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Models of Musical Instruments from
Chua’s Circuit with Time Delay

Xavier Rodet

Abstract—We study a new version of Chua’s circuit where the
linear elements are replaced by a delay line. We show that this
circuit is a model of an interesting class of musical instruments,
namely, those, like the clarinet, consisting of a massless reed
coupled to a passive linear system. The properties and behaviors
of this circuit are studied with or without a filter in the feedback
loop. In particular, the oscillation conditions are determined,
and the respective role of the nonlinearity and of the linear
elements are explained. Real-time simulations of the time-delayed
Chua’s circuit on a digital workstation makes possible easy
experimentation with signals and sounds. A surprisingly rich and
novel family of periodic and chaotic musical sounds has been
obtained. The audification of the local properties of the parameter
space permits easy determination of very complex structures that
could not be computed analytically and would be difficult to
determine by other methods.

1. INTRODUCTION

ONTEMPORARY music creation relies increasingly on
Celectronic circuits for synthesis of sounds. For an elec-
tronic instrument to be useful in music creation, it should be
possible to easily modify the sounds for such effects as expres-
sivity or different playing techniques. Having an instrument is
not enough to make good music; one has to be able to play
it to produce extremely precise results. The synthesis model
chosen determines not only the possible sound effects and their
specificity but also the characteristics of the controls offered to
the musician. The physical model approach to sound synthesis
consists of an explicit simulation of a physical system that
produces sound [1], [2]. However, the final aim goes beyond
the strict imitation of a specific instrument. Rather, it aims at
providing new simulated instruments with extended properties,
such as a broader range of sounds, improved playability, or
other properties sought by musicians.

In Section II, we derive a simple model of an interesting
class of musical instruments, namely those, like the clarinet,
consisting of a massless reed coupled with a passive linear
system, where the delay line plays an important role. We then
show in Section III that our model is identical to a new version
of Chua’s circuit where the linear part is replaced by a delay
line. The properties and behaviors of this circuit without a filter
in the feedback loop are studied in Section IV. In particular, a
stability condition is determined, and some relations between
the nonlinearity and the periodic and chaotic solutions are
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Fig. 1. Cubic smooth map with slopes s; and s,.

established. The next section looks at the case where a filter
is introduced in the feedback loop. It also proposes a simple
interpretation of the role of the delay-plus-filter element. In
Section VI, we show that for a very large class of models,
the Graphical Hopf Theorem gives the conditions for a unique
oscillatory solution. Finally, Section VIII explains our real-
time digital simulation and the surprisingly large variety of
sounds obtained with this circuit.

II. A SIMPLE PHYSICAL MODEL

Many physical models of sustained musical instruments
(strings, bass, reeds, flutes, and voice) can be described by
autonomous retarded functional difference and differential
equations. One of the simplest is written for x € R with a
memoryless nonlinearity +:

ax'(t) = x(t) + y(x(t — 7)) (1)

z(t) = hxy(x(t — 7)) (2)

where « € R, v R — R (eg., Fig. 1), 7 € R is some
time delay, h: R — R is the impulse response, and x* is the
convolution operator.

We focus on (2), which is preferred, since h offers much
more flexibility than the z'(.) term. Unfortunately, the solu-
tions to these equations and their stability are known only
partially and in restricted cases ([3], see Section 5; [4], see
Section 3; [5]). For musical use, we would like to guarantee
which solution is obtained among possibly several stable
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Fig. 2. Simple time-delayed nonlinear system, which is also a basic clarinet

model.

solutions. For this purpose, we will accept a broader class
of functions « and of filters &, provided that they are flexible
enough.

For strings, reed-woodwinds, or brass, the delay term plays
an essential role [6]. In a simple clarinet model, for instance,
the propagation of the sound wave and its reflection at the
extremity is represented by a feedback through a delay line
and a filter as in (2). The reed is represented by a nonlinear
function such as v above. Similarly, in a simple violin model
([11, [7]). the propagation of the vibration along the string
is accounted for by a delay line, and the excitation by the
bow is modeled through a possibly discontinuous memoryless
nonlinearity. One of the key points for music synthesis is
to model the excitation process in such a combination of
nonlinear oscillators that are coupled 1o passive linear systems.
It is a general model of a large class of musical instruments [8].

