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Chaos in Some 1-D Discontinuous Maps that
Appear in the Analysis of Electrical Circuits

A. N. Sharkovsky and L. O. Chua, Fellow, IEEE

Abstract— Several representative examples of nonlinear elec-
tronic circuits modeled by discontinuous 1-dimensional maps,
including the 1-D maps derived from Chua’s circuit, are reviewed.
Although very little general results are presently available for
studying the chaotic dynamics of such 1-D maps, an important
subelass C where useful properties are known is identified and
reviewed. This subclass is characterized by monotonic expansive
maps within each continuous subinterval, and where the map
assumes at each discontinuity point a left and a right limit equal
in value to the boundary (end points) of the defining interval 1.
The main property characterizing discontinuous maps belonging
to class C is that they possess a ‘“good” invariant measure,

which can be translated roughly by saying the associated chaotic .

attractor can be proved rigorously to be ergodic.

1. INTRODUCTION

HEN INVESTIGATING nonlinear electrical circuits,
Wwe find many examples where the dynamics of such
circuits can be described by a discontinuous 1-D map derived
from the circuit either numerically, or, on rare occasions,
analytically. A very large variety of such discontinuous maps
has been derived, and not a few mathematical problems
relating to these maps remain unsolved.

In the first part of this paper we give examples of some
nonlinear circuits and their corresponding 1-D discontinuous
maps. Then we dwell upon one rather simple class of such
maps for which many general properties can be established.
This is the class of discontinuous 1-D maps which are locally
expansive at each point in the domain where the map is
given. These maps are characterized by an extreme sensitive
dependence of the trajectories on initial conditions. This class
of maps possesses some interesting statistical properties, in
particular, strong mixing of trajectories, and consequently,
various methods from the probability theory can be used for
their investigations.

This paper is written mainly for engineers and scientists
who employ mathematical methods of nonlinear analysis for
research of real physical systems. Our aim is to present a
collection of properties and results which are applicable to the
above class of discontinuous maps. We will illustrate these
results with examples wherever appropriate, but no proofs
will be given. Instead, we will include a bibliography showing
where these results can be studied in more detail [1]-[27].
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Fig. 1. Output z(t) increases until z(t)= b, then decreases until z(t) =
a (drawn with @ = 0), then repeats periodically.

II. EXAMPLES OF DISCONTINUOUS 1-D MAPS

Example 1. Triggered Astable Oscillator: First, we will de-
scribe how threshold synchronization works. Suppose we have
a system that produces a steadily rising output z(¢) until some
upper threshold b is reached, then produces a steadily falling
output until some lower threshold a is reached, and then
restarts with a rising output, as in Fig. 1, when a = 0. We
will work with linearly rising and falling outputs; thus

. {IU
xr = Iy
a

where ¢ < b. Let us add a narrow periodic pulse d(t) to the
output, with period slightly shorter than the natural period of
the oscillator. The equation is now

I, ifa(t)+d(t) <0,

orif &(t) > 0 and z(t) +d(t) <b
—Lifg(t) +d(t) 20,

or if () < 0 and z(t) + d(t) > a

if£>0,0<b
ifz<0,z2a

#(tT) =

where tT denotes lim._o(t + €).

This elementary mathematical model is an extremely accu-
rate description of the behavior of many circuits; an example is
the astable multivibrator, which is given in Fig. 2. It contains a
piecewise-linear resistor with the characteristic of Fig. 3. Here
the nonlinear resistor charges capacitor Co with current Io until
it reaches point C(vg = b). An instantancous transition from
O to A is assumed to occur at this point and thereafter resistor
R begins to discharge Cyp with a current equal to —Ip/c.. When
it reaches B(vg = 0) another instantaneous transition from B
to D is assumed to occur and R starts charging Cp again.

