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Results and Future Problems
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Invited Paper

Abstract— This paper provides a mathematician’s perspective
on Chua’s circuit as a paradigm for chaos. It explains why
Chua’s circuit is of interest not only to radio physicists but to
nonlinear scientists from other disciplines as well. It points out
why the double-scroll Chua’s attractor, which has been proved
-rigorously to be chaotic in [5] in the sense of the Shil’nikov
theorem, is fundamentally different and mathematically much
more complicated than that of the Lorenz attractor.

1. INTRODUCTION

NE OF THE MOST remarkable achievements of science

in the 20th century is the discovery of dynamical chaos.
Using this paradigm, many of the problems in modemn science
and engineering that can be modeled via the language of
nonlinear dynamics have attained an adequate mathemati-
cal description. However, the explanation of a number of
phenomena of dynamical chaos has required the creation of
new mathematical techniques. The reason for this is that the
classical theory of nonlinear oscillations developed by Van der
Pol et al. was based on Poincaré’s theory of periodic orbits
and Lyapunov’s stability theory, i.e., on methods for studying
mainly quasilinear systems.

Problems associated with systems involving high energies,
powers, velocities, etc. must be modeled by multidimensional
and strongly nonlinear differential equations (ordinary, partial,
etc.). The study of such systems has generated numerous
new concepts and terminology: hyperbolic sets, symbolic
dynamics, homo- and heteroclinic orbits, global bifurcations,
entropy (topological and metric), Lyapunov exponents, fractal
dimension, etc. We note the possibility of describing dynamical
chaos via statistical tools as well, e.g., correlation function,
power spectrum, etc. They are widely used in numerical
simulations and in experiments.

Here, an important role should be noted on which con-
crete phenomena and models play in establishing dynamical
chaos in different fields of knowledge. It is Lorenz model
in hydrodynamics and in the theory of lasers, the Belousov-
Zhabotinsky reaction in chemistry, Chua’s circuit in radio-
physics, etc.

Chua’s circuit has become very popular since the middle
of the 1980’s [1], [2], because it is, in its physical nature, a
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Fig. 1. (a) Chua’s circuit; (b) voltage versus current characteristic of the

Chua’s diode may be any nonlinear function, e.g., a polynomial, a “cubic”
L z)—1.0

f(x) = cox + c1x®, a “sigmoid Flx) = %, e.tc:[Z]. Here, we

show the most commonly chosen piecewise-linear characteristic.

rather simple electronic generator of chaos (it consists of four
linear elements and one nonlinear circuit element, as shown
in Fig. 1).

Chua’s circuit is an ideal paradigm for research on chaos by
means of both laboratory experiments and computer simula-
tions because it admits an adequate modeling via the language
of differential equations. In the simplest case, these equations
are written in the dimensionless form

& = a(y — h(z))
y=x—-y+z2 M
i=—py
where the nonlinear function h(z) has the form
z+1-jz-1
h(z) = mix + (mo — ml)‘——|—2—|———‘.

The main reasons why Chua’s circuit is a subject of interest
not only in engineering, but in other disciplines as well, are
the following:

1) Chua’s circuit exhibits a number of distinct routes to
chaos, e.g., transition to chaos through a period-doubling
cascade, through the breakdown of an invariant torus,
etc., which makes the study of Chua’s circuit a rather
universal problem.

2) Chua’s circuit exhibits a chaotic attractor called the
“double-scroll Chua’s attractor.” It appears at a conjunc-
tion of a pair of nonsymmetric spiral Chua’s attractors.
Three equilibrium states of a saddle-focus type are
visible in this attractor, which indicates that the double-
scroll Chua’s attractor is multistructural, which is in
sharp distinction with other known attractors of 3-D
systems.
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3) Chua’s equations (1) are rather “close” (in the sense
that the bifurcation portraits are “close”) to the equations
defining a 3-D normal form for bifurcations of an equi-
librium state with three zero characteristic exponenits
(for the case with additional symmetry) and that of a
periodic orbit with three multipliers equal to -1.

4) In their mathematical nature, the attractors that occur
in Chua’s circuit are new and essentially more compli-
cated objects than it seemed before. This conclusion is
based on new subtle results on systems with homoclinic
tangencies and homoclinic loops of a saddle focus [3],

(4].

