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Abstract—In this paper, we propose a method of robust to binary valued continuous time message signals. The syn-
nonlinear H.. master—slave synchronization for chaotic Lure chronization schemes are interpreted within the framework of

systems with applications to secure communication. The scheme : :
makes use of vector field modulation and either full static state or modern control theory by taking standard plant representations.

linear dynamic output error feedback control. The master—slave A new notion of synchroni;ation error has been introduce.d
systems are assumed to be nonidentical and channel noise is takerwhich is based on the tracking error of the scheme. The aim
into account. Binary valued continuous time message signals of the nonlinear H, synchronization scheme is to minimize
are recovered by minimizing the L,-gain from the exogenous e influence of the exogenous input on the regulated output.
input to the tracking error for the standard plant representation . . .
of the scheme. The exogenous input takes into account the The exogenous input contains the message signal and channel
message signal, channel noise and parameter mismatch. Matrix noise. The design has been based on matrix inequalities which
inequality conditions for dissipativity with finite L»-gain of the follow from conditions of dissipativity with finiteL,-gain of

standard plant form are derived based on a quadratic storage e gynchronization scheme. Dissipativity of nonlinear systems
function. The controllers are designed by solving a nonlinear .

optimization problem which takes into account both channel noise 'S ? well-known and fundamental'system theqretical concept
and parameter mismatch. The method is illustrated on Chua's Which dates back to the work of Willems and Hill and Moylan

circuit. [12], [13], [32]. A difference between the method proposed in
Index Terms—Chua’s circuit, Lur'e systems, matrix inequali-  [25], [26] and methods of nonlinear i control theory such
ties, parametric uncertainty, synchronization. as [14], [30] is that in the former a quadratic storage function

is chosen, while in the latter a general continuously differ-
entiable nonlinear storage function is employed. In this way,
matrix inequalities are obtained instead of a Hamilton—Jacobi
CURE communication [3], [11] is an important fieldinequality. The design of the controller has been achieved by
or the application of synchronization theory. The linksolying a nonlinear optimization problem based on the matrix
between absolute stability theory and synchronization of NORequalities.
linear systems has been investigated in a series of papers [7lpis previous work [25], [26] can be considered as a first
8], [24], [33], in particular for Lur'e systems and master—slavgiep toward aobustsynchronization theory. In this paper, we
synchronization schemes. From a control theoretic point gfat the problem oparameter mismatchin addition to the
view, this corresponds to the autonomous case without gfhblem of channel noise and take both into account in the
external input (or message signal). Among the methods thaftroller design (adaptive control approaches to cope with
consider a message signal in the synchronization scheme, gagymeter mismatch have been investigated, e.g., in [34]). We
basically makes a distinction between chaotic masking agficyss the case of full static state error feedback and linear
vector field modulation (see Kennedy in [3]). With respec§ynamic output error feedback. For identical master—slave

to vector field modulation, we have proposed a new methQ@siems this has been studied in [25], [26]. The class of
of nonlinear H, synchronization [25], [26] which applies ,pjinear systems considered is in Lure form [16], [31].

