined regimes.
In [1,2] some conditions were formutated for determining
of possible bifurcations depending on the values of these
distortions. In some cases the values of distortions can
be determined using simplest physical considerations.
Control design in this case can be reduced to the
construction of feedback controfler that makes
the distortions of desirable behavior bounded.
An exact method for estimating of distortions was
“presented in [3]. Application of this method to a system
with acubical nonlinearity is given below.

1. An application of the integral equations method

1.1 Determination of possible behaviors

Suppose that the Galerkin's method gives the
following periodical behavior

N N
yr(t) = a0 +‘. ak sin(kort) + Z bk cos(kert) , (1)
k=2
where Vr(t) sausﬁcs the integral equation [34}:
Tr

ve(t) = {) or(t-1) flyr()} dr ()

and N

@r(1-1) = 1/Tr I Lkior) exp(kior(i-t.(3)
Equaticn (2) can be presented as the following
system of equations:
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Tr
a0 = 1Tr L) | fived)] dt |

0

@

Tr
ax=2/Tr J. [Pk coskmt)+Qu sin(kot)] fly(s)] dt,
0

r

bk=2/T .—I {Px sin(ko1)—Qx cos(kot)] flv(r)] dr,

and Px = Re L(kior), Q= Im L(kior).

It is assumed, that the phass of the first harmonic

of autonomous periodic behavior equals zero.

Thence , the frequence of oscillation @r = In/Tr
is determined by equation
Tr
= q(T9 = 2T+ | 2eor ) flyr@) dr =0, (9
e

where  &s(wr,7)=P(®) sin(ot) - Q(w) cos(wt).
With account for (5), integral equation for periodic
behavior (2) may bz rewritten in the form

Tr

ye() = | @urt-) fy@)] e ©
where Q

@ur(i—1) = gr(t—1) ~ 2/Tr &slw,7) sinfwt) . (7)
Solving of the equations (5,6) allows to determine
approximately periodic behavior with zero phase.

1.2 Estimation of the distortions
The exact expression for the periodical behavior
has form T
v = [ it-o) iy as
9
or taking in account that phase of the first harmonic
equals zero T
yo = | et el ,
b
Pi{1-T)=@(t—1)-2/T &:(w,t) sin(wt) ,

(8

)
(10)
¢ (-1)=1T I L{ kio(t-t)explkin(t-1))

and

bx—q—-;./Tf Es(o, vy fly(t)} dz = {1

Let w(1)= yr(t) + 2(1) , where z() is a distortion .
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Thence the integral equation (9) can be rewritten

yr@)+ 2(t) ={ Pt-Dflyr @+ 2@l dr . (12)

For n cubical nonlinearity f[y] we have

z(t)—fwlm-:)syrl (r)z(r)dt+!q>l(t—'c)3y(r)z~ (xdv+
0 T 1]
+let-v 28 (e + y®,

o]
where T

w®= folit-0 y? @ de - y®.  (19)
Q

(13)

y¥(1) can be determined by analitical way with
using (10) and the analitical form for @(t—1) [3,4].
In the case when L(s) = b(3)/d(s) and equation d(5)=0
have n simple roots Sk, analitical form for @{t—1)

appears asn
[T b{sk)id (sx) expGr(t-T)V(1-exp(skT),
P(t-7)=4 n 0<ti<T,
LT b(s)/d () exp(sult-T+T))/(1-expGeT),
k=1
T <tt<0. (15
In many cases equation (13) can be solved by

ﬁmple iteration. Also, we can use Fredgolm s apparate
(resolvent method) . In this case expresmon {13) can
be rewritten as {3,d]

T T
z(t)=! l¢t, 1) 3yc(x)2? (t‘;dt+j 1(t,7)2° (3)d=+ yo(£).(16)
0 ¢
Lincar part equation (13) respectly Z was excluden in 16,
that provide ssuccesful decision the equation by simple
itsrations or estimation z(t) with majorant equation
method [3,4]. The function 1(t,3) connected with resolvent
r(t.7) of the kerner k(t,0=pl(1-t) 3y(t) by the relation
r(1,0)=1(1,7) 3y:2 (&) =1(t,7) flyr(z)) 17
Hence, It,7) can be found solving of the equation [3]
l(l,‘:):jo T el (t-v)3yr1 M) I(v,?) dv + ¢1(1,7).(18)
Below we use the majorant equation method for
estimating the error of Galerkin's method (distortion).

1:3 Majorant equations method
Assume that for Tr € T1,T2 there exists yr(l) such that
| yr(t) l < const
and for the kernel equation (14) the function l(t,1) is
determined. Then, we costruct the values



u = max |zw],
t

max | yv (t) ‘ . (19)
t T

h: = max |1(t,t) 3y(2) | de
t orT

maxf f1¢,7) 1z .
t o

Then from (13) with account for (19} we can obtain
the following majorant equation [3,4)

ho

h3

u= ho+hau? +hsu? 0)

This majorant equation depends on a parameter T.
Suppose that for Te[Ti. T2} there exists a majorant
equation with the least pozitive root u*(T).
As was shown in 3] the following conditions:

aT) q(T) <0 73}

are salsfied and

fa(Ty !> 4= LErTYN uwx(T),i=1,2, @2
where N -constant such that the inequality
It 2 -fy) | < Nz holds.  (23)

then the exist error or distortion of Galerkin's
method satisfies the estimate

Ly -y, D | <max v*M) =5 . 24
2. Analysis of complex periodical behaviors

Consider a Chua's circuit  with the linear part
24as+ab
as~ras+a
Le =3 3 (25)
s +(l+a)s“+bs+ab

and the cubical nonlinearity

=3 y- g5 ¥ el
The periodical  behaviors were  described
approximately by bias and first harmonic
ye(1) = a¢ + ai sinert) 7
and wers estimated by

8 =max uw*(T)

T € [TL.TY)
The received results were verifie by simulation of
differential equations  according to the

sysiem under consideration:

yi' =y2 (28)

12a
y3' = - (15 +°5 yys-
8§ 12
~(b-Fa+tg; ay)y-
24 1 4
~('6—§ ay22—7 ab)y:-—‘g:;abyx3

The results of the estimation of Z(1) for different kinds
of behaviors arc shown in Table |

Table 1
N 1 2 3 4 5
a (] 2 4 o 2
b 12 .3 5 7 {
ao 1.5 1,5 1,2 0 0
al 0,11 0 036 1,81 521
Tr 4,45 - 51 15,38 123
& | 0,002 0,0001 0,124 273 0,18

In Tablel the following notation is used:
! - harmonical oscillations with non-zero bias and low
distortions;
2 - a point of equilibrium;
3 - ogcillations with non-zero bias and high distortions;
4 - chaos m otion with zero bias and very high distortions
$ — harmonical vscillations with zero bias and low distort.

The forms of oscillations of yi(t) and phase diagram
on the plane (yi,y2i for cases 1,4.5 are shown in Fig 3-5
respectively.
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Fig.4
a=6, b="7, chaos motion
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The borders on  a-b plane, which separate
the regions of possible behaviors, are shown
on Fig.6.
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a=2, b=1, harmonic motion with zero bias
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The arcas bounded by curves 1,2 and 3,4 are regions

where 5 € [0.1.0.2]. The area bounded by curves 1,2
is the region of a passage from periodical
behavior with non-zero bias io chaos.
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