Let us examine the reed of a clarinet-like instrument coupled
to the bore. Following [8], let us call ¢, and ¢; the outgoing
and incoming pressure waves in the bore respectively, p
the pressure in the player’s mouth, and z the characteristic
impedance of the bore. The system can be described in a
simplified way by the following equations:

9o(t) = qi(t) = 2F(qi(t) + qo(t) — p(t))
qi(t) = 7(t) * qo(t) = h(t) * go(t = T)

where h(t — T') = r(t) is the reflection function of the bore.
The most important assumption here is that the reed has no
mass, leading to a memoryless nonlinearity F. In the case
where this system has a unique solution, then

do = v(h* qo(t = T))

This is a very simple model to explain the basic oscillatory
behavior of the reed in a clarinet-like instrument (Fig. 2). To
better understand this behavior, MclIntyre [8] and Magenza [9]
note that if h(t) is simplified into a dirac impulse generalized
function 6, (the sign inversion is included in ), then

o(t) = v(go(t — T)),
and similarly for ¢;. The signal value ¢,(¢) depends only on

the value at ¢t — T'. If ¢,(t) = Q, is constant on [T, 0], then
it is constant on any interval [(n — 1)T, nT} with a value

Qn =v(Qn - 1).

We now relate this system, found as a basic model of a
clarinet-like instrument, to the time-delayed Chua’s circuit.
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Fig. 3. Chua’s circuit.

%Nr
Wy
CI :: %Nr
—— E
T

v(x,t)

Fig. 4. Time-delayed Chua’s circuit.
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Fig. 5. Chua’s diode characteristic.

III. THE TIME-DELAYED CHUA’S CIRCUIT

The Chua’s circuit displayed in Fig. 3 is now well known
[10]-[16]. Sharkovsky er al. [17] add a dc bias voltage source
in series with the Chua’s diode and replace the capacitor C2
and the inductance L by a lossless transmission line. The
resulting time-delayed Chua’s circuit is shown in Fig. 4. In a
first simplification, the slopes mg and my of the characteristic
of N, (Fig. 5) are set equal. The study of this dynamical
system is difficult, but with C; = 0, it reduces to a nonlinear
difference equation. The solution consists of the sum of an
incident wave a(t — z/v) and a reflected wave b(t + z/v),
such that

a(t —x/v)y = —b(t —x/v) = Dt — z/v)

(1) = v(2(t - 27))

where T is the time delay in the transmission line and 7 is a
piecewise linear 1-D function that can be computed from the
parameters of the circuit [17]. This is the same delay-equation
that we have obtained for the basic clarinet model, except for
the filter h, which we will examine later.

By a proper affine change of variable, the invariant interval
of the function can be set to the interval [0, 1]. For certain
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Fig. 6. Piecewise-linear map with slopes s, and s..

parameter values, the function -y is composed of two segments
only in the invariant interval with slopes s; and s,. In this
particular case, Sharkovsky er al. have shown analytically that
the time-delayed Chua’s circuit exhibits a remarkable period-
adding and chaos phenomenon (see Fig. 11 of [17]). In the
(s1. s2) space, regions are found where the system has stable
limit cycles with periods equal, respectively, to 2, 3, 4, etc.
In between every two consecutive stable regions, the system
exhibits a chaotic behavior. From the sound synthesis point
of view, this is very interesting. Period adding corresponds to
successively lowering pitch. In the case of chaos, the signal
sounds like noise added to a periodic tone of the instrument,
but with some relationship between partials and noise.

IV. STABILITY AND PROPERTIES WITHOUT FILTER h

We now examine this system as the basic model of a
clarinet-like instrument without the filter 2 and assume, for
simplicity, that v < 0, zv”(z) > 0 and that there are only
three solutions to the equation y(z) = —« as in Fig. 1. If the
blowing pressure p = 0, then the pressure in the instrument ¢,
should remain zero. Thus, the origin O is a reasonable fixed
point of the system. In order for the system to oscillate around
O, as we expect a musical instrument to do, the slope s; of a
smooth function about O has to be less than —1 (Fig. 1). In
order for the signal not to grow to infinity, the slope of v has
to become greater than —1 at some distance from O. Hence,
for our purpose, the simplest odd function ~ has one segment
with slope s; around the origin and two segments with slopes
s9 > —1 further from the origin (Fig. 6). Remarkably, this is
the same function as in the time-delayed Chua’s circuit.