Many systems of common interest such as Chua’s circuit
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the chaotic slave system can be synchronized in this sepsg € IR", us € R", d € IR. The message signal is€ IR.
to a master system which behaves chaotically, shows lindit the transmitterA,, a linear transformatiodd, ¢ IR**"
cycle behavior or shows stable equilibrium behavior. Anothés applied to the state vectar. The resulting vectop is
example along this direction has been presented in [18], wheent along the channel and is corrupted by the disturbance
full state error feedback has been used to synchronize teignal or channel noise € IR™. At the receiver, full static
systems which are different (such as Chua’s circuit and tetate error feedback between the outgubf S, and p is
Lorenz attractor). In this paper, we extend the ideas from theplied with feedback matri’ € IR**". The nonidentical
autonomous case to the case where there exists an extermater—slave Lur'e systems have system matri¢gsA, €
input. From the example of Chua’'s circuit it will follow IR"*", B;, By € R"*™, andCy, C, € R"**", wheren;,
that the allowed parameter mismatch is much smaller thaarresponds to the number of hidden units (if one interprets
for the autonomous case. By using a single transmissitre Lur'e system as a class of recurrent neural networks
signal, the dynamic output feedback case leads to a simpl&8], [23], [31]). The diagonal nonlinearity(.): IR
implementation of the synchronization than the full static stalR™* is assumed to belong to sectf, k] [16], [31]. At
feedback scheme, but the latter has higher performance arttiea master system the vector field is modulated by means
better flexibility for defining keys in a cryptographical schemef the term Dd with D e R™*!. We choose message
[25], [26]. signalsr which satisfy||r||ec = sup,sq|7(¥)] < 1 and are
This paper is organized as follows. In Section II, we presehinary valued. As a typical test signal for the synchronization
master—slave synchronization schemes with full static stateheme, signals of the form signos wt) will be employed.
error feedback and linear dynamic output error feedback. When taking a chaotic Lur'e system, the norm 6f is
Section lll, we approach the synchronization problem from tteosen “small” (compared to the norm of the other terms
viewpoint of modern control theory, by deriving standard plamh the system dynamics) in order to hide the message signal
representations. We take into account parameter mismaitichthe strange attractor. Furthermore, we assume that the
between the Lur'e systems. In Section IV, we derive Theoremsaster system possesses an initial state such that it is input
for dissipativity with finite L;-gain of the synchronization to state stable for the considered class of message signals
schemes, these conditions being expressed as matrix inequake Assumption 2 in the sequel). The low pass filker
ties. In Section V, we formulate the robust nonlineag ldyn- has system matriceR € R™*"™, § ¢ R™ X, T ¢
chronization problem, based on the Theorems of Section IR*"~, U € IR. In the synchronization scheme, the original
In Section VI, we present an example on Chua’s circuit. Bothessage will be recovered from one of the components of the
static state and dynamic output feedback are applied andignalp — q.
comparison is made. Channel noise and parameter mismatch

are taken into account in the design. B. Dynamic Output Error Feedback
Consider now the master—slave synchronization scheme
Il SYNCHRONIZATION SCHEME with dynamic output error feedback and nonidentical mas-
In this section, we consider the master-slave synchr@r—slave Lur'e systems:
nization schemes with vector field modulation proposed in "= R+ Sr
[25] and [26], but with parameter mismatch between the R: {N a
systems. d=Tp+Ur
& =A1z + Bio(Ciz) + Dd
A. Full Static State Error Feedback My { —-H
p=igr
Consider the master—slave synchronization scheme with full 5= Ayz + Boo(Cyz) + Fu
static state error feedback for nonidentical master—slave Lur'e Sy { ¢ T RE T P20 2R d
systems: q=Hyz
N d=Tu+Ur ug=Mp+N(p+e—q)
& = Az + Bio(Crz) + Dd with master systemM,, slave systemSy, linear dynamic
Mi: p=Ha output feedback controllgt;, and linear filterR (Fig. 1). The
§ index d refers to thedynamicfeedback case. The subsystems
S.. {7 =Apz + By0o(Coz) + us have state vectors, » € R, p € R", p € R™, and
) g=H,=z output vectorsp, ¢ € R!, uy € R™, d € R, where

1) I,m < n. The message signal is € R ande € R’ is

a disturbance input. At the transmittgvt,, a linear trans-
with master systemM,, slave systemS,, full static state formation H; € R is applied to the state vectar. The
error feedback controllef,, and linear filterR (Fig. 1). The resulting vectorp is transmitted along the channel. At the
index s refers to thestatic feedback case. The subsystemeeceiverS,, linear dynamic output error feedback is applied
have state vectors, » € IR", u € R™ and output vectors by taking the difference betweem and ¢ as input to the

CS:uS:F(p+6_Q)