The assumption that an instantaneous jump from C to A
(and from B to D) occurs is called the jump postulate or
phenomenon in circuit theory [28], and often represents a very
realistic model of experimentally observed phenomena. Each
boundary point where the jump takes place is called an impasse
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point [28], and a comprehensive theory has been developed
to show how impasse point occurs naturally as a result of
idealizations resulting from setting some small but essential
circuit parameters ( called parasitics) to zero [29]-[31]. Most
authors who are unaware of this theory tend to call such
double jump phenomenon a binary hysteresis [32], [33]. A
deeper understanding of what is really taking place will reveal
that the phenomenon is not Aysteretic at all—at least in the
usual sense of hysteresis, but in fact is a natural consequence
of impasse points, which occurs because of overidealization,
thereby preventing the possibility for writing state equations
[34].

The model of an astable oscillator enables us to study the
effect when it is triggered by external narrow pulses, as shown
in Fig. 4. We assume the pulse is so narrow (compared to its
period) that we can write (see Fig. 5)

_Je t=mnp

dt) = {0 otherwise
Let g be the period of the free-running multivibrator. Then,
it is shown in [35] that the following 1-D map is the exact
description of the behavior of the circuit: 75,41 = 1 — (a1, +
B)mod I, where 3 is equal to some constant which does not
affect the qualitative behavior of the circuit.

An example of this map for « > 1 and 8 = 0 is shown
in Fig. 6.

Example 2. Driven Oscillator with Limit Cycle: As a pro-

totype 2-D nonlinear oscillator with a stable limit cycle we
take [36]

7= sr(l —7r?)
f=1

(in a properly scaled polar coordinate), where s is a parameter
(it is a measure of the inverse relaxation time for perturbation
of the limit cycle r = 1). The oscillator is subjected to a
periodic force in the x direction:

“+oc
i=sz(l—2? —y?) —y+ 2(125(15 — 2mn3)

g=a+sy(l —a* —y?)

with 8 > 0, and 2 =7 cos 8,y =r sin 6, where 6(-)
denotes the delta (impluse) function. The 2-D Poincare map
for this system is exactly solvable, giving

Tne1 = {[2a + ricos(0, + 21 3))?
+[rtsin(0 + 20 8))2}1/2

[’ 41 = fﬂ/’L71 7 sin(fn+2n/3)
n =1

2a+r17 cos(fn+273)
where
= n
"R e
v =sp (1)

and r,, 0, are the values of r,f immediately after the nth
“kick” at ¢ = 2anp.

If we let v — oo, the fast-relaxation limit, we obtain 7; = 1.
This reflects the obvious result that the oscillator returns to its
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Fig. 2. Circuit model of the astable oscillator.

limit cycle before the next “kick”. In this limit we obtain a
1-D map:

1 sin(f, + 2m3)
20+ cos(f, + 273) |

Ont1 = tan”

We note that in the case of finite damping with v <
—1, ezp(—4my) < 1075, the return map (1) is almost 1-D.

Two maps corresponding to @ = 0.3, and 0.5 are shown in
Fig. 7.

We stress that this system (and consequently the 1-D map)
is a prototype nonlinear oscillator since the structure of the
parameter space («,/3) is qualitatively similar to the follow-
ing cases: Brusselators [37], electronic oscillators tuned with
nonlinear elements and having its frequency synchronized by
means of an external impulsive periodic signal [38], and forced
Van der Pol oscillators [39].

Example 3. Chua’s Circuit: One-dimensional approximate
maps for piecewise-linear autonomous systems have been
consrtucted and analysed by Sparrow [40], Brockett [41],
Chua er al. [42], Ogorzalek [43]. In all these cases, the basic
assumption is that there exists “strong stable foliations” in the
the neighbourhood of some fixed point. The 1-D maps of the
half-line BA,, (see notation in [42]) into itself, and Pt N,
into itself are presented in Figs. 8 and 9; see [44].

Recently, Brown [45] has shown that the basic chaotic
dynamics of Chua’s circuit can be accurately modeled by a
broad class of discontinuous 1-D maps. Depending on the
circuit parameters, these 1-D maps [46] can be quite simple (
called class C below) as shown in Fig. 10, whereas others can
be rather complicated, such as those shown in Figs. 11 and 12.