We show now that this (s, s3) structure for « is even
more justified in terms of the independent controls of sound
quality. It can easily be seen that |s;| controls the transient
onset velocity: The greater |s;|, the faster the onset. We have
here a clear control parameter for the onset behavior of our
instrument. If h(¢) = 6, the signal is a square wave. If h(t)
is a low-pass impulse response, then the signal is rounded.
This smoothing can be controlled by |s;| and |sz|: The closer
they are to unity, the less high frequencies are in go. This
can also be viewed as follows: In the square wave case, the
system uses only two points of the graph of y, whereas in the
rounded case, it uses more points spread more regularly on the
graph of . We have found that two important characteristics
of the sound, transient onset velocity and spectral richness, are
controlled by the slopes s; and ss.

However, such a piecewise-linear function has a drawback.
Consider the onset of the signal, i.e., the transient from zero.

Observe that before a certain amplitude is reached, only the
linear part of « is used. The system behaves therefore like
a linear system; that is, there is no change in the short
time spectrum of the signal, other than an amplitude growth
(this can be observed very easily in the short time spectrum
display of our real-time implementation, detailed below). On
the contrary, the nonlinearity of the reed of a real instrument
can be more realistically approximated by a quadratic function
[8]. Therefore, during the transient, there is a constant transfer
of energy between frequency components. As a consequence,
we favor a quadratic or cubic nonlinearity of the form y(z) =
ax® + s1x (Fig. 1), where a is determined according to the
slopes s; at O and s, at the point (zg, yo), such that yo =
-z = amg + s12¢. Note that as we vary s;, we determine the
amplitude and spectral richness of the sound simultaneously.
Then a greater amplitude leads to a richer sound (i.e., more
high-frequency components and with larger amplitude) as
generally happens with natural instruments. However, by
varying a and s;, we can still provide independent control
of the two first sound qualities mentioned above.

It should be noted that such a polynomial function may in-
troduce other fixed points than the origin, thereby complicating
the dynamics of the circuit.! An ideal function for our purpose
should have the origin as the only fixed point. To guarantee
this, the function should not cross the line y = 2/ H(0), where
H(0) is the transfer function of h at dc.

V. CIRCUIT WITH FILTER h

For musical purposes, we expect to have control of the
period duration, since its inverse is the pitch, and control of the
waveform itself, since it determines the timbre of the sound.
In the continuous case, Chow et al. [3] have studied similar
equations of the form

z(t) = h*y(z(t — 7))

where * denotes the convolution operation. It is shown that
under some fairly general conditions on the function v and
the impulse response h, the period 2 (corresponding to the first
mode in a clarinet, i.e., to a period of 27) is asymptotically
stable. This means that we can expect to play and keep some
steady tone from the instrument. It is also shown that if ~
is odd, the signal z(t) has the symmetry z(t + 7) = —z(t).
Then, the signal is composed of odd harmonics only. This is
an essential characteristic of the clarinet sound. Under some
conditions, periods having durations that are integer fractions
of 27 are also possible.

The class of filters considered by Chow et al. is defined
by h(t) = 1/2¢ for —e < t < € and h(t) = 0 elsewhere.
For a more general filter A, the first point we consider is the
condition for oscillation around the origin when such a filter A,
with transfer function H, is introduced in the feedback loop.
The open-loop transfer function is now

G(jw) = e " H(jw).
!'Such other fixed points exist for natural instruments. For a high enough

blowing pressure, the reed of a clarinet will keep the mouthpiece closed, but
this is usuvally an unwanted effect.
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Since this represents the transfer function of the physical
instrument, we naturally suppose that its impulse response
belongs to L. We can apply the graphical stability test [18] to
find the value of the slope s; above which the system is stable.
The limit value 1/s; should lie to the left of all intersections
of the Nyquist plot of G(jw) with the real axis (Fig. 7). Let
—p + 70 denote the intersection point with the smallest value,
and let w, be the value such that G(jw,) = —p. Then the
system becomes unstable when s1 < —1/p. Note that this
indicates only that the system may eventually oscillate. The
proof of this property is more involved and is provided in the
next section.