II. RIGOROUS RESULTS

The chaotic nature of the double-scroll Chua’s attractor

was proved by Chua et al. [5] by establishing the existence
of a homoclinic loop of the saddle focus at the origin and
by applying the Shil’'nikov theorem. Another proof of the
chaotic nature of Chua’s circuit, which also makes use of
the Shil’nikov theorem, is given by Silva [6]. This theorem
asserts that if the 3-D system

= pz—wy+ P(z,y,z2)
§=wz+py+Qz.y,2)

(where P.Q, R are smooth functions vanishing at the origin
along with their derivatives, p < 0,A > O,w # 0) has a
homoclinic loop, then provided that

p+A>0 2

the Poincaré map on a cross-section transverse to the loop has
an infinite number of Smale’s horseshoes. It is also important
that under small variations of the system, a large number of
the horseshoes are preserved.

The nonwandering sets lying near the homoclinic loop of a
saddle focus are locally unstable. Therefore, these structures
must belong to the attractor in order for the system to exhibit
chaotic behaviors. In [5] and [6], parameters were found where
this indeed takes place. Actually, the presence of a saddle-
focus homoclinic loop in Chua’s circuit does nof guarantee that
the double-scroll Chua’s attractor is a classical strange attractor
having well-understood properties, e.g., sensitive dependence
on initial conditions, transitivity, and so on. In fact, the
above homoclinic loop cannot occur in such typical strange
attractors: It was shown in {3] that if condition (2) and the
following condition

20+ A <0

are satisfied, then there exist an infinite number of stable
periodic orbits that are dense on the bifurcation surfaces of 3-
D systems with saddle-focus homoclinic loops. Furthermore,
in any neighborhood of such a surface, the so-called New-
house regions exist, where systems with infinitely many stable
periodic orbits are dense.
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III. FUTURE PROBLEMS

For the Chua’s equations (1), the above observation cor-
responds to the possibility of parameter values for which
infinitely many stability windows exist, which implies a sen-
sitive dependence of the structure of the attractor on small
variations of parameters. Besides, as was shown in [4], systems
with infinitely many structurally unstable periodic orbits of
any degree of degeneracy are dense in the Newhouse regions.
Therefore, a “complete description” of the dynamics and
bifurcations in the Chua’s equations is impossible, as it is
for many other models.

The main reason for such a complicated behavior of orbits
in the attractors observed in Chua’s circuit is connected with
the fact that either the attractor itself, or an attractor of a nearby
system, contains structurally unstable Poincaré homoclinic
orbits, i.e., orbits that arise from the tangency of the stable
and the unstable manifolds of some saddle periodic orbit
(cycle). If the inequality |Ay| < 1 is fulfilled where A and
are multipliers of the cycle, then the attractor contains stable
periodic orbits as a rule. Such an attractor differs essentially
from the hyperbolic and the Lorenz attractors. The latter
admits the introduction of reasonable (“physical”) invariant
measures. This makes it possible to study its chaotic behavior
by means of statistical methods. In particular, it provides a
rigorous foundation for studying such a characteristic of the
attractors as Lyapunov exponents. Therefore, hyperbolic and
Lorenz attractors are called stochastic. On the other hand, the
attractors we discuss here hardly admit the introduction of an
invariant measure. We called such attractors quasistochastic or
quasiattractor [7], [8]. In our opinion, the reasons formulated
above make it natural for us to add some small noise in study-
ing quasiattractors. It is well known that noise is unavoidable
both in physical experiments and in computer simulations (due
to round-off errors). An explicit introduction of noise could
spread stable periodic orbits with long periods and thin basins
as well as structurally unstable periodic orbits.

Because they are closely-related to the study of homoclinic
tangencies, an extension of the results pointed out above for the
muitidimensional case appears to be rather nontrivial and pro-
vides us with opportunities to discover many essentially new
effects. Concerning those generalizations of Chua’s circuits,
which are described by equations of dimension greater than
three, the multidimensional theory predicts the following phe-
nomenon: Together, with a “large” attractor, stability windows
that exhibit not only periodic and quasiperiodic orbits, but also
“small” strange attractors, can exist [9], [10]. These can be
attractors of a very different nature, for instance, attractors
similar to both the Lorenz attractor and to the double-scroll
Chua’s attractor. Finally, we remark that there are still many
unsolved mathematical problems associated not only with
Chua’s circuit but also with its globally unfolded canonical
circuit [11] and its higher dimensional generalizations, e.g.,
1-D chains and 2-D or 3-D arrays of such circuits.
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