Example 4. Second-Order Oscillator with Impasse Points:
First, we outline how a second-order oscillator with impasse
points worked. In Fig. 13, we draw the phase space of a
typical oscillator having binary hysteresis; it contains two
parallel invariant half-planes which overlap in the strip, say
—1 < z < 1. Each half-plane represents one of the phase space
of a linear unstable degree-two oscillator. When a trajectory of
one of these linear oscillators reaches the boundary of its half-
plane (the crossing of a point from one half-plane to the other
takes place on the lines z = 1 and z = —1), the trajectory
jumps to the other half-plane, by assumption, as shown in Fig.
13.

There are many examples of oscillators with impasse points
(see {32], [33], [47], [48], and [49]). One such example is
presented by Pikovskii and Rabinovich [47]. In dimensionless
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Fig. 3. The vg — ig characteristic of the nonlinear resistor in Fig. 2.
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Fig. 4. Circuit model of the triggered astable oscillator.
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Fig. 6. The 1-D map for the circuit shown in Fig. 4.

variables, their circuit (Fig. 14) is described by the equations

& = y—bz
Yy = —r+2yy+az @
pz = x— f(z2)

where f(z) is the idealized (dotted) characteristic shown in
Fig. 15. As ¢ — 0 all motion of the system can be separated
into a fast regime (along the lines x= const and y = const),
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Fig. 7. The 1-D map for the driven oscillator with limit cycle in the
fast-relaxation limit.
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Fig. 8. The 1-D map of the half-line B4 (see notation in [42]).
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Fig. 9. The 1-D map of the half-line PN (see notation in [42]).

and a slow regime ( in the planes z = —1,2 < 1 and
z = 1,z > —1). If 4 = 0, we have a circuit with a line
of impasse points because f~!(x) is a triple-valued function
for |z| < 1.

Let us define S~ as the half-line located at x = —1,2 =
—1,4 > —6, and ST as the half-line located at z = 1,2
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W

Fig. 10. Some class C' I-D maps from the generalization of Chua's equa-
tions.

Fig. 11.  Some 1-D maps with single hump from the generalization of Chua’s

equations.

L,y > 6. The dynamics of the system (2) reduces to the
analysis of the Poincare map of the set § = STUS™ into itself.
All trajectories beginning and ending in S can be divided into
two groups:
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1) Trajectories lying in only one half-plane:
S =718 = 5.

2) Trajectories that cross from one half-plane to the other:

S =178
where 75 is given parametrically by
. w-c—kr
stn T
G5 w(cos T+ ksin 1)

stnT
Y
w= 1=k =—

The Poincare map associated with the above 1-D map is

* discontinuous, as shown in Fig. 16.

Example 5. Switching Circuit: Consider the circuit shown
in Fig. 17 [48]. In this figure, g; is a linear negative conduc-
tance. For ¢ > 0, S is switched on or off when a trajectory
intersects the ¢ axis on the ¢ — v plane as follows:

a) S is closed at the moment when ¢; < ¢ and v = 0,
where ¢, is a threshold of ¢ such that ¢ > 0 and
¢r > logav.

b) S is opened at the moment when ¢; > ¢ and v = 0. For
this map, the Poincare map can be constructed exactly
as (see Fig. 18).

F:[0,1] —[0,1]
_Jalz-D)+1, 0<x<D
F(‘”)‘{b(x—D), D<z<1

Example 6. A Modulator: The structure of the ideal
single-loop £A modulator is as shown in Fig. 19 [50]. It
consists of a discrete time integrator with a quantizer in a
feedback loop. The only nonlinear element in the modulator
is the 1-b quantizer, whose output is 1 when its input is > 0
and -1 when its input is < 0. Under the assumption that the
input to the modulator is constant, the system is described by
the first-order difference equation [50]:

Unt1 = Up + 2 — sgn(uy)

where z is the input to the modulator, and u,, is the quantizer
input. The map w,, — u,; is plotted in Fig. 20.