We can extract more information from this diagram. Sup-
pose for the moment that H(jw) is real positive (without
loss of generality we can at least choose the delay 7 such
that H(jw,) = p). Then, the intersection of G(jw) with
the negative real axis occurs for wyr = 7 + 2kmw, ie., for
frequencies fr = (1 + 2k)/27. Observe that fo = 1/27 is the
frequency corresponding to twice the delay 7 necessary for
a sound wave to propagate from the reed to the end of the
bore and back to the reed. The values fr, k = 0.1,2,---,
are the frequencies of the modes of the instrument. Therefore,
G(jwp) and wy, /27 can be simply interpreted as the amplitude
and the frequency of the strongest mode of the instrument.”
Observe that the frequencies f; are the odd harmonic partials
of the fundamental fy, but that the oscillation frequency may
be different from fy, since it generally is the frequency of
the strongest mode w,,/27. Suppose, for simplicity, that the
oscillation frequency is w,/27 and is equal to fy. Then,
G(j2kw,) is real positive and the corresponding even partials
usually vanish. Assume now that the argument of G'(j2kw,,) is
different from zero and that the oscillation frequency remains
the same. Then, the even partials can appear, and the amplitude
of the odd partials can be damped if Arg {G(j(2k + 1)w,)} is
not zero. However, in both cases, we have to make sure that
the oscillation frequency remains the same. Another way to
look at the influence of Arg{G(jkw,)} is to say that it can
move modes away from harmonic positions.

VI. HOPF BIFURCATION AND PERIODIC SOLUTIONS

The graphical stability test given above is valid as long as
we can partition our system into a memoryless nonlinearity
and a linear feedback loop. This encompasses more models
than the simple one we have studied here. But since we are
interested in periodic oscillation, we mention here a more

2In the case of the trumpet, for instance, the mouthpiece acts as a resonator

that boosts some modes with numbers greater than 1, thereby allowing an
easy oscillation at the frequency of one of these modes [6].
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Linear system with
transfer matrix G

Fig. 8. Nonlinear multiple feedback loop system y € R, u € R".

general method that allows us the prove the existence of a
periodic solution when it occurs, and provides estimates for
the frequency and amplitude of the oscillation. It also applies
to an even more general class of systems encountered with
the most sophisticated physical models of the instruments,
such as those in [2] and [19]. The graphical Hopf theorem
and its algebraic version [20] apply to a nonlinear multiple
feedback loop system, as shown in Fig. 8, where v is C*.
Note in particular that G may include delays. Then, under
certain conditions on v and G, the system has a unique stable
periodic solution. Even though it is straightforward, we will
not state this theorem in detail, since it is rather lengthy. We
merely emphasize that it provides the existence, uniqueness,
and stability test of the solution required for our application.
Furthermore, the graphical interpretation in analogous to the
graphical test applied in the previous section. However, the
periodic solution is guaranteed only in a limited neighborhood
of the bifurcation value. Therefore, other stable solutions may
appear under more general playing conditions. This occurs in
natural instruments [21] but can be a serious inconvenience
for an electronic instrument.

VII. DIGITAL SIMULATION

For more flexibility, we have simulated the time-delay
Chua’s circuit on a digital computer. We have implemented our
simulation on a Silicon Graphics Indigo workstation, which
is very well adapted for this purpose. It has good quality
16-b audio ports and good graphics capabilities for the user
interface (Xwindow and Motif). Furthermore, it is fast enough
for real-time simulation of the various circuits that we have
studied.

Real-time simulations were implemented by using HTM,
which is a tool for rapid prototyping of musical sound synthe-
sis algorithms and control strategies [22]. We have written
a Motif-C™* graphical-user interface that allows for easy
experimentation with the parameter values [23]. Faders control
the two slopes of the piecewise linear map <y, the output
amplitude, the fundamental frequency, and the amount of
filtering h. The extreme values of the faders can be adjusted
by editing the corresponding number fields. Various graphs
are displayed in real-time: the output signal, its short time
Fourier transform (STFT) or the function ~. In particular, the
possibility of looking at the STFT in real-time is very useful
for better understanding of the circuit and of the role of the
various parameters [24].

