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Abstract

We show the numerical evidence of a case of desyn-
chronized behaviour in two mutual y-coupled Chua’s
circuits with negative conditional Lyapunov exponents
(CLE). In this case the synchronized state strongly de-
pends on the initial conditions in the two circuits ac-
cording to the shape of the basin of attraction. Cross-
ing the basin’s boundaries from synchronized to desyn-
chronized phase, the maximum CLE, even showing a
sharp transition, has always a negative value. We sug-
gest two different ways to calculate the CLE to obtain
more information about the desynchronized state.

Synchronization of chaotic systems had received a lot
of attention in the last few years, for the case of drive-
response systems, since the first pioneering works of
Fujisaka and Yamada, and Pecora and Carroll (PC)
[1, 2]. This property has been analyzed both from the
theoretical and experimental point of view, specially re-
garding simulations of numerical models associated to
different experimental situations observed in real phys-
ical chaotic systems [3, 4, 5, 6]. In the early works,
PC assumed that the synchronization of two :dentical
response systems under a common drive signal can be
numerically predicted from the sign of the conditional
Lyapunov exponents (CLE), defined as the exponents
of the response system in terms of their own variables
only. Great efforts in this field had produced the ex-
tension of this idea to response systems radically dif-
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ferent [7]. The aim of present work is to discuss a case
of desynchronization occurring when two mutual cou-
pled chaotic systems display negative CLE, proposing a
new way to obtain information on the desynchroniza-
tion by the study of the variation of the CLE. Since
the first work of Kowalski et al. {8}, it seems plausi-
ble that the PC’s ideas can be extended to this class
of systems. We believe that the synchronization condi-
tion for drive-response systems works well even for mu-
tual coupled chaotic systems. We study the dynamical
behaviour of two coupled Chua’s circuits [9] focusing
our attention on the basin of attraction, namely the
set of initial conditions whose evolution converges to
the same attractor. Their knowledge will permit the
definition of complete topological invariants as fractal
dimension and Lyapunov exponents. The choice of the
relatively simple Chua’s model is due to the possibility
to compare our theoretical results with experimentally
controlled outputs [10]. The rescaled equations of mo-
tion of the two identical y-coupled Chua's circuits are:

z =a(y—z~ f(z))
y=z-y+z-86(y—y)
= —fy—7z

P =aly -2’ - f(z')
V=2'-y++6(y-v)
é’:—ﬁy’-—'yz'

(1)

where f(z) = bz+3(a—b)(|z+1|— |z —1])is the trans-
formed functional representing the v — ¢ characteristic
of the Chua’s diode and 4 is the coupling constant. All
quantities in Egs. (1) are dimensionless. We study
the case of two identical dynamical systems mutually

C0C’97, St.Petersburg, Russia



coupled with a matrix A € R"*"*, so that

dr ,
- = f(r) — A(r —1")
= )+ AT @)

where r,r’ € R" are the variables and f is the func-
tional form of the two systems. We define Ar =r — r/
so that the equations (2} can be expressed also in term
of the difference of the corresponding variables. Let §
be the only variable parameter in the matrix A, and
R € R?" be the vector r ® Ar; with this definition the
equations (2) can be brought in the form

dR

P F(R,$). (3)
The functional form F, when the coupling is off (A;j =
0,Vi,j = 1,n), can be seen like the carthesian product
F(R) = f(r)® g(r, Ar), where g is the functional form
of Ar = g(r, Ar), namely the differential equations for
the difference variables. For calculating the Lyapunov
exponents from the equations (3) we need to integrate
the corresponding variational equations,

@ _
dt —

The matrix DF (R, §) € R?"%2"_ can be viewed as com-
posed of several blocks:

DF(R, 6)E. (4)

DF(R,6) = ( Vil -4 ) (%)

vrg VArg - 24

The upper left block is the Jacobian matrix of the first
three independent equations, while on the right is the
coupling matrix A. Down on the left there is the matrix
composed of derivatives of the difference equations in
terms of the r variables. For algebric nonlinearities up
to the third order, this block is composed by only differ-
ence variables and in the case of identical synchronized
behaviour all terms go to zero. The last block is the
Jacobian matrix of the difference equations in terms of
their own variables only. From now on, we calculate
the CLE in two different ways: _

1. Following the ideas of PC who calculated the char-
acteristic Lyapunov exponents of the differences equa-
tions in the case of drive-response systems, we used in
our evaluation of the CLE only the lower right block
Varg — 24 of the matrix (5). This point of view is an
approximation, due to the fact that the contribution of
the terms in the lower left block of the matrix (5) has
been neglected. In our case this block Vg has only one
nonlinear term different from zero, exactly the term