All of the 1-D maps given above are discontinuous. The
class of discontinuous maps, even with only a finite number
of discontinuity points, is essentially larger than the class of
continuous 1-D maps. We wish to point out first that there
are still many unsolved complicated problems for continuous
and even for smooth maps (for example, existence of invariant
measures and their properties, investigation of the correlation
between trajectories etc.). All the more, the same is true as
far as discontinuous maps are concerned. It is difficult if
not impossible to develop a general theory of discontinuous
maps because there exist too many variations and pathological
situations that warrant a special treatment. A more or less
“rich” theory can be developed only for some relatively narrow
classes of discontinuous maps.
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Fig. 12. Some complicated 1-D maps from the generalization of Chua’ equations.

Fig. 14. The circuit model of the second-order oscillator with impasse points.

i f(z)
1

Fig. 15. The idealized (dotted) characteristic of the tunnel diode.
Fig. 13. The phase space of the second-order oscillator with impasse points.

erty (namely, the limit values at the discontinuity points

belong to the boundary) which makes them more similar to

Il Crass € DISCONTINUOUS 1-D MAPS continuous maps, however, not of an interval but of a circle.
If our map f is given on some interval [ = [a,b] and if
21, .y 2p, 7 < 00, are discontinuity points, then for this class of

Although the above maps are discontinuous, some of them
have discontinuity points which share a useful common prop-
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s

0 S

Fig. 16. The 1-D map from the circuit shown in Fig. 14.

Fig. 17. The circuit model from [49].

1

0 D X 1

Fig. 18. The 1-D map obtained from the circuit shown in Fig. 17.

maps, we have im,—,,. 1o f(z) € I ={a,b},i =1,...,7r (and
moreover, if lim,_,,, ¢ f(z) =a, then lim,_, ., 1o f(z) =b, and
if limg_,,, o f(z) =b, then lim,_,., 1o f(z) = a). This means
that if we identify the points ¢ and b with each other, then the
map f can be regarded as a map f of the circle, and the map
f is continuous everywhere except, very likely, at the point
0, because limy_qp0 f(z) =f(a) and lim,_q_o f(z) = f(b).
Furthermore, the peculiarity of the map is that on the intervals
of continuity (z;, z;41), ¢ = 0,1,2,...,n, where zp = a and 2z,
= b, the map f is either monotonic (increases or decreases) or
unimodal (i.e., there exists a critical point ¢; € (2;, zi41) and
the function f increases on one of the intervals (z;,¢;) and
(¢i,zi+1) and decreases on the other).

The class of such discontinuous maps is still very large. In
particular, it contains the class of continuous unimodal maps
which has been intensively investigated for the last 20 years,
and now a rich and meaningful theory has been developed for
it. We shall restrict ourself in this paper to considering an even
more narrow class of discontinuous maps for which the map
is monotonic on each interval of continuity, and moreover, it
is locally expansive in each point.

Thus, let f be a map of the interval I = [a, b] into itself,
which satisfies the following conditions:
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Fig. 19. The ideal single-loop A modulator.

Fig. 20. The 1-D map obtained from the A modulator.

1) It is continuous everywhere except at the points
s zola < 21 < oo < 2z < b1 < < 00)

2) Tt is monotonic on each interval (z;,2z;41).6 = 0,1,..,r,
20 = @, Zpy1 = b.

3) limg—,,—o f(x) # lm,_.. 4o f(x) and limg . +0-
f(z) € {a,b},i=1,...,r.

4) Tt is expansive with an expansion coefficient [ > 1; for
every point & € I\ {z1,..., 2.}, there exists an interval
U, containing the point x such that d( f(U)) > {d(U) for
every interval U C U,, where d(V') denotes the length
of the interval V.

The last condition, of course, narrows the class of maps
under consideration in an essential way. It follows from
this condition that the map has the so-called property of
“hyperbolicity”( this property was first used in a systematic
way by Anosov for the study of dynamical systems on surfaces
of constant negative curvature). The notion of hyperbolicity
means that the relative positions of trajectories are similar to
those near the saddle point of a dynamical system on the plane.

Let C denote the class of 1-D discontinuous maps satisfying
the conditions 1)-4). It is not very difficult to explain a
number of important (in particular, as regards to applications)
properties of the maps from C. Here we do not formulate
the strongest results and do no more than to predict results
which can be formulated and understood in a simple way.
We will try to demonstrate all the main (from the authors
point of view) properties of maps belonging to the class C.
Apparently, the most essential property is the existence of
an invariant measure, which differs only slightly from the
Lebesgue measure.