The structure of the periodic and chaotic regions in the
(31, s2) space as displayed in Fig. 9 of [17] is interesting
from a sonic point of view. The analytical computation is
possible because the characteristic of the nonlinear element is
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Fig. 9. User interface for the time-delayed Chua’s circuit.

piecewise linear. The computation would not be possible for
more complex characteristics. But by listening to the sound
of the circuit, one can easily determine these regions and
their frontiers. Let us take as an example the values for which
histograms have been represented in [17], i.e., s; = —18 and
s varies from 0.04 to 0.49 or more. One can listen to the
sound while changing parameter s». In 7,, regions, the periodic
signal is clearly heard as a harmonic sound, and the changes in
periodicity are easily found by ear. In the intermediate chaotic
regions, the sound is unstable or even noisy, and it is not
difficult to find approximate values for the frontiers between
these regions. It is remarkable that this audification of the local
properties of the space allows an easy determination of very
complex structures, which in some cases cannot be computed
analytically and are not simple to determine by other ways.
A very large variety of sounds can be produced by the
system because of the combination of the rich dynamics of
the nonlinear function, together with the number of states
represented by the delay line 7. As an example, one can hear
remarkable sounds by use of so = 0.99 or 0.6 and s; between
—1 and —10 000. Fig. 10 shows the short-time spectrum of
signals from the digital system for some of these values.

VIII. CONCLUSION

We have studied here some problems stemming from phys-
ical models of musical instruments for the purpose of sound
synthesis. In particular, we have shown that the time-delayed
Chua’s circuit is a model of the basic behavior of an interesting
class of musical instruments, namely those, like the clarinet,
consisting of a massless reed coupled with a passive linear
system. Simple as it is, this circuit exhibits a surprisingly
large variety of bifurcations and chaos. In the different regions
of the parameter space, periodic and chaotic signals provide
novel musical sounds. We have found conditions for periodic
oscillations and relationships between parameter values and
important properties of the produced signal such as onset
time and spectral balance. We have also proposed an analysis
of the role of the linear part of the circuit in terms of the
amplitude of the harmonic partials of periodic solutions. In
the case of circuits that cannot be reduced to the simple
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Fig. 10. Short-time spectrum of signals from the digital simulation of the
time-delayed Chua’s circuit for /o = 0.99 and /; between —1 and —10 000.

form cited above, the Graphical Hopf Theorem provides
a test for existence, stability, and uniqueness of periodic
solutions.

A real-time implementation of the circuit on an affordable
digital workstation has allowed one to make interactive pa-
rameter changes while listening to the corresponding sounds,
and has allowed easy experimentation with the properties and
behaviors of the circuit and sounds. It has revealed a rich and
interesting family of sounds for musical applications. The real-
time interaction also provides unusual insights on properties
of the circuit that would not be as easily discovered by using
other means.

We expect to extend Chua’s circuit to other instruments such
as brass, voice, flute, and strings. It appears that such models
are essential for the development and musical use of physical
models of classical or new instruments. For instance, we have
noted that several stable solutions may appear in general
playing conditions. This occurs in natural instruments, but
can be a serious inconvenience for an electronic instrument. It
would be an interesting achievement to design a system that
would model the usual playing behavior of an instrument, but
could avoid the other behaviors if requested.

ACKNOWLEDGMENT

We are grateful to the Center for New Music and Audio
Technologies, where this work has been done, and to IRCAM
for their support. We would also like to thank Silicon Graphics
for the use of their Iris Indigo workstation.



RODET: MODELS OF MUSICAL INSTRUMENTS FROM CHUA'S CIRCUIT

REFERENCES

[1] “Modéles Physiques, Création musicale et ordinateurs,” in Proc. Coliog.
Phys. Modeling (Grenoble, France), Oct. 1990, Editions de la Maison
de Sciences de I’'Homme, Paris, France, 1992.

[2] X. Rodet and P. Depalle, “A physical model of lips and trumpet,” in
Proc. Int. Comput. Music Conf. (San Jose, CA), Oct. 1992, pp. 132-135.

