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point of view, the definition of ABST given in the note' could be
modified to mention matrix D as well, as follows.

Definition 3.1: System (N) is said to be ABST w.rt. S if it
possesses a GAS equilibrium point for every function g € S, every
input vector I and any diagonal matrix D > 0.

Remark 3.2: From the proof of Theorem 2.1 above, it is clear that
the condition T' € D,, ensures that system () is ABST w.r.t. S in the
sense of the definition above. Notice also that absolute stability in the
sense of this new definition guarantees stability when the elements of
the matrix D are perturbed as well. In the neural circuit context, the
elements of the matrix D depend on certain resistance and capacitance
values which are subject to uncertainties in practical implementations,
thus motivating the modification in the definition.

Analyzing the linearized version of system (JV) in the neighbor-
hood of the equilibrium point 0 we have

9 =(TG'(y) - D)y (LX)

where G'(y) = (dG1(y1)/dy1 , dG2(y2)/dys,...,dGr(yn)/dyn)T

evaluated at the equilibrium y = 0, and where y = z — .. For
convenience we rewrite (L) in the form below

y=(T - D1)Day (LN
where D = G'(y) is a positive diagonal matrix for all y € IR",
and D, = D(G'(y))~" is also a positive diagonal matrix; note that
(G'(y))™" is defined (and positive) for all y € IR.

Taking (LN') as a reference for our discussion we see that
asymptotic stability of (LN') provides necessary conditions for
ABST of (IV) in the sense of definition 3.1. This is so because local
stability is necessary for global stability.

In this context we see that matrix (T — D;) D, has to have roots
with negative real parts for arbitrary diagonal matrices D; > 0 and
D3 > 0; and this has to do with the classes of matrices defined in the
nomenclature. Indeed, the matrix T has to belong, simultaneously, to
class A, and Do, this is so because: assuming Dy = I, clearly T
has to belong to A,; on the other hand, assuming that D; = ¢ I,
with ¢ — 0, we conclude that 7' has necessarily to belong to ID,.
We denote this class by Z, := A, N ID,. Note that 7, C H, and
I, C Po,ie. I, C Ho N P,.

Defining 7 := AN D, in a similar manner to Z,, it is known that
the inclusion D C T holds. It is also worth noting that, within the
class of 2 matrices, we have H = D = ID = A = T and this is
not true in general for matrices that are not in Z (see [1] for proofs
of these facts).

From the fact that T € T, is a necessary condition for ABST and,
by Theorem 2.1, T € D, is sufficient, it follows that the inclusion
above is also true in the weak case, i.e., D, C T,.

As a result of the discussion above, we make the following
conjecture.

Conjecture 3.3: T € T, is a necessary and sufficient condition for
ABST of (N), where Z, := A, NID,.

However, obtaining a characterization of this class (algebraic or
otherwise), would, in our opinion, be a hard problem since, so far,
not even a characterization of class ID is available for the general
case. In terms of complexity, the characterization problem may well
be NP- or co-NP-complete, since the problem of detecting whether a
given matrix is in 7 has been shown to be co-NP-complete [7]. On the
other hand, testing whether a matrix is in D or not has polynomial
complexity [8].
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Learning a Simple Recurrent Neural State Space
Model to Behave Like Chua’s Double Scroll

Johan A. K. Suykens and Joos Vandewalle

Abstract—In this letter, we present a simple discrete time autonomous
neural state space model (recurrent network) that behaves like Chua’s
double scroll. The model is identified using Narendra’s dynamic back-
propagation procedure. Learning is done in “packets” of increasing time
horizon.

I. INTRODUCTION

The last ten years, Chua’s circuit has become a paradigm for
studying chaos [11]. This simple electrical circuit is able to produce
complex behavior and to bifurcate from order to chaos [5]. Moreover,
Chua’s circuits have been used recently as cells within cellular neural
networks instead of classical neurons, leading to phenomena such as,
e.g., spiral waves [4], [13], [14]. On the other hand, cellular and
generalized cellular neural networks are in itself also able to produce
double scroll or n-double scroll-like behavior, respectively, [1], [9],
[15], [17]. The latter results were described in continuous time, and
design of the networks is based upon mathematical analysis and
insight.