IV. INSTABILITY OF TRAJECTORIES

Each map f:I — I defines a dynamical system on the inter-
val I. Each point g € I determines the trajectory of this dy-
namical system ( or the trajectory of the map) xo. 1, ..., i,
where @;41 = f(z;)(=f T (x0)),s = 0,1,2, ...
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Fig. 21.  An example of a 1-D map without fixed points, but possessing a
cycle of period 3, and cycles with period 2.

It follows immediately from property 4) that any two
trajectories {r;};=, and {z,}?2, which are close to each
other initially must move away from each other in the course
of time. Moreover, at all subsequent moments, the distance
between the points x; and x; increases not less than [ times:
|zis1 — -”/';+1\ > [|z; — ;| (admittedly it is true up to the
moment i = N, where z; and ; belong to the same interval
(%, zj41). This means that for every trajectory, its Lyapunov
exponent is equal to or greater than [ and all trajectories are
unstable in the sense of Lyapunov. Thus, the trajectories of
dynamical systems from C exhibit an extreme sensitivity to
initial conditions.

V. PERIODIC POINTS AND SEMI-PERIODIC INTERVALS

Periodic trajectories hold usually an important place when
investigating dynamical systems. In this case, however, all
periodic trajectories of any map belonging to C are unstable
and are of little importance for understanding the dynamics of
maps. Therefore, we restrict ourselves to only a few remarks.

It is easy to show that there exist periodic trajectories with
an arbitrarily large period. Since the map is discontinuous it
can have, for instance, a cycle with period 3, at the same time
(as distinct from continuous maps), it can have neither fixed
points nor cycles with period 2 (Fig. 21).

At the same time, if n > 3 the map has cycles with all
periods (in particular, at the interval (21, z3); since f([z1, 22])
= f([z2,23]) = 1 we may use the simplest variant of the so-
called symbolic dynamics: on the interval [21, 3] there exists
an invariant Cantor set K = N2/~ ([z1, z3]) (here f~*(y)
={z € I/f*(x) = y}) on which the map f is topologically
conjugate to the shift map on the space of one-sided sequences
of zeros and one’s.

The intervals which we shall call semi-periodic are of
greater importance for understanding the dynamics than the
periodic points. When investigating continuous maps (in par-
ticular, in the construction of the so-called spectral decompo-
sition), the periodic intervals are used (J is a periodic interval
with period s if f5(J) = J and f*(J) # J for 0 <@ < ).
Maps from C can have no periodic intervals with period s > 1,
and semi-periodic intervals, which will be defined below, are
1o a certain extent the analog of periodic intervals.

The map represented in Fig. 22 has, for example, two
intervals I, I> such that f(I;UI5) =I; UI,. Although intervals
I;, I, are not periodic, their union is periodic. We shall call
them semi-periodic; in this case, they form a cycle of length

Iy 142 g1 122
/
y 4
/z
/
L
= I]- 1" IZ

Fig. 22. An example of a 1-D map with two semi-periodic intervals: I1
and fo.

9. Bach interval I, i = 1,2, contains, in turn, two subintervals
Iin, Iip,i = 1,2, such that f(U%jleij) = Ug’]—zlfij, i.e., the
subintervals I11, 12, I21, and Iy also form a cycle of length
4 and are semi-periodic.

The importance of such intervals, at least for maps, such as
those shown in Fig. 21, is due to the fact that the invariant sets
which are formed are stable (i.., closely spaced trajectories
are attracted to them and even fall inside these intervals).
Moreover, these invariant sets attract almost all (but not all)
trajectories.

We note that all semi-periodic intervals always have com-
mon points with one of the intervals (@, 21) and (zn,b).