SUYKENS et al. ROBUST NONLINEAR H.. SYNCHRONIZATION 893
€ with continuous nonlinear mappings(., ., .): R™ x IR"" x
. % d a P p R+~ R" andg,(., .,.): R" xIR" x R™ — IR", one obtains
L e I
és = Hs[fs(xv H, 7‘) - gs(zv x, 6)] (4)
" q - According to the proof of Theorem 14 in [27] and [33], we
S P~ decompose this as
|
éS = HS[US(‘I'? Z? 6) +w5($7 I’L7 6)] (5)
¢ with
(@) Us(xv 2, 6) :gs(xv z, 6)_95(27 z, 6)
=(AH; ' = Fe, + Ban(CaH ey 2)
. :; o Standard Hv_diﬁTe ws(xv H, 6):fs($7 H, 7’)—95(.’13', x, 6)
- Plant - =DTp+DUr — Fe + ¢(z)
8 .
P With o(z) = (A1 — As)e + Bio(Crar) — Byo(Caz) and
() n(CaHtes; 2) = a(CaH tes + Caz) — o(Caz). According

. . 7 T -
Fig. 1. (a) Synchronization scheme with master sysfenand slave system to [25]’ we define the traCkmg ermor=d—f"c,, Whereﬁ -

S. Vector field modulation is applied t4 by means of the signal, which  [1; O; O; ---; 0] selects the first component ef. The main

is the output of the low pass filték with as input the message signalFor  mqtivation for defining this tracking error is that the sigal
M andS we consider Lur'e systems with parameter mismatch between th

e . . .
systems. The outputs g#f andS arep andg, which are linear transformations cannot converge to zero when an extemal Input I1s applled t‘?
of the state variables and =, respectively. The signa} is sent along the the master system. For the synchronization scheme, we obtain

channel and is corrupted by means of the signa&l binary valued continuous then the standard plant representation [1], [19] (Fig. 1)
time message signal is considered which is recovered by defining a tracking ! '

error for the overall system and applying a controlleto the slave system. (e A H.DT e B
We consider the cases of full static state error feedback and linear dynamic| |2 | = |2 s S I g 7(Cs,es; 2)
output feedback for this controller, leading to the scheff@s M, Ss, Cs} 12 0 R M 0 '

and {R, M4, Sa,Ca}, respectively. (b) Control theoretic interpretation
of the synchronization scheme by means of its standard plant representatio
with exogenous inputr and regulated output. The aim ofrobust nonlinear

Hso synchronizatioris to minimize the influence from the exogenous input
on the regulated output. The exogenous input contains the message signal
the disturbance signal and the parametes,, . related to the parameter
mismatch between the master—slave systems.

H,DU -H,FF H,
S 0 0

| |

V:pm‘Tﬂf}+w 0 0]

T
¢(z) ©)
.
€

e(z)

controller with system matrice§ € R™*", G € R, With state vector{, = [e,; y] and regulated output. The

M ¢ R™™, N ¢ R™, FurthermoreF ¢ IR™™ ™, The interpretation for the exogenous input will be given in
transmitted signap is corrupted by the signal The system Section IV. By definition, 0?6 had,, = H,A2H ' — 2 I,
matrices of the master—slave Lur'e systems, the nonlinearf. = H;B2, C2. = C2H . Note that the system matrices
o(.), the vector field modulation and the low-pass fil@r ©f the standard plant representation do not dependden
are the same as for the scheme (1). The same classbof C1- The influence of the parameter mismatch is contained
message signals is considered as in the state feedback dise(@).