In this letter, we propose neural state space models as a general
recurrent network architecture, and more specifically, we investigate
the problem of learning such a network to behave like a double scroll.
The neural state space model can be considered as some general
purpose architecture in order to represent or emulate the behavior of
some given system and learn its behavior from examples. Like this
is done in the CNN universal machine [14], one could also think
of arrays of neural state space models but resulting into an overall
architecture that is discrete in time as well as in space.
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Fig. 1. A simple recurrent neural network emulator for Chua’s double scroll
using neural state space models. First, second, and third state variable of
Chua’s circuit through discrete time & is shown at the top, middle, and bottom,
respectively. The first 1000 data points were used for training (before the
vertical line). Due to the chaotic nature of the system, the error becomes
larger behind the vertical line (Full line = data to be tracked from simulation
of Chua’s circuit by means of a trapezoidal integration rule with constant step
length; Dashed line = behavior of the identified neural state space model).

This letter is organized as follows: In Section II, we discuss
neural state space models, together with dynamic backpropagation.
In Section III, a neural state space model is trained to behave as
Chua’s double scroll.
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Fig. 2. Double scroll attractor, reconstructed by the third order autonomous
neural state space model with three hidden neurons: (Top) (zk, yx ). (Middle)
(2k> Y& ). (Bottom) (zk, 2k ).

II. NEURAL STATE SPACE MODELS AND DYNAMIC BACKPROPAGATION

We consider here discrete time autonomous nonlinear systems
ey = flak) e))

with state vector .y, € R™ and f(.) a continuous nonlinear mapping.
Parametrizing f(.) by a multilayer feedforward neural network with
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one hidden layer leads to the model

Fpt1 = Wtanh(Var + 8) &0 = zo given —  (2)
with interconnection matrices W € R™*"* |V € R™»*" bjas vector
3 € R"", and n; the number of hidden neurons. The hyperbolic
tangent function tanh(.) is taken elementwise. Such a parametrization
makes sense because any continuous nonlinear function can be
approximated arbitrarily well on a compact interval by a multilayer
perceptron with one or more hidden layers [6], [8], [10].
Remarks
* Nonautonomous models in state space form that are param-
etrized by multilayer perceptrons for doing nonlinear system
identification are discussed in [16] and are called “neural state
space models.” Both process noise and measurement noise
can be taken into account. The model (2) corresponds to the
deterministic case with zero external input.
¢ Input/output models parametrized by neural networks such as
NARX and NARMAX models are discussed, e.g., in [3]. These
models correspond to feedforward networks. The neural state
space model (2) on the other hand is recurrent.
 Concerning identifiability, the representation (2) is only unique
up to a similarity transformation and sign reversals because the
hidden nodes can be permuted and the sign of all the weights
associated to a particular hidden node can be changed.
Suppose now N data {z,} 5 are available and we are interested
in minimizing the error between the state Z5 of the model (2) and the
given . For prediction error algorithms, the aim is then to minimize
the following cost function off-line:

N
min J0) = 5 3o = O =m0 )

Here § = [W(:); V'(:); 8] denotes the unknown parameter vector and
“(:)” is a columnwise scanning of a matrix to a vector. The nonlinear
optimization problem (3) has many local optima in general. In case
we use a gradient based local optimization method, the gradient of
the cost function is given by

O Z 2= a (o) 20 @

where the expression of % is generated by a so-called sensitivity
model, which is in itself a dynamical system because the network is
recurrent (see [12]). Let us denote the model (2) as

i}c+1 = @(jk; OZ) (5)

with o an element of the parameter vector . The sensitivity model
becomes then

Oigyy _ 0P O | 8D

90 _ 0ix da | da ©®
which is a dynamical system w1th state vector ‘?" € R™ and input
vector 8'1’ € R™. The Jacoblan 35 € R"*" is evaluated around the

nominal trajectory. In order to write down the derivatives, let us take
an elementwise notation for (2)

&= Zw; tanh(zvz i+ 3% %)
¥ r

where {.}* and {.}} denote, respectively, the i-th element of

a vector and the ij -th entry of a matrix. The time index k is

omitted after introducing the assignment operator “:=.” Defining
=3, vL & + ' one obtains

gj; = 6;- tanh(p')
) ‘;—i’z = w}: (1~ tanhz(p’»)) # ®
% = wi(l - tanh?(p?)) ‘
?,‘;’l = E, wj; (1 - tanh?(p?)) vi.
The steepest descent algorithm
- ; aJ
Oit1 =6~ ET] 9

is called dynamic backpropagation and was introduced by Narendra
and Parthasarathy [12]. Here 7 is the learning rate and 6, the t-th
iterate. More advanced local optimization methods are, e.g., quasi-
Newton and conjugate gradient algorithms [7].