VI. TRAJECTORY ATTRACTORS

In the dynamical system theory for describing asymptotical
(when time tends to co) behaviour of trajectories w-limit sets
are used (the w-limit set w(zo) of trajectory Zg,T1,T2, ...
is a set {x/F; < iz < . — z when k — oc},
i.e., w(zg) = Np=o (closure of U2, i(z)). It is advisable,
however, to use w-limit sets only for sets consisting of unstable
trajectories, in particular, for maps with sensitive dependence
on initial conditions (which we have). Here, it is expedient
to consider, along with trajectories and their w-limit sets, the
so-called prolongations of the trajectories pr(xo) = Nexo (
closure of U2, fi(U. (o)), where Uc(z) = (v—e,x+e)n]
and, respectively, w-prolongations w-pr(zq) =N, fi(pr(zo)).
Obviously, we have always w(xo) C w-pr(zo). Both w-limit
set and w-prolongation are invariant closed sets. The trajectory
passing through the point z is stable in the sense of Lyapunov
if and only if w(zg) = w-pr(zo). If we use the computer 1o
observe the w-limit set of some trajectory on the screen it
will mean that in reality because of the finite accuracy of our
computations, we shall actually observe the w-prologation on
the screen.

For our map, the w-prolongation appears 1o be one and
the same set for all (or almost all) trajectories (i.e., it does
not depend on the initial point o) and consists of either
one interval (the whole I) or several subintervals. These
subintervals are semi-periodic and form an invariant set which
can not contain proper invariant subsets consisting of semi-
periodic intervals.

Example 7: Let f, be the map with a constant slope A =
91/k J < 2 (and, therefore, r = 2). Let 21 = 1 — z5 (Fig. 23).

Ty
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Fig. 23. (a) A 1-D map with a constant slope 2%, k < 2. (b) The second
iteration of the 1-D map from (a).

For any trajectory of this map, the w-prologartion consists
of 251 intervals (except for at most a countable number of
trajectories passing through periodic points that do not belong
to these intervals, there is a finite number of such periodic
points).

At present, the concept of an attractor is widely used in the
dynamical system theory. We can talk about the attractor of
a particular trajectory passing, say, through the point zg, and
in this case, we can take as the attractor either w-pr (zo), or
w(mo), or even 4 smaller set: the statistical limit set (in any but
fixed neighborhood of which the points f(xo) appear with a
frequency approaching 1 when ¢ — oo). From the “practical”
viewpoint, we should choose the w-prologation, and then, as
explained above, the attractor will be the same for almost all
trajectories (although for almost all trajectories, both the w-
limit set and the statistical limit set will coincide with the
w-prologation; this is true for the map considered here as well
as for a very broad class of continuous maps).

VII. GLOBAL ATTRACTOR

When we talk about an attractor, we have most often in
mind a global attractor of the dynamical system, i.e., an
invariant and closed set that attracts all or almost all (in some
sense) trajectories. Different authors use different definitions
of attractor as the least set containing w-limit sets of almost
all trajectories.

In our case, taking into account the above discussions, the
attractor of a 1-D map (in any natural sense) consists of one
or several (semi-periodic) intervals.

Denote the attractor by A. It is easily seen that A C
f(la, z1]U[2r, b]). Some properties of the map on the attractor
include the following:

1) There exists a strong expansion: for any open set u(e.g.,
open interval) belonging to A there will be found an
integer m such that f*(u) = A when i < m.

2) There exist dense trajectories everywhere on A.

3) Periodic trajectories are dense on A.

VIII. INVARIANT MEASURE

It seems that the most important property of the maps from
C is the fact that the dynamical systems has a “good” invariant
measure. The invariance of measure ;1 means ( by definition )
that p(B) = pu(f~1(B)) where B is an arbitrary p-measurable
set. The word “good” means that this measure differs not
very strongly from the usual Lebesgue measure, namely, it is
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absolutely continuous with respect to the Lebesgue measure
(i.e., the p-measure of any set which has zero Lebesgue
measure is also equal to 0).

We can state the following theorem concerning the existence
of an invariant measure for maps belonging to C [15] if
f € C*(z,2i+1)), 3 = 0,1,2,...,7, and |f| > 1 on
I\{z1,...,z-}. Then, the map f has an invariant measure that
is absolutely continuous with respect to Lebesgue measure.