but will be recovered from one of the components of the

signalz — z. B. Dynamic Output Error Feedback

\

Defining ¢, = = — z and denoting the state equation of

synchronization scheme (2) as

Ill. STANDARD PLANT REPRESENTATIONS

In this section, we derive standard plant representations &= falz, 1, 7r)
for the synchronization schemes (1) and (2), taking into 5 =galz, z, p, €) (7)
account the parameter mismatch between the master—slave .
P —hd(p7 z, z, 6)
systems.
with continuous nonlinear mappings(., ., . ): R® x IR"" x
A. Full Static State Error Feedback R = R" ga(-y ., ., ) R x R" ><IIR"° xR' — R™, and
Defining ¢, = p — ¢ and denoting the state equation o#d(" oo )P BT X RY X R® x BT R, one obtains
synchronization scheme (1) as eq = falx, u, 1) — galz, x, p, €). (8)
{a‘: = fslx, p, 1) 3) Like in the state feedback case, we decompose this as
z 295(27 * 6) éd = Ud(.’L', Z5 Py 6) +1Ud($, M, P, 6) (9)
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where Assumption 2:The master systemé&1, and M, are input
va(z, 2, p, €) =galx, T, p, €) — galz, z, p, €) to state stable in the sense that there exist initial stajesnd
— (A — FNHy)eq + Ban(Cacy; 2) a positive real constarff, such that
= P2

wd(xv Hy P, 6) :fd(xv H, T) _gd(-T, z, p, 6)

lz(®)ll2 < 6z, vVt e [0, 00) (14)
=DTp—FMp+ DUr — FNe + ¢(x)

with n(Caeq; z) = o(Creq + C22) — 0(Ca2) and ¢(x) as for all continuous time reference inputs which satisfy
defined in the state error feedback case. Defining the tracking|., = sup,~, |r(#)| < 1.
errorv = d—f3" ¢4, the following standard plant representation The viewpoint that we take here is pragmatic in the sense
is obtained (Fig. 1): that in practice one is not interested in employing a master
éd Ay —FNH; —FM DT] [eq system that possesses unbounded trajectories. Note that for a
o | = GH, E 0 p zero external input! the upper bound, is a measure for
[ 0 0 R L the “size” of the attractor of the chaotic master system [7].
B DU —-FN I The Lur'e systems, matrixD and initial states are chosen
2 . g . .
v 10 |[9(Coc; )+ | 0O a 0 such that the master system s_at|sf|es Assumption 2. Using
0 g 0 0 the expression fop(x) one obtaing|e(x)||2 £ Smlz|l2 V2
with Bn, = [[AA|l2 + k[|Bil2 [|Cill2 +k||Bz|l2 |C2||2 and
AA = A; — Ay. In caseC; = C, one obtaings,,, = ||AA]»
+E||AB|2 ||Cal2 where AB = By — B,. From Assumption
() 2, one has|¢(z)]|l2 < SBmb., Yz. Note that this upper
€d r bound might be conservative. On the other hand, this approach
v=[=pT 0 Tllp|+[U 0 0]| ¢ has led to useful criteria for robust synchronization of the
\ M p(x) autonomous synchronization scheme, discussed in [27]. For

. (10) the upper bound we will consider a positive constant scaling
with state vecto€, = [eq4; p; ] and regulated output. For factor

the interpretation of the exogenous input we refer again to
Section V.

4

IV. DISSIPATIVITY WITH FINITE Ls-GAIN _
In this section, we first formulate assumptions on the In order to analyze the 1/O properties of the standard plant

. . ; . epresentation of the synchronization scheme with static state
nonlinearity and the boundedness of the trajectories of t . . .
. : . eedback (6), we consider the quadratic storage function [12],
master system. An interpretation for the exogenous input

the standard plant representations is given. Then conditi ng’]’ [32]
for dissipativity with finite Ls-gain and a quadratic storage p. P
function are derived for the synchronization schemes. These  ¢(&,) =¢7 P¢, = [ NT][ - 12} [GS}

conditions are expressed as matrix inequalities. Pn P [
We make the following two assumptions. P=P">0 (16)
Assumption 1:The nonlinearityy(Csey; z) in (10) belongs

to sector|0, &]: and a supply rate with finitd.>-gain ~:

0< m(c%:_ed; z) B ai(c%:_ed + c%:.z) - ai(c%:_z)
- c%:_ed o c%:_ed

<k, Yeq, 75 izl,---,nh(c%:_ed;é()) (11)

s(w, v) = Ywlw — v a7)

with regulated output and exogenous input. As exogenous

where c%” dgnotes theith row ve_ctor of C;. The same input we takew = [r; ¢; 86, Which consists of the
assumption is made fof(Cs, ¢,; z) in (6). reference input, disturbance signals and a constant signal
The following inequalities hold [2], [16], [31]: related to the parameter mismatch between the master—slave

systems. The system (6) is said to be dissipative [12], [13],

T T T
1:(Cay. €55 2) [M:(Cay. €535 2) — kC5, €5 _
(2., ) ez, ) 2] [32] with respect to supply rate (17) and the storage func-

