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Abstract— This paper proposed a novel nonlinear
smooth function to implement the Chua’s circuit. This
new function provides a similar smoothness as to the
cubic polynomial function, but a faster response and
a simpler circuitry can be obtained. Some bifurcation
phenomena and the chaotic attractors are observed
experimently from the practical circuit.

I. INTRODUCTION

Chua’s circuit [1], [2] has been widely used as the
experimental vehicle for chaotic and nonlinear research.
Its schematic circuit is depicted in Fig. 1.

R

N, Vp

Fig. 1. Chua’s circuit
The state equations of Chua’s circuit can be
expressed as
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where Ry denotes the small positive resistance of the
inductor; g (vg) is a piecewise-linear function realized
by Chua’s diode (Ng) and defined as

glvr) = ir
Cyom + % (G — Gy) [lvr + E| = jvr — E]]
' (2)

with constant G,, Gy and E.

This nonlinear wr—ir characteristics is an odd
symmetric function with respect to origin. Due to its
non-smoothness and non-differentiable at the turning
points, cubic polynomial function has been proposed
to substitute this piecewise-linear function [5]. In this
paper, a novel nonlinear function is proposed. This
new function provides a similar smoothness as to the
cubic polynomial function, but a faster response and a
simpler circuitry can be obtained.
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II. CHAOTIC PHENOMENON IN PROPOSED
FUNCTION

The proposed function is expressed as follows:
g(vk)Za-UR+b"U'R]U'R| (3)

where a < 0 and b > 0.

The equilibrium points can be calculated on the basis
of the DC equilibrium circuit. Fig. 2 depicts the vg—ig
characteristics of the proposed circuit and the load line.
The equilibrium points are derived at 0 and +1.5676.
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Fig. 2. vg——ir characteristic and d.c. load line with R = 206012,
Ry = 14.99Q, a=-0.5995mS and b=0.075mS/V

The eigenvalues at equilibrium points, 1.5676 or
—1.5676, are 1.25548 x 10° and —5082.94 £ 25400.17,
satisfying the Shil'nokov inequality, Appendix A [3].

The chaotic phenomenon can be observed via the
bifurcation process, which is shown in Fig. 3 with
respect to %. This bifurcation is considered to be

compatible with those obtained in [4].

ITII. CIRCUITRY REALIZATION AND
EXPERIMENTS

The electronic circuit for realizing (3) is shown in
Fig. 4. It consists of two Op-amp (AD711 and LF347),
one multiplier (AD633), one comparator (LM319) and

an analog multiplexer (74HC4052). The LM319 and
74HC4052 provide a fast solution of the absolute

function. LF347 works as a voltage follower. The
Opamp AD711kN and the resistors Ry, R3, R4 form an
equivalent negative resistance R for a (¢ < 0). When
R; = R3, R = ~R4. The Opamp AD711 is assumed to
be operated in its linear region so that a < 0 and b > 0.
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Circuit realising eqn. (3)

Fig. 4. Practical circuit diagram
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Fig. 3. Bifurcation diagram with C; = 7TnF, C2 = 78nF, L =

18.84mH, Ry = 14.99Q, a=-0.5995mS and b=0.075mS/V

The driving-current for the vr—ix characteristics of
the proposed circuit is stated as below:

in = glor) = ——vg + 5RO L el (@)
Ry RyRs 10V

where the factor 10V is an inherent scaling voltage in
the multiplier AD633.

Based on (3), we therefore have a = —R% and b =

E}%%EI‘V' These coeffients, a and b, can be adjusted
independently with different values of R4, Rs and Rg.
The scale factor 551‘%:—% is limited to 100 for a practical
application. In general, Rs > 1k and R¢ < 100kQ.
With the cubic approximation model proposed in

[5], two multipliers are required. Whereas only one
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multiplier is required by this approach as indicated in
Fig. 4. By the same token, the settling time delay is
about half of the one in [5] which also implies that
the response time at high frequency mode will be more
exact. The typical settling time of different components
used in both circuits is tabulated in Table I.

TABLE 1
SETTLING TIME OF DIFFERENT COMPONENTS

Device Settling time

AD633 2 us
74HC4052 20ns

LM319 80ns

In our experiments, the resistor R is varied with the
following components fixed:

R, = 1kQ, Ry, = R3 = 2k,

R, =169590, Ry = 3kQ, R = 7509,
01 = 7nF, Cg = 787’LF

L =1884mH

Refer to (4), the computed values of ¢ and b based
on the above components are:

a = —0.590mS, b= 0.0737mS/V (5)

Figs. 5-8 show the phase portraits in v;—uv, plane
of different modes showing the existing of limit cycles,
spiral Chua’s attractor, double scroll Chua’s attractor
in such practical circuit.



Fig. 5. Period 1 limit cycle: R = 23509, x-axis 1V/div and
y-axis 0.5V /div

Fig. 6. Period 2 limit cycle: R = 23409, x-axis 1V/div and
y-axis 0.5V/div

-

Fig. 7. Spiral: R = 2260Q, x-axis 1V/div and y-axis 0.2V /div
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Fig. 8.
0.2V/div

Double scroll: R = 2080(2, x-axis 1V/div and y-axis

IV. CONCLUSION

A novel nonlinear function with smooth nonlinearity
is proposed in this paper for the study of Chua’s
circuit. It provides as an improved version of
the cubic polynomial as far.as circuitry simplicity,
time response and cost. Both simulation runs and
experimental results have clearly demonstrated the
chaotic phenomenon obtained by the use of this
nonlinear function.
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APPENDIX A: SHIL'NOKOV THEOREM

Consider the third-order dynamical system

dx

3
7 x e R

=£(x), tewR, (A1)

where the vector field & : R — R3 is p-times
differentiable (p > 1) with a continuous derivative
(called class CP?).

The equilibrium point x. for (A.1) is a hyperbolic
saddle focus (or saddle focus) if the eigenvalues of the
3 x 3 Jacobian derivative of £ at x., are of the form

v,0tjw, 0y<0, w#0 (A.2)

where v, o, and w are real.



There are some basic terminology related with the
special orbits that lie at the heart of the Shil’nikov
approach.

o Homoclinic orbit H based at a hyperbolic saddle
focus x. is a bounded dynamical trajectory that is
doubly asymptotic to the equilibrium point.

o Heteroclinic orbit is similar to homoclinic orbit
except that there are two distinct saddle foci
being connected, one corresponding to the forward
asymptotic time limit and the other to the reverse
asymptotic time limit.

o Heteroclinic loop is formed by the union of two or
more heteroclinic orbits.

Given the third-order autonomous system in (A.1),
where £ is a C? vector field on ®%, and let x.; and
X¢2 be two distinct equilibrium points for (A.1),
if
1. Both x.; and x.» are saddle foci that satisfy the
Shil’'nikov inequality

|7i| > |0i| >0, (Z = 1a2) (A3)
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with the further constraint

cg100>0 or mye >0 (A4)

2. There is a heteroclinic loop Hy, joining X.; to X9
that is made up of two heteroclinic orbits H; (i =
1,2)

then

1. The Shil’'nikov map defined in a neighborhood
of H; possesses a countable number of Smale
horseshoes in its discrete dynamics;

2. For any sufficiently small C'-perturbation ¢ of £2,
the perturbed system

Z—’Z:g(x), teR, xeRd (A.5)
has at least a finite number of Smale horseshoes in
the discrete dynamics of the Shil’nikov map defined
near Hy,

3. Both the original (A.1) and the perturbed one

(A.5) exhibit horseshoe chaos (also known as
heteroclinic chaos)



