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Abstract- This work presents an investigation into the
use of Genetic Programming (GP) applied to chaotic
systems modelling. A difference equation model
representation was proposed for being the basis of the
hierarchical tree encoding in GP. Based upon the
NARMA difference equation model and formulating
the identification as a multiobjective optimisation
problem, Chua’s circuit was studied.

The formulation of the GP fitness function, defined as
a multiobjective function, generated a set of non-
dominated chaotic models. This approach considered
criteria related to the complexity, performance and
also statistical validation of the models in the fitness
evaluation. The final set of non-dominated model
solutions were able to capture the dynamic
characteristics of the system and reproduce the chaotic
motion of the double scroll attractor.

1 INTRODUCTION

Genetic programming (GP) is an evolutionary paradigm
where the computer structures which undergo adaptation
are themselves represented as computer programs (Koza,
1992). Since the emergence of the GP paradigm, there
have been an increasing number of researchers working
on both theory and applications of genetic programming.
One of these application areas is time series prediction.
This problem is formulated as the discovery of programs
that produces a near-optimal model of the system under
investigation which can reproduce its original behaviour.

Time series analysis and prediction are important in the
study of a wide class of signal processing problems where
applications range from the analysis of marketing data,
brain wave patterns, and signals from the vibration testing
of mechanical structures through to speech processing. In
each case a model considered the best possible
approximation to the dynamic system is estimated, based
on observation data.

However, it has long been realised that the responses of
many non-linear dynamic systems do not follow simple,
regular, and predictable trajectories, but swirl around in a
random-like and seemingly irregular behaviour. As long
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as the process involved is mon-linear, even a simple
strictly deterministic model may develop such complex
behaviour. This behaviour is known and defined as chaos
and has led to developments in the study of non-linear
systems.

A special feature of chaos is its fundamental property,
known as extreme sensitivity (of the system dynamics) to
initial conditions, in the sense that two sets of similar
initial conditions can give rise to two dramatically
different asymptotic states of the system trajectory. A
second feature of chaos is the inability to predict long-
term behaviour.

Some studies of GP used for chaotic time series
predictionhave been undertaken. Koza (1992) introduced
the first studies on the discovery of programs for fitting
time series data. His study was based upon the short term
prediction of the logistic equation. Although this example
is one of the simplest equations that exhibits chaotic
motion, it was the starting point for further investigations.

Mulloy et al. (1996) have also explored the area of chaotic
prediction by using GP. They have presented a
comparison of previous results by Oakley (1994) and Iba
et al. (1993) based upon the Mackey-Glass equation. Iba
et al. (1993) introduced a hybrid identification system
called STROGANOFF (Structured Representation On
Genetic Algorithms for Non-linear Function Fitting). This
system was a combination of both GP and a method of
heuristic self-organisation GMDH (Ivakhnenko, 1971).
However, the prediction task was short-term instead of
long-term as was the study carried out by Oakley.

The approach of Koza, Oakley and Mulloy ef al. had the
same foundations, where the function set was defined as

F = {+, -, * %, sin, cos, exp, log}

An alternative chaotic non-linear system identification
(prediction) approach is described in this paper. This
approach uses GP for evolving potential models that can
reproduce the dynamic behaviour exhibited by chaotic
systems. The rest of the paper is structured as follows.
Section 2 introduces the model structure representation
proposed for this work. Section 3 gives details about the
GP program encoding as well as the definition of the
multiobjective fitness function. Section 4 presents the
simulation and results of the chaotic system analysis.



Finally, Section 5 draws some conclusions and future
developments of this alternative for chaotic modelling.

2 DIFFERENCE EQUATION PROGRAM MODEL
REPRESENTATION

The model representation used is the NARMAX model
(Leontaritis and Billings, 1985). Previous work has
formulated a non-linear system identification tool based
upon the NARMAX model that uses GP for determining
the appropriate non-linear model structure, which has
been successfully applied to simulated and real
identification problems (Rodriguez-Vazquez, et al., 1997,
Rodriguez-Vazquez and Fleming, 1998). The general
NARMAX model is defined as a non-linear function of
the input, output and noise signal terms. By selecting the
input terms in the NARMAX model formulation to be
zero gives the Non-linear Auto Regressive Moving
Average (NARMA) model (Leontaritis and Billing, 1985)
description

k)= FH{yk = 1)y (k =y ) el = 1), el =)} + e)

(¢Y)

where n, and n, are the maximum lags considered for the
process and noise terms, respectively. Moreover, {y(k)}
denotes a measured time series or signal, {e(k)} is an
unobservable zero mean independent sequence and

Ft {o} is some non-linear function. As has been stated in
previous work (Chen and Billings, 1989), the most typical
choice for F*{e}in equation (1) is a polynomial
expansion. The model is linear in the parameters and can,

therefore, be estimated by means of a Least-Squares
algorithm.