STO’ VGS’TZ; ' 1T’ R tion (16) if ¢ < s(w, v), Yw, v. The following Theorem
ey, ea; 2) (e, eq5 2) — ke, el holds.
<0, Veq, % t=1,--, np. (12) Theorem 1:Let A = diag {)\;} be a diagonal matrix

with \; > 0 for ¢ = 1, ---, ny. A sufficient condition for
%issipativity of the synchronization scheme with full static
state feedback (6) with respect to the storage function (16)
0< a oilp; 2) <k, Yp, % i=1, -, ny. (13) gnd the. supply rate witlho-gain-~y (17) is given by the matrix

dp inequality

It follows from the mean value theorem that for differentiabl
o(.) the sector conditiofi0, k] on n(.) corresponds to [7]
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Z = Z_T i and the supply rate with finité,-gain~ (17) and exogenous
2 Ziz Ziz Zw Zis Py H input w = [r; ¢ 36,
© Ly Zoz Zys Lo Py H Theorem 2:Let A = diag{);} be a diagonal matrix with
- Zsz O 0 0 Xi > 0 for i = 1,---,ny,. A sufficient condition for
= © Zaa O 0 <0 (18) dissipativity of the synchronization scheme with dynamic
© Zss 0 output feedback (10) with respect to the storage function (19)
v I and the supply rate wittho-gain~ (17) is given by the matrix
L T a2 inequality
with
Zi = A} Piy + PriAs, + 887 Z=z .
. Zu Ziz Ziz Zia Zis Zie Py
Ziz = A3 Pr2 + PuH, DT + Po R = T © Zoy Zyz Lo Loz L Py
Z13 =Py By, +kCj A © Zsz Zszy Zzs Zse Py
Z14 = P H,DU + Pp3S — U _ © Za ZO 8 8 <0
Z15 = - PllHSF . ZGG 0
Z22 :PngSDT—i-TTDTHZPlQ _72_[
+ PR+ RY Py +TTT L : : : : : )
Zaz =Py Bo, (20)
Zay = Py H,DU + P S +TTU with
Zas = =P Hs F
Zsg = —2A, Zy1 =(Ay — FNH)T P11 + P11 (As — FNH)
Zay = —21 + UTU, +HYGY Py + PoGHy + 867
Zos = 21, Zip =(Ay — FNHy)TPo + HYGTPyy — P FM + PioE

iy . Zy3=(Ay — FNH)"Ps + HIGT P,
Proof: The condition (15) is expressed a%,6% — 13 = (4 @) Pis+ Hy G P

oTo/a? > 0. Together with the sector condition on(11),
this condition is employed in an application of tHeprocedure
([2, p. 23]) in checking the conditioh — s < 0. This means

that positive real constants and+ are introduced such that

. T
p—s5—2 Z Aini(mi — kc%;es) +7‘</3,2n(5320 - %) <0
and by definingA = diag{\;}:

. T
¢ —s5—2n"A(n — kCa,e5) + T</372n(5£ -£ 2()0) <0.
a

Using the expression for the supply rate= v2(rZ'r + ¢X'e +
(2,62) — v and choosing = +? this condition becomes

¢ ="+ o) + v v — 20" A(n — kCa, c,)
el

< 0.
a2

Using ¢ = 7 P¢, + ¢7 P¢, and the equation of the standardz;