III. LEARNING TO BEHAVE AS A DOUBLE SCROLL

Let us consider now Chua’s circuit

G = Glue, ~ ve,) — glve,)
czd“f = Gve, —voy,) +iL (10)
LG = —vo

where vc, ,ve,, i1 denote, respectively, the voltage across C; and C>
and the current through L and g(vc, ) is a piecewise-linear function
consisting of two breakpoints

— mo)|ve, + Bp| + 0.5(mo — my)
lve, = Bp|- (11

g(ve,) = move, + 0.5(my

By setting the parameters 1/C7 = 9, 1/Co = 1, 1/L =7, G =
0.7, mo = —0.5, my = —0.8, B, = 1, the double scroll attractor is
obtained [5]. The ODE (10) was simulated by means of a trapezoidal
integration rule with constant step length equal to 0.05 for initial state
zo = [0.9365 — 0.0610 — 0.1889]7. The training set or the orbit
to be tracked consists of the first 1000 data points (corresponding to
samples in the time interval [0, 50]).

We propose here a simple neural state space model with three
hidden neurons and zero bias vector 3 in (2) for nonlinear system
identification. Starting from random initial parameter vectors, it turns
out that off-line learning of the complete given orbit of 1000 data
points by means of a gradient based optimization method is extremely
hard. In fact this does not come as a surprise because it is well-known
that learning long-term dependencies with gradient descent is difficult

3.191701795026490 ¢ + 00

W = | 6.302937463967251e — 01
—1.411085817901605¢ + 00
—2.446514424620466¢ — 01

V = 4.935534636051888¢ — 01

—1.711046461663226 ¢ + 00

—3.961031505875602¢ + 00
2.746315947131907¢ + 00
8.436161546347900¢e + 00
1.557093499163188¢ + 00

—9.111907179654775¢ — 01
3.794433297552783¢ + 00

—2.544300729387972e + 00
8.024248038305574e — 01
3.174868294146957¢ + 00

—6.192223155626144¢ — 01
6.785493890595847e — 01

—2.105183558255941€ + 00

12)
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(see [2]). Instead of applying global optimization schemes such as,
e.g., multistart local optimization, simulated anneating, or genetic
algorithms, we took a different approach here. The training data set
was split into “packets” of increasing time horizon. The following ad
hoc optimization procedure was applied then:
» Generate a random initial parameter vector 6o and put a := 1.
* Do while ¢ < Afinal

a. 6" =argming J(0) = QalA Ziil [z —ik]T[zk — &)
b. 6y:=8"anda:=a+1

End

Here 6, is the starting point for the optimization problems and 8™
the local optimal solution. Hence, the time horizon aA is increased
until all the NV data points are consumed. The idea of this packets
strategy is that one does not start learning new things before the
previous parts of the orbit are memorized.

In order to identify the double scroll, we took A = 50, ajinar =
20. The danger for overfitting is not high because of the small
scale neural network of only three hidden neurons. The following
neural state space model was obtained and behaves like the double
scroll, see (12) at the bottom of the previous page, for initial state
xo = [0.9365 —0.0610 — 0.1889]”. A quasi-Newton method with
BFGS updating of the Hessian and mixed cubic-quadratic line search
was applied for the optimization with random initial parameter vector.
The optimization was done with Matlab’s optimization toolbox. The
time consuming parts such as the simulation of the neural state space
model and its sensitivity model were written in C code and called
within Matlab, making use of Matlab’s mex facility. The simulation
results are shown in Figs. 1 and 2.

IV. CONCLUSION

In this paper, a discrete time recurrent nonlinear state space model
was identified that behaves like Chua’s double scroll. It is well known
that learning recurrent networks is more difficult than feedforward
networks, especially for systems with complicated dynamics such as
chaotic systems. We avoided the use of global optimization methods
and proposed a packet method with increasing time horizon (local
optimization), which was successful in order to learn the double
scroll trajectory, given some initial state. However, more research
is needed in general on learning complex behavior by means of
recurrent networks.
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Experimental Control of Chaotic
Behavior of Buck Converter

Gautam Poddar, Krishnendu Chakrabarty, and Soumitro Banerjee

Abstract—This letter reports a method for control of chaos in the de-dc
buck converter. The method differs from the existing ones and is partic-
ularly useful for piecewise linear systems with switching nonlinearity.

1. INTRODUCTION

Power electronic circuits broadly fall into the category of piecewise
linear systems with an overall nonlinear behavior contributed by
discrete switching phenomena. It has been shown that such systems
can exhibit deterministic chaos [1]-[3], especially in presence of a
feedback loop. Since power electronic circuits with current or voltage
feedback have wide industrial application, the control of chaos in such
systems assume special importance.

The existing methods for controlling chaos (as surveyed in [4])
generally require complicated computation to be performed on-line
or additional periodic reference voltage. The method proposed in this
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