This model representation is used to model the dynamic
behaviour of chaotic systems. The next section describes
the integration of this representation into the GP
algorithm and describes the formulation of the
multiobjective fitness function.

3 MULTIOBJECTIVE GENETIC PROGRAMMING

3.1 Genetic Programming Encoding

Based upon the model representation defined by equation
(1), the GP population consists of tree-structured
individuals that readily represent alternative structures for
the application of the NARMA approach. Potential
models are encoded as hierarchical tree structures, thus
providing a dynamic and variable representation, and
these constitute members of a population of different
model structures. These structures consist of functions
(internal nodes) and terminals (leaf nodes) appropriate to
the problem domain. Hence, the function set is here
defined as F = {ADD, MULT?} = {+, *}, and the terminal
set as T = {X,, ..., Xuy, Xegt1, s Xuginey = {C, y(k-1), ...,
y(k-ny), ek-1), .., ek-ny)}. An example of this

hierarchical tree representation of the polynomial
NARMA model is expressed in Polish notation as (ADD
(ADD X1 X4) (MULT (ADD X2 X3)ADD X1
X2))). This is equivalent to the polynomial non-linear
model defined as

Yk)=09+0 ;y(k—1)+0 y(k-2)+0 se(k—-1)+

0 y(k—1)° +0 sy(k—Dy(k-2) @

where {X0, X1, X2, X3} = {1.0 (the constant term), y(k-
1), y(k-2), e(k-1)}. A Least-Squares algorithm is applied
to compute the parameter vector §; to minimise the
residual of errors & between the measured output y(k) and
the predicted output p(k) that is given by

e(k) = y(k) - 5(k.) @

This parameter estimation algorithm works by first
calculating the process terms coefficients and, using
equation (3), the residuals are computed. Once the
residuals are known, these are incorporated into the model
and a new set of parameters is estimated.

3.2 Multiobjective Fitness Function

In order to perform selection, all model measures
considered in the identification are evaluated for each
member of the population. The fitness value of each
population member is assigned by means of a rank-based
fitness method (Fonseca and Fleming, 1993). This fitness
evaluation is based on the definition of Pareto-optimality
or nondominance. If we consider a minimisation problem
and, given two » components objective function vectors,

-fu and fv , We can say that I:u dominates fv (is Pareto-
optimal) if

Vie{l,..,nhf, <f, adie{l,..n}f, <f, @

producing a set of possible and valid solutions known as
the Pareto-optimal or nondominated set. Selection in the
evolutionary process is made using a method of ranking
which favours non-dominant members of the population
(Fonseca and Fleming, 1993). Thus, the model
complexity, performance and validation attributes of the
modelling process can simultaneously be evaluated by
considering them in the multiobjective fitness function.
The objectives involved are defined and classified as
shown in Table 1.

Regarding the validation criteria, Billings and Tao (1991)
have introduced time series validation tests based upon
general correlations. These are given by
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The objectives related to the performance of candidate
NARMA models were defined shown in Table 1.
However, due to the unpredictable feature of chaos, long-
term prediction was not selected as an objective, and was
ignored.

The correlation objective functions were cast as
constraints. The target value to be attained was given by
the 95% confidence limit. This restriction was assumed in
order to identify valid NARMA models. The correlation-
based validation objectives were (2*tr + 1) elements
vector. In order to define these functions as scalars, the
following operation was assumed

CCF = maxlabs(dJ ab (T ))l )

where a,b = € or (). In the case of the autocorrelation of
the residuals and the second higher-order correlation
function, ®ab(t) =0, for t=0.

Table 1. Description of the objectives considered in the
MOGP-identification procedure.

© oper) )= E[(J(t)—e_z?)(ez(t-z)-??))]=5(t)

Attribute Objective Description
Model Model size Number of process and noise terms
complexity
Model degree Maximum order term
Model Lag Maximum lagged input, output and noise
terms
Model Residual Variance of the predictive error between
Performance variance the OSAPE
Long-term Variance of the LTPE
prediction error
Model validation | Equation (5) Correlation based test functions for model
with noise additive at the output

4 SIMULATION RESULTS

This section discusses the identification of non-linear
polynomial models from chaotic data sets. The chaotic
system used to test the applicability of the NARMA-GP
approach was Chua’s circuit (Chua et al., 1986). This
system is one of the most popular benchmarks for
studying non-linear oscillations.

