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Impulsive synchronization of chaotic Lur’e systems:
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Abstract

In this paper we consider impulsive control of master-
slave synchronization schemes that consist of identical
Lur’e systems. Impulsive control laws are investigated
which make use of linear full static state feedback. A
sufficient condition for global asymptotic stability is
presented which is characterized by a set of matrix in-
equalities. The method is illustrated on Chua’s circuit.
Keywords. impulsive control, synchronization, Lur’e
systems, matrix inequalities, Chua’s circuit.

1 Introduction

In [18, 19, 21, 9] methods for synchronization of nonlin-
ear systems have been proposed which make use of im-
pulsive control laws. In this way the error system of the
synchronization scheme is stabilized using small control
impulses. These methods are offering a direct method
for modulating digital information onto a chaotic car-
rier signal for spread spectrum applications [17] and has
been applied to chaotic digital code-division multiple
access (CDMA) systems in [20]. The method discussed
in [18, 19, 21, 9] is based on a theory of impulsive dif-
ferential equations described in [7]. At discrete time
instants, jumps in the system’s state are caused by a
control input. Global asymptotic stability of the er-
ror system is proven by means of a Lyapunov function
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and is characterized by a set of conditions related to
the time instants, the time intervals in between and a
coupling condition between these.

However, so far the method has been applied ad hoc
to the special cases of Chua’s circuit [18, 19] and the
Lorenz system [21]. In this paper we present a system-
atic design procedure for a class of nonlinear systems,
namely Lur’e systems. A sufficient condition for syn-
chronization with linear full static state feedback is pre-
sented which is expressed in terms of matrix inequali-
ties [1]. The feedback matrix is designed then by solv-
ing an optimization problem. Matrix inequality condi-
tions for synchronization of Lur’e systems with a con-
tinuous control signal have been proposed in [14, 15].
The impulsive control method is illustrated here on
Chua’s circuit [2, 3, 8]. Other examples of chaotic Lur’e
systems are e.g. n-scroll attractors [12] and arrays with
unidirectional or diffusive coupling between such cells
leading e.g. to double-double scroll attractors [5] and
n-double scroll hypercube attractors [13], which exhibit
hyperchaotic behaviour.

This paper is organized as follows. In Section II we
discuss the impulsive synchronization scheme. In Sec-
tion III we derive the stability condition, expressed in
terms of matrix inequalities. In Section IV the method
is illustrated on Chua’s circuit.

2 Synchronization scheme and error system

We consider the following master-slave synchronization
scheme

M: & = Az+ Bo(Cxz)
S: 2z = Az+Bo(Cz),t#T7 (1)
C Az = K(z-=z), t=m;
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which consists of master system M, slave system S
and controller C. M and C are identical Lur’e system
with state vectors z,z € R® and matrices A € R**",
B € R*¥*™ (C € R™*™. A Lur’e system is a lin-
ear dynamical system, feedback interconnected to a
static nonlinearity o(.) that satisfies a sector condi-
tion [5, 16] (here it has been represented as a recurrent
neural network with one hidden layer, activation func-
tion o(.) and n, hidden units [11]). We assume that
o(.) : R®™ — R™ is a diagonal nonlinearity with o;(.)
belonging to sector [0. k] for i = 1, ..., np.

For the impulsive control law C, a set of discrete time
instants 7; is considered where 0 < 7 < 73 < ... < 713 <
Tit1 < ... with 7, > o0 as i — o0 [7, 18, 19, 21]. At
the time instants 7;, jumps in the state variable z are

imposed
) = z(7). (2)

Given the synchronization scheme (1), the synchroniza-
tion error is defined as e = z — z. One has the error

system

where 1(Ce; z) = 0(Ce+ Cz) ~0(Cz) and Ae = Az —
Az with Az = 0 for the master system.