We shall always denote this invariant measure by p. It may
be shown that the measure  is the only “good” measure and,
moreover, is ergodic. The ergodicity means that the p-measure
of any invariant closed set is either equal to 0, or the p-measure
of the whole space.

The measure g4 is concentrated on the attractor A
(i.e.,u(A) = p(I)), which consists, as we know, of one
or several intervals.

The importance of this invariant measure is explained by
the famous Birkhoff- Khinchin theorem (which holds for
any invariant measure). This theorem, in particular, states
that %Ef;o Xp(fi(zo)) — u(B)asN — oo for each p-
measurable set B, and for almost every (by measure y) point
o, where
1 ifzeB
0 otherwise.

Xp(z) = {

This theorem implies that in order to understand the asymp-
totical behaviour of trajectories when the p-measure support
has a positive Lebesgue measure (as in our case), it is
necessary to use the probability language; if we have some p-
measurable set B, a trajectory starting from almost any point
will fall within the set B with frequency that tends to the u-
measure of the set B as time increases. Thus, the invariant
measure gives an additional information about the trajectory’s
behavior.

For example, the map f : z — kx + @ (mod 1) with
any integer &k # 0,%+1 and with any 8, 0 < 3 < 1, has
the Lebesgue measure as an invariant measure. Thus, if we
are interested in knowing how often a trajectory fi(zo) will
fall, say, into (y1,72), then the answer is the following: The
frequency of falling into (71,72) tends to vz — 71 for almost
every (by the Lebesgue measure) point zo € [0,1].

How can one find the invariant measure for a concrete
map from C? The Birkhoff-Khinchin theorem states that
almost every trajectory must generate a set of points with
this measure: If we have some point z¢ through which such
a trajectory passes (and it is almost any point), we should
partition our space (the interval 7) into a sufficiently large
number of boxes—small subsets (subintervals of the lengh
€ << 1), then choose some integer N > 1(> é) and
calculate how often the points f*(zo) falls into each box where
0 < ¢ < N (ie., we should construct the histogram of the
trajectory). When N — oo, the frequency of the points fi(zo)
inside each subset must approach the p measure of the subset,
and when ¢ — 0, we shall get the density of the measure p.

We must emphasize that, in general, not all, but only almost
all, points generates a set with the measure p. For example,
no periodic point generates a set with a “‘good” measure, and
in our case (as we had noted above), the periodic points lie
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everywhere dense on the global attractor A, which is the
support of measure .

IX. NUMERICAL ORBITS AND SHADOWING PROPERTY

Let us focus our next attention to one more property which
may or may not be possessed by maps from C. This property
should be kept in mind when computing the trajectories.

Since for map f € C the coefficient of “expansion”>1[ > 1,
the length of any small interval J is increased ! times under
each iteration of the map f: If the length d(J) = & then
d(f™(J)) > "< at least for nu such that f¢(J)N {21, ..., 2.} =
¢ when l1 < ¢ < n. This means that in approximately
N~ logi steps the length of the interval f7(.J) will be of the

lo
order 1 g(i.e., of the whole space size). Thus, if the exactness
of computations is the order of ¢ we can say almost nothing
about the location of the point f™(z¢) whenn > N,if zy € J
(i-e., we can not state that the point f™(xg) with n > N will
be located at the position calculated by a computer.)

Nevertheless, there are dynamical systems that possess the
following property: For any e-trajectory xo, z1, ... (i.e., for the
numerical trajectory that was calculated with the exactness e:
|Zn4+1 — f(zn)] < € when n > 0), there exists a true trajectory
i, (2l = f(2¥7)) such that |z, — 2| < § for
some small 6 > 0 and for all n > 0. In this case, we say
that numerical e-(pseudo) trajectory is the §-shadow of a true
trajectory, and the dynamical system possesses the shadowing
property.