The main reasons for Chua’s circuit being the most well
studied non-linear circuit are i) it is a simple and quite
robust circuit that can become chaotic, ii) the chaotic
behaviour of this circuit has been observed by computer
simulation, iii) mathematical studies have confirmed the
circuit chaotic nature and iv) it exhibits a variety of non-

linear dynamics and can therefore be considered as a
prototype model of chaos.

The normalised equations of Chua’s circuit (Figure 1)
can be written as (Chua et al., 1986)

iL R iNg
L C2°=|Vy, Va|=Z=cCt [N

.||i

Figure 1. Chua's circuit.

i:a(y—h(x)) myx+(mg +m) x21
y=x-y+z h(x): myx |x|SI Y]
z=-Py m,x«(mo +m1) x< -1

where my = -1/7 and m; = 2/7. The variation of o and B
parameters drives the system to display several regular
and chaotic regimes. The well-known double-scroll
attractor is obtained for o=9.0 and $=100/7. Based upon
these values, equation (7) was simulated using a Runge-
Kutta of 4th-order with step size of 0.001'. The z-
coordinate of the double-scroll attractor was then chosen
for this example (see Figure 2). The identification
technique described in Rodriguez-Vizquez and Fleming
(1998) and defined for time series prediction in this work,
was used to identify non-linear polynomial models of the
form of equation (1).

Double~Saroll Attractor
T T T

1000

[} 100 200 300 400 1500 800 700 800 800
N

Figure 2. Z-coordinate of Chua’s circuit that exhibits
chaotic behaviour.

! We wish to acknowledge the work of Mendes (1995) who performed this
simulation and provided the data.
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Because some information about the dynamical non-
linearity of the system is known a priori, the number of
fixed points (equilibrium) is introduced as an objective
since it has a direct relation to the dynamic model degree.

The concept of fixed point can be a way to determine the
structure of the non-linear polynomial model, as pointed
out by Mendes (1995). The term clusters and cluster
coefficients (see Definition 2 below) are useful tools that
are used to obtain not only the number of fixed points of a
system but also the location of such points.

4.1 Term Clustering

The NARX model, the deterministic part of the
aforementioned NARMAX model, can be expanded as the
summation of terms with degrees of nonlinearity in the
range / <m <1 . Each m th-order term can contain a p th-
order factor in y(k-n;) and a (in-p) th-order factor in u(k-n;)
and multiplied by a coefficient Cppp(ny, ..., np) as follows

! m My P m
yk)= T X X Cpmp(y i) LIy(k=n) TIu(k=n;)
m=0 p=0n,,n,, i=1 i=p+l
®
where,
Myt My oy
o= 3 .. (¢))]
nyn,  om=l n,=l

and the upper limit is n, if the summation refers to factors
in y(k-n;) or n, for factors in u(k-n,).

Definition 2. Cluster Coefficients (Mendes, 1995).

ny,.0,
The constants yZ Cpm-p(ny.-my) are the coefficients of

ny;ny,
the term clusters Qy,,um_,,, which contain terms of the

form y(k-i)Pu(k-j)™? for m=0, ..., | and p=0, ..., m. Such
cocfficients are called cluster coefficients represented as

s .
Y

From the last definition, one can say that the set of all
candidate terms for a NARX model is the union of all
possible clusters up to degree /. That is,
U Q yPum'P

p=0...m
m=0,..,!

{All possible terms} =

= constants UQ, UQ, UQ U Q UQSU. ..
... U all possible combinations up to degree /.
4.2 Fixed Points

Generally, a fixed point of a system is defined as the point
where y(k)=y(k+i), i € z. The fixed points will be
calculated for the autonomous polynomial of the system
under study. If the original polynomial is non-
autonomous, then u(k-i), i=0,1,... is set to be zero so that
the only remaining terms involve the output. Thus, the
possible clusters of an autonomous polynomial with
degree of nonlinearity / are Qg=constant, €, Qyz, ..
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Q,/, and the fixed points are the roots of the clustered
polynomial expressed as,

Y(k)=Coo+y(k) b3 Cro(n)+y(k)? yiycz,o("hnz)

=1 n,n,

-

1 y pd
++_V(k) chlo(nj ..... nl)

yomeally

10)

From the definition of cluster coefficients, equation (10)
can be rewritten as,

TV k)4 AT Y (k) + 3, y(k)+3,5=0 an

where Z¢=Cop is a constant. Equation (11) shows that the
degree of nonlinearity of the autonomous polynomial
gives the numbers of fixed points if Zyl #0.

Although a priori information is available about the
system structure, a disadvantage that the MOGP
framework exhibits is the inability to deal with equality
constraints. Therefore, in order to overcome this
weakness, the objective related to the model degree was
redefined as

ObjprG = abs|DEG — No_ FXP| 12)
where No_FXP, the number of fixed points, is defined to
be 3 as shown in Fig. 2.