4 PuDT + PisR — AT
Ziy =P By + kCEA
Zis =P DU + PiaS — pU
Zg = ProG — P N
Zyy =ETPyy + Py — MTF'Piy — Py FM
Zys =ET Py3 — MYF" P13 + P DT + PR
Zay =1 By
Zios = Po1 DU + P»3S
Zog = PooG — Por I'N
Zs3 =RYPas + PysR+TY DY Pis+ Py DT+ TTT
Zzs = P51 By
Zs5 = P31 DU + P33S + TTU
Z3g = P3G — P31 FN
Zyg = —2A
=14+ UTU

plant representation (6), this can be written as the quadrag?%6 — A2

form ¢T'Z¢ < 0 with ¢ = [es; 115 m; 75 €; ). This expression

is negative for all nonzerq if Z is negative definite. [ Proof: According to the proof of Theorem 1, we use the
In order to analyze the 1/O properties of the standard plaiWequaIity/}Q 82 — Tp/a? > 0 and the inequality from the

m-x

representation of the synchronization scheme with dynamigctor condition om. By employing these inequalities in the
output feedback (10), we consider the quadratic storage fuRtprocedure, one obtains

tion
Py Pi» Pig| |eq d—rTr+fe) +vlv -2 Z Nemi (s — kel eq)
P(&a) =€ Pea=1[c] p" pT)|Pa P Pa||p i
P31 Psy Psg| [ p Yol <0
P=prP'>0 (19) o2
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Fig. 2. Robust nonlinear & synchronization of Chua’s circuit using full static state error feedbacks{a)s (-), scaled version of message signal sign
[cos (0.5)] (- -) and scaled version of recovered message signal 37 ¢.) (-.). The parameter mismatch of the master with respect to the slave system is
da11 = 0.001. (b)% e for a too large parameter mismatéh; = 0.01. The original message is not recovered in this case.

f
N

and by definingA = diag{\;}: Using ¢ = €T P¢, 4 €% P¢, and the equation of the standard
, o, T T T T representation (10) this can be written as the quadratic
¢ =7 (T e o)+t =207 Ay = kCaeq) form ¢T'Z¢ < 0, with ¢ = [eg; p; ;75 75 € @] This
_ Yol <0 expression is negative for all nonzetoif Z is negative

a2 ) definite. O
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Fig. 3. Static state error feedback (continued). (a) Transmitted signalsich are a linear transformation of the state variablesf the master system,
with p1 (), p2 (- -), p3 (-.). Applying vector field modulation, the message signal is invisible on the chaotic carrier signal. (b) Controlusigpplied
to the slave system using full static state error feedback, with(-), uo (- -), ug (-.).

V. ROBUST NONLINEAR H,, SYNCHRONIZATION

rate with finite L,-gain. The optimal nonlinear & control

In this section, we explain how to design the controllef@w corresponds to the minimal achievahlg-gain which
¢, andC, based on the matrix inequalities (18) and (20). Imakes the closed-loop system dissipative. The optimal solution
nonlinear H, control theory (see e.g., [14], [30]) a controlleris characterized by means of a Hamilton-Jacobi inequality
for a given nonlinear plant is designed by considering a suppijth respect to a general continuously differentiable nonlinear
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Fig. 4. Static state error feedback (continued). Behavior of the master and slave systems in the autonomous case, for the parameter mismaigh of Fig. 2(
and initial conditionz(0) = z(0) = [0.1; 0; 0]. (a) (z1, xz2) of the master system. (§)}-;, z2) of the slave system. (¢) — =~ with respect to time.

storage function. On the other hand, in our previous work avherec is a positive real constant. In this way, the influence
nonlinear H,, synchronization and in the present paper, wigom the exogenous input on the regulated output is minimized,
consider a quadratic storage function which leads to mattixking into account the reference input (message signal), the
inequalities. The nonlinear K synchronization problem, asdisturbance signat and the parameter mismatch. Because
defined in [25], [26], corresponds to it is well-known from control theory that perfect tracking
is impossible for all possible reference input signal, binary
min =y such that{ Z(0e, P;’ Ay, 0) <0 @y Vvalued continuous time reference inputare considered such

bor B2 P=P">0, A2 0o sogna that the message signal can be recovered from g 4)
where 6, denotes the parameter vector of the controller [25], [26]. The constraini” > 0 can be eliminated by taking
or Cy, ie., 0. = F(:) or 6, = [E(:); G(:); M(:); N(:)], the parametrizatiol® = Q*Q. The same applies td. In
respectively, where (%)” denotes a columnwise scan of apractice, one solves