For example, the map f : z +— 2z (mod 1) has the
shadowing property. This map can be represented by the
formula f : 0.yaag... —: 0.c2ax3..., where «;,7 = 1,2, ...,
is 0 or 1. If the computer can only guarantee N — 1 exact
digits, then for zg = 0.6155...88 BN +1..., We will obtain

€1 :(].ﬂg.,.ﬂ]\r
T2 =0.33...0n8M

zn-1 =0.8871 YN -1
zn =07172..9N,
where v; € {0, 1} but does not depend on f3;
forall : <1

Thus, starting from z v, the numerical e-trajectory with ¢ =
2=~ “forgets” the initial point . Nervertheless, there exists
a true trajectory with the initial point & = 0.51...88 7172,
which is € close to the numerical trajectory.

However, not every map from C possesses the shadowing
property. Let us consider, for instance, the map f : z — 2z +
1/2(mod 1), which can be represented by f : 0.a1203... —
0.@2as3..., where a; € {0,1} and @3 = 1 — a». For arbitrary
integers m > k > 1, the sequence of points zg = 0, z; =
0.01\../._;, i=1,2,....,m —k + 2, is a piece of the e-trajectory

m—2
with ¢ = 27™( because x; = f(xg) — &, 2,41 = f(z;) when
i > 0). However, if 0 < 2§ < § = 27F then

L i tr >0.0... -k _
|z — f{(zg )] >0.0..01 > 2 6
k—1

max
0<i<m—k+2

i.e., the 8-shadow of the e-trajectory zg, x1, %2, ... contains no
true trajectory (for any z; when i > m — k + 2).

Recently, a large number of papers has appeared that deals
with the conditions that should be satisfied for a dynamical
system to have the shadowing property, including an estimate
of the quantity ¢, §, etc. These papers are mainly devoted to
continuous and smooth dynamical system. The first work in
this direction is due to Anosov[1].

Investigations on the shadowing property for discontinuous
maps are virtually nonexisting.

X. TOPOLOGICAL ENTROPY

So far, we have not mentioned about such notion as topolog-
ical entropy which is widely used now in the dynamical system
theory. The topological entropy tells us about the diversity
of the trajectory behaviour (more exactly, to what extent the
sets of the trajectory parts of finite (time) length vary with
an increase of this length). It is known, for instance, that for
continuous 1-D maps the topological entropy is positive if and
only if the map has a cycle of the period # 2¢,i = 0,1,2,...
This means, in particular, that the attractor of the dynamical
system can consist of one periodic trajectory (to which almost
all (by Lebesgue measure) trajectories will be attracted), but at
the same time, its topological entropy will be positive as, for
instance, for the map = — Az(1 — z) with A = 3.83. Here, the
topological entropy is positive (equals ln%é), and almost
every point is attracted to the cycle of period 3.

For the maps from C, the topological entropy always differs
from zero. For v > 2, as has been mentioned above, the map
on some Cantor set is equivalent to the symbolic dynamical
system with r — 1 symbols, and therefore, its topological
entropy is at least not less than In(r — 1).

XI. CONCLUDING REMARK

We have described the properties of one class of dynamical
systerms which are modeled by discontinuous 1-D maps.
The main property is the existence of a “good” invariant
measure, and, as a corollary, the existence of a stochastic
attractor. In this case, we should use the probability language
to characterize the behaviour of the trajectories. For every
subset of the attractor, and for almost every trajectory, we may
find (or know) only the probability of falling into a prescribed
subset of a point moving on this trajectory as time tends to
infinity. This class of maps always has strong temporal chaos.

It is not possible at this point in time to present a detailed
analysis of all properties mentioned in this paper, or for the
analysis of other important properties, such as bifurcations,
special properties of invariant measures, and in particular,
correlation properties of trajectories.

We have considered only one narrow class of discontinuous
maps in this paper. What can we say about other classes of
discontinuous maps? Discontinuous maps is a very compli-
cated research subject and we can obtain useful and interesting
results only for various special classes of maps.

Of course, discontinuous maps of other classes can have
essentially different properties. For instance, maps that violate
conditions 2 and 4 cannot have chaotic behavior. They can
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have attracting cycles that attract almost all trajectories, and
therefore, almost all trajectories are stable in the sense of
Lyapunov. In this case, there does not exist a good invariant
measure; however, as for maps belonging to class C, cycles
with unboundedly large periods exist, and their topological
entropy is positive.
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