(Vg)11 = DF(R,8) = ~acg{f(=) = £

The approximation works well in the case of identical
synchronized behaviour, for which the neglected terms
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Figure 1: Basin of attraction for the coupled Chua’s cir-
cuits in the (Azo, Ayo) plane. The synchronous
regions are in black, while the desynchronized
ones are in blank. The initial conditions in the
first circuit are zo = 0.1, yo = 0.1 and z = 0.0,
the coupling parameter is §=3.0. The two dots
represent the values of initial conditions for the
attractors in Fig. 2

give no contribution. Working in this way we analyze
the stability of the attractor in the invariant subset
by computing the evolution of the perturbations trans-
verse to the subset Ar = 0 [11]. 2. To evaluate the
quantitative validity of the previous approximation, we
have calculated the CLE also by inciuding the V,.g
term. This can be done integrating the Egs. (4), apply-
ing the Gram-Schmidt procedure, but orthogonalizing
only the Ar variables. We think that this method gives
a better approximation for the results than the method
1. The results will be discussed later on. The numer-
ical simulations have been carried out by integrating
the Eqs. (1) whose coupling corresponds to a matrix
A in Eqs.(2) baving the only Az; = 6§ element differ-
ent from zero (y-coupling). To investigate numerically
the Egs.(1) we pose @ = 9.0, 8 = 14.8, v = 0.015,
a = —1.14 and b = ~0.72 for different values of § .
As a general result we find that the choice of the initial
conditions strongly affects the property of synchroniza-
tion. For this reason, we fix the initial conditions for
the first three equations by putting ro = (0.1,0.1,0.0),
and use the simple rule

x{) = zo+ Azxo
¥ = W+ Ay (6)
2y = zp.

The resulting basin of attraction for 6 = 3.0, is shown
in Fig. 1. Changing the value of § in the interval
[2;5], the pictures of the basin are closely similar to
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Figure 2: Upper curve: synchronized behaviour at Ayo =
0.5 in Fig. 1. Lower curve: periodic behaviour
of the desynchronized state at Ayo = 0.7. In
both cases Azg = 1.0.

this without any evident topological variation. The
black regions mark zones of perfect identical synchro-
nization between the variables of the two coupled equa-
tions, while the white one defines the set of (Azo, Ayo)
for which the Eqgs.(1) do not synchronize. In the Fig. 2
and Fig. 3 we show the z and ¢’ compositions obtained
by integrating the Eqs.(1) in two different regions of the
basins for different choices of the coupling parameter.
When the systems are synchronized the two dynamics
converge to the same manifold and the zz’ composi-
tions give a straight line. In all cases Azg = 1.0, and in
the figures are shown the Ay values that correspond
to different states. It’s also evident that the desyn-
chronization for § = 3.0 is periodic. Fig. 4 shows the
value of the maximum CLE for Azp = 1.0 and with
Ayg crossing twice the basin boundaries. In all cases
the result is that the value of the maximum CLE is
always negative, in spite of the radically different dy-
namical behaviour. The remarkable result shown in
Fig. 4 is that the value of maximum CLE calculated
with and without the off-diagonal term gives the same
result in the synchronization region Ar, as expected,
and remains in any case negative by changing numer-
ically its absolute value in the desynchronized region.

For § = 3.0, in the borders of the desynchronization
interval, the CLE oscillate between two values: the zz’
compositions of the two dynamics show two equal but
symmetric attractors. Moreover, varying the parame-
ters we find a basin of attraction with riddled shape
(Fig. 5) i.e. the sets of initial condition attracted to
different dynamics are dense one in the other [12]. Also
in this case the maximum CLE and the transverse ex-
ponents are negative [13]. Recently [14], it has been
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Figure 3: Same as in Fig. 2 but with § = 4.0. In this case
the desynchronized state is chaotic.
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Figure 4: Maximum CLE. The always negative value cor-
responds to § = 3.0 (up), § = 4.0 (down) for
Ayo crossing the basin boundaries at Azg
1.0. In all figures the circles (squares) corre-
spond to the results obtained without (with)
the off-diagonal V.g term.



Figure 5: Basin of attraction as in Fig.
the evidence of riddling for the synchroniza-

1 showing

tion. The parameter values for this case are
a =10, # =15.125, v = 0.22483, a = ~1.2507,
b= —0.67845 and 4 = 1.65.

conjectured that the negativity of the maximum CLE,
in the case of drive-response systems and unidirection-
ally coupled systems, could be related to the presence
not only of identical synchronization (IS), but also of
GS. Two systems show GS if their trajectories asymp-
totically converge not in the manifold of identical cor-
responding variables, r=r’, but in a functional relation
between the two set of variables, r=¢(r). The result,
in our case of mutually coupled systems, is that the
presence of the GS cannot be predicted by the only
knowledge of the CLE.

In this paper we have investigated the dynamical be-
haviour of the Egs.(1), representing two mutual y-
coupled Chua’s circuits, looking for the dependence of
the synchronized states from the choice of the initial
conditions, and its connections with the CLE. We ex-
tend the PC’s assumption to non drive-response sys-
tems. Also for mutually coupled systems the negativity
of CLE is only a necessary but not sufficient condition
for the synchronization. The strong dependence of the
synchronization condition from the set of initial condi-
tion forces us to study in great details the attractions
basins of the system that in some cases may have a
riddled shape. This fact, as shown in Fig.5, constitutes
a further difficulty source for a comprehensive study of
this very intriguing problem.
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