matrix. In therobustnonlinear H,, synchronization problem, ] 1
min v+ ¢— such that
67

the parametery is maximized, in order to achieve maximal 0., QA v,

robustness with respect to parameter m|smatch between the Amax[Z (0, Q, A, v, )] +6 < 0 (23)
master—slave systems, as follows from (15). Using a penalty . . .
method [9] the problem can be formulated as follows: where\,,..x[. ] denotes the maximal eigenvalue of a symmetric

matrix andé a small positive constant. The constraint is dif-
min v+ cl such that{ Z(8e, fT)v A, v, @) <0 (22) ferentiable as long as the two largest eigenvalue® db not
O, DAy o P=P >0,A20 coincide. Otherwise a generalized gradient can be defined [22].
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Fig. 5. Static state error feedback (continued). Simulation of the synchronization scheme for the same case as Fig. 2(a) but with zero meaniavhite Gauss
channel noises with standard deviation 0.0001.

The optimization problem is nonconvex. However, suboptimatheme are discussed in [25], whefg, or an additional
solutions yield satisfactory results as we will show by amultilayer perceptron with square and full rank interconnection

example in the following section. matrices may be used for the definition of a secret key, used
by sender and receiver for enciphering and deciphering. We
VI. EXAMPLE: CHUA'S CIRCUIT illustrate the working of the scheme here f&r = [1; 1;
In this section, we illustrate the robust nonlineag kyn- 1l #s = I and 3 = [1; 0; 0]. For the reference model
chronization method on Chua’s circuit: R a first order Butterworth filter is chosen with cut-off

frequency 10 Hz. For robust nonlinear,Hsynchronization,

L _h
#1 =ales (1)) the nonlinear optimization problem (23) has been solved with

£y =a1 — 22 + 23 (24) . — 1,6 = 0.01. In order to limit the control energy,
I3 =—bxs an additional constrain{/6.|| < 20 has been taken into
with nonlinear characteristic account. The optimization problem has been solved using
sequential quadratic programming [9ofistrin Matlab). As
W) = mizy + 5 (mo —ma) (Jay + 1| = |21 — 1)) starting point for the optimization problem a random matffix
and parameters = 9, b = 14.286,my = -1, m; = 2 generated according to a normal distribution with zero mean
in order to obtain the double scroll attractor [4], [5] [201and variance 0.1, was chosen. Further we sefeet I, A =
The nonlinearityo(z1) = L (Ja1 + 1| — |z, — 1]) (linear 0.1, v = 100, « =1. In Figs. 2-5, a resulting controller,

characteristic with saturatlon) belongs to sector [0, 1]. Hencgrresponding toy =1.47 anda = 6.84, is shown. The
Chua’s circuit can be interpreted as a Lure system= Scheme has previously been investigated in [25] for identical
Az + Bo(Cgz) where master—slave systems. Fig. 2 shows the recovery for binary

valued continuous time reference inputs or message signals,

—amy a0 —a(mo —m) for nonidentical master-slave system. A perturbation of the
A= 1 -1 1|,B= 0 . .
0 b 0 0 elementa,; of the A matrix éa;; = 0.001 is taken for
the master system with respect to the nominal slave system
C=[1 0 0] (25)

with A = A, By, = B, Cy = C. For éa;; = 0.01

We assign the double scroll behavior to the slave system t¢ original message cannot be recovered. This illustrates a

taking A, = A, B, = B, C, = C. The parameter mismatchdifference between the synchronization scheme with reference

is considered with respect to this nominal slave system. input (1) and its autonomous case, i.e., without a message
We first consider the synchronization scheme with fulignal, considered in [27]. In the autonomous case a large

static state error feedback (1). Cryptographical aspects of th@rameter mismatch can be allowed such that the systems
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Fig. 6. Robust nonlinear d synchronization of Chua’s circuit using dynamic output feedback3{a); (-), scaled version of message signal digrs (0.5t)]
(- -) and scaled version of recovered message signal (sigre) (-.). The parameter mismatch of the master with respect to the slave system;is=
0.001. (b)37 e, for a too large parameter mismatéh;; = 0.005. The original message is not recovered in this case.