4.3 Simulation

The multiobjective genetic programming method was run
with a population of 100 individuals for 100 generations.
Crossover and mutation probabilities were 90% and 10 %.
The function set was as defined in the aforementioned
example of hierarchical tree encoding of NARMA models,
and the terminal set consisted of the last 10 values of the
signal. Thus,

T= {y(k-1), ..., y(k-10)}

A non-dominated set of chaotic models obtained from one
out of several MOGP runs is shown in Table 2 It is
relevant to mention that MOGP can produce, at each run,
a set of equivalent models with *good’ model attributes.

Table 2. Details of the set of dynamical models used to
reconstruct the double-scroll attractor plotted in
Figure 4.
Model | p | DEG | LAG | OSAPEx10° Fixed Point
Location

1 9 3 3 3.5222 (-1.5323, 0, 1.5323)

2 10 3 4 3.1768 (-1.5341, 0, 1.5341)

3 12 3 4 1.3427 (-1.5096, 0, 1.5096) _

4 13 3 4 1.2139 (-1.5013, 0, 1.5013

s 14 3 4 12133 (-1.5023, 0, 1.5023)

6 14| 3 5 1.1768 (-1.5028, 0, 1.5028)

7 14 3 8 1.1668 (-1.5048, 0, 1.5048)
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It is desirable for the validation of chaotic models that the
fixed points of the estimated models should be as close as
possible to the fixed points of the original system. Based
on the concept of symmetry of fixed points, Mendes
(1995) stated that the fixed points of a cubic polynomial
with a (-z, 0, z) symmetry are obtained from the cluster
polynomial (see equation 11) where 3,=0. This fact
guarantees that the respective dynamical polynomial
model should not have any terms taken from the clusters
€y and Qf . In this case the symmetrical fixed points are
at

-1
43,

a3)

It is interesting to note that the double-scroll attractor
possesses these characteristics. It is therefore seen from
the results that the dynamical polynomial models
identified by using GP only possess linear and cubic terms
in their structures. Table 2 also provides details of the
location of the fixed points for each model.

An additional feature for the validation of chaotic models
is to verify if such models settle to attractors which
resemble the geometry of the original data. Thus, the
embedded attractors of the identified models are shown in
Fig. 4.

From these results, the most parsimonious model that was
identified and can reproduce the double-scroll attractor
consists only of nine terms. The structure is then given as

z(k)=2.9579z(k — 1)—2.93692(k — 2)+ 1.0354z(k - 3)
~069322(k - 1)* +2.33072(k — 1) 2(k - 2)

)? 2(k - 3) - 1.9134z(k — I)z(k - 2)°

+1.9162z(k - 1)z(k — 2)z(k - 3)

~0.4732z(k - 1)z(k - 3)°

—119132(k —1)* z(k

14

The validation correlation tests described in equation (5)
applied to this model are illustrated in Fig. 3.

5 CoNCLUSIONS AND FUTURE PERSPECTIVES

Genetic programming is a technique which has been
developed for the purpose of solving certain classes of
optimisation problem Combining this technique with the
general NARMAX representation has provided a powerful
tool for non-linear system identification.

The applicability of this technique has been tested, in this
work, on a non-linear system exhibiting chaotic motion.

Under chaotic conditions, the well-known benchmark
problem, Chua’s circuit, was studied. Chaos is easy to
postulate but hard to diagnose and to identify. As
suggested by Casdagli et al. (1992), GP may be useful in
forecasting chaotic series and offers an alternative for this

kind of identification problem. Hence, GP was used here
to identify models that reproduce the chaotic behaviour
presented in these two aforementioned systems.

Considering validation and additional information
extracted from the original data prior to the identification
process, MOGP was able to manage the search space and
extract models that could reproduce the dynamics
presented in the system under investigation.

One feature of chaos is its long-term unpredictability. For
this reason, the long-term prediction error criterion was
“ignored” in the multiobjective function definition. For
the case of Chua’s circuit, the set of models bred using
MOGP was able to reproduce attractors which resemble
the geometry of the original data.

Further work could include not only the evaluation of
statistical but also dynamical validation tools such as the
Lyapunov exponent and corr¢lation dimension (Mendes,
1995). These criteria could add a degree of selectivity to
the identification procedure and point to more accurate
models.

In view of the results of the paper, evolutionary computing
methods, in general, provide an alternative for generating
simple and near-optimal solutions of practical and
complex problems.

(©)
Figure 3. Correlation tests performed in the Chua’s
circuit data generated from model 1. (a) de’e’(z), (b)
d)e’ez’(r), © Cbez’sz’('r).
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Figure 4. Double-scroll attractor reconstructed using
models identified by means of the NARMA-GP approach.
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