Az|pmr, = 2(1

A

Ae + Bn(Ce; z),
-K(z-2),

t?éTi

t:Ti

é

E: Ae

3)
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3 Stability, matrix inequalities and controller
synthesis

In order to derive a sufficient condition for global
asymptotic stability of the error system £, we take the
quadratic Lyapunov function

V(e) =eTPe, P=PT >0. (4)

According to (7, 18, 19] it is sufficient then to prove
that

V<aV, a>0, t#mw (5.1)
VIC+AQ <BV, B>0, t=m (5.2)
1<+ Acll2 < [[<ll2, t=m (5.3)
a(tig1 — ) +1log B <0 (5.4)

are satisfied together. We will express the conditions
(5.1)-(5.3) now as matrix inequalities. In the derivation
we exploit the inequalities

n(Ce)T A[n(Ce) — Ce] <0, Ve € R*. (6)

These are related to the sector condition on the nonlin-
earity n(.), which is assumed to belong to sector [0, 1].

By employing (6) in an application of the S-procedure
[1] a matrix inequality is obtained by writing

V ~aV —2n(Ce)T An(Ce) — Ce] < 0 (7)
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as a quadratic form wTYw < 0 in w = [e;7]. Imposing
this for all w yields

_ [ ATP+PA-aP PB+CTA

. T
Y=Y"=|" prp,ac —2A

<0.

(8)
In order to express the other conditions (5.2) and (5.3)
in terms of matrix inequalities, we write e + Ae = (I —
K)e such that

(I-K)TP(I-K)<gP (9)
for (5.2) and

(I-K)T(UI-K)<I (10)
for (5.3).

The controller synthesis can be formulated then as the
feasibility problem:

Find K,Q,A a8
Y <0
— T —
such that (I-K) P(I-K)<pP

I-K)T(I-K)<I
a(Tig1 ~ i) +log8 <0

(11)
with P = QT(Q, which imposes that P = PT > 0.

4 Example: Chua’s circuit
We consider master-slave synchronization of two iden-

tical Chua’s circuits. We take the following represen-
tation of Chua’s circuit for the master system M:

il = a[a:z — h(.’El)]
Lo = ) —To+ T3 (12)
.’i?g = -b T2

with nonlinear characteristic
1
h{z1) = myz1 + §(m0 -my) (|21 +¢| — |71 —¢|) (13)

and parameters a = 9, b = 14.286, my = -1/7, m;
2/7 in order to obtain the double scroll attractor [2, 3,
8] (Fig.1). The nonlinearity ¢(z1) = 3(|z1+c|—|z1—c|)
(linear characteristic with saturation) belongs to sector
[0,1]. A Lur’e representation & = Az + B¢(Cz) of
Chua’s circuit is given by

—am; a O —a(mg —my)
A= 1 -1 1]|,B= 0 ,
0 -b 0 0
C=1[100].

(14)
A feedback controller K has been designed then by
solving (11) with sequential quadratic programming



(SQP) (constr in Matlab), where the inequalities have
been programmed as hard constraints. As starting
point has been chosen: K random according to a Gaus-
sian distribution with zero mean and standard devia-
tionl,Q=1,A=10I,a =1, f = 1. We give the sim-
ulation results for a fixed time interval 7,4; — 7; = 0.1.
The simulations have been done by means of a Runge-
Kutta integration rule (ode28 in Matlab) and are shown
on Fig.2-3 for some randomly chosen initial state.

5 Conclusion

Impulsive control for master-slave synchronization of
Lur’e systems with linear full static state feedback has
been discussed. A sufficient condition for synchroniza-
tion has been derived which is characterized by a set
of matrix inequalities. This offers a systematic design
procedure by solving a nonlinear optimization problem.
The method is illustrated on Chua’s circuit.
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Figure 1: Double scroll attractor as a master Lur’e sys-
tem.
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Figure 2:

Error signals e = x — z between the master and Figure 3: Cor;t'rol sigq':zals u ig(”}i;;;lapplied t‘O ZIC slave
the slave double scroll attractors. (Top) e1(t); system. (Top) u1(t); (Middle) ux(t); (Bottom)

(Middle) es(t); (Bottom) ea(t). ug(t).
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