remain synchronized up to a relatively small synchronizatiam Fig. 3. Fig. 5 shows the synchronization scheme for the
error, even when a master system with periodic behavior parameter mismatcha;; = 0.001 and zero mean Gaussian

stable points is considered for a chaotic slave system. The latteannel noise with standard deviation 0.0001. The amount of
is different for the nonautonomous case, as is illustrated anise that can be tolerated is smaller than for the case without
Fig. 4. The transmitted signals and control signals are showarameter mismatch [25]. The simulations for the deterministic
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Fig. 7. Dynamic output feedback (continued). (a) Transmitted signahich is a linear combination of the state variables = of the master system.
Applying vector field modulation, the message signal is invisible on the chaotic carrier signal. (b) Controksiyplied to the slave system.

case were done using a Runge—Kutta integration rule [2Bke one-dimensional outpujs q(I = 1) with H; = [0.5;
(ode23in Matlab). Stochastic systems have been simulateeD.5; O], a one-dimensional control signa{m = 1) with
using an Euler integration rule [17]. F =p3=1[1,0;,0 andD = 3 = [1; 0; O]. The same
The case of robust nonlinear.lisynchronization of Chua’s low pass filter R was chosen as for the static feedback
circuit using dynamic output error feedback is shown ocase. The optimization problem (23) has been solved for
Figs. 6-8. Cryptographical issues of this scheme are discussee= 5, § = 0.01. An additional constrainjé.|. < 60
in [26]. The matrix H,, together with parameters of Chua’ss taken into account. A third-order SISO controller has
circuit, can be chosen as a key. In the example here Wween selected, which turned out to be the minimal order
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Fig. 8. Dynamic output feedback (continued). Simulation of the synchronization scheme with parameter mésmateh 0.0001 and zero mean white
Gaussian channel noise with standard deviation 0.0001.

for achieving a good performance. As starting point for themaster—slave systems. The method further offers the possi-
optimization problem, random matrices were chosen for thudity for incorporating channel models in the scheme. Both
controller according to a normal distribution with zero meafull static state error feedback and dynamic output error
and standard deviation 0. = I, A = 0.1, v = 100, feedback have been investigated. For the latter method one
and a = 1. In Figs. 6-8, a resulting controller with = can transmit a single signal, which may lead to a sim-
26.63 anda = 1.59 is shown. This scheme has been investier implementation of the synchronization scheme. The full
gated for identical master—slave systems in [26]. In Fig. 6tatic state feedback method on the other hand has a higher
a perturbationéa;; = 0.001 is considered for the masteperformance. This has been illustrated on Chua’s circuit.
system with respect to the slave system. Perfect recoveryWile in previous work we have shown that for the au-
obtained for binary valued continuous time reference input®nomous case a large parameter mismatch is tolerated for
but not for a larger parameter mismatéty;; = 0.005. The master—slave synchronization of the scheme up to a relatively
transmitted signal and control signal are shown on Fig. mall synchronization error, a smaller parameter mismatch is
Simulations with zero mean white Gaussian channel noise wittquired for adequate performance of the scheme with message
standard deviation 0.0001 and parameter mismatch = input.

0.0001 are shown on Fig. 8. Hence, the performance of

the full static state error feedback controller is better than ACKNOWLEDGMENT

for the dynamic output feedback controller, while the latter
may lead to a simpler implementation of the synchronizati
scheme.
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Lure systems has been studied with respect to the metHdfodelbased Information Processing Systems) of the Flemish

of nonlinear H, synchronization. By representing the synCommunity.
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conditions for dissipativity with finiteL,-gain, matrix in-

equalities have been derived. Controller design based gm S. Boyd and C. BarrattLinear Controller Design, Limits of Perfor-
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