[3] S. N. Chow and D. Green Jr., “Some results on singular delay-
differential equations,” in Chaos, Fractals and Dynamics (P. Fischer and
W. R. Smith, Eds.). New York: Marcel Dekker, 1983, pp. 161-182.

[4] A. F. Ivanov and A. N. Sharovsky, “Oscillations in singularly per-
turbed delay equations,” in Dynamics Reported (C. K. R. T. Jones,
U. Kirchgraber, and H. O. Walther, Eds.). Springer Verlag, 1992, pp.
164-224.

[5] J. K. Hale, “Dynamics and delays,” in Proc. Delay Differential Equations

Dyn. Syst. (S. Busenberg and M. Martelli, Eds.), 1991.

N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments.

New York: Springer Verlag, 1991.

[7] J. O. Smith, “Efficient simulation of the reed-bore and bow-string
mechanism,” Proc. 1986 Int. Comput. Music Conf. (P. Berg, Ed.) (San
Francisco, CA), 1986, pp. 275-280.

[8] M. E. Mclntyre et al., “On the oscillations of musical instruments,”
JASA, vol. 74, no. 5, pp. 1325-1345, Nov. 1983.

[9] C. Magenza, “Excitation non linéaire d’un conduit acoustique cylin-
drique,” Thése, Université du Maine, France.

[10] L. O. Chua, “The genesis of Chua’s circuit,” Archiv fiir Elektronik und

Ubertragungstechnik, vol. 46, pp. 250257, 1992.

S. Wu, “Chua’s circuit family,” Proc. IEEE, vol. 75, no. 8, pp.

1022-1032, Aug. 1987.

[12] L. O. Chua, “A zoo of strange attractors from the Chua’s circuit,” Proc.

35th Midwest Symp. Circuits Syst. (Washington, DC), Aug. 9-12, 1992,

pp. 916-926.

L. O. Chua and L. Huynh, “Bifurcation analysis of Chua’s circuit,”

Proc. 35th Midwest Symp. Circuits Syst. (Washington, DC), Aug. 9-12,

1992, pp. 746-751.

[14] L. O. Chua and G. -N. Lin, “Canonical realization of Chua’s circuit
family,” IEEE Trans. Circuits Syst., vol. CAS-37 pp. 885-902, July
1990.

[15] R.N. Madan, “Observing and learning chaotic phenomena from Chua’s
circuit,” Proc. 35th Midwest Symp. Circuits Syst. (Washington, DC),
Aug. 9-12, 1992, pp. 736-745.

[16] L. O. Chua, M. Komuro, and T. Matsumoto, “The double scroll family,”
IEEE Trans. Circuits Syst., vol. CAS-33, no. 11, pp. 1073-1118, Nov.
1986.

[17] A.N. Sharkovsky, Y. Mastrenko, P. Deregel, and L. O. Chua, “Dry tur-
bulence from a time-delayed Chua’s circuit,” J. Circuits Syst. Comput.,
vol. 3, June 1993.

[18] .M. Vidyasagar, Nonlinear Svstem Analysis.
Prentice-Hall, 1978.

[19] D. Keefe, “Physical modeling of wind instruments,” Comput. Music J.,
vol. 16 no. 4, pp. 57-73, Winter 1992.

6

]

Englewood Cliffs, NJ:

701

[20] A. Mees and L. Chua, “The Hopf bifurcation theorem and its appli-
cations to nonlinear oscillations in circuits and systems,” IEEE Trans.
Circuits Syst., vol. CAS-26, no. 4, pp. 235-254, Apr. 1979.

T. Idogawa, M. Shimizu and M. Iwaki, “Acoustical behaviors of an

oboe and a soprano saxophone artificially blown,” in Some Problems

on the Theory of Dynamical Systems in Applied Science. Singapore:

World Scientific, 1992, pp. 71-93.

[22] A. Freed, “Tools for rapid prototyping of music sound synthesis algo-
rithms,” in Proc. Int. Comput. Music Conf. (San Jose, CA), Oct. 1992,
pp. 178-181.

[23] X. Rodet, “Nonlinear oscillator models of musical instrument excita-
tion,” in Proc. Int. Comput. Music Conf. (San Jose, CA), Oct. 1992, pp.
412-413.

, “Sound and music from Chua’s circuit,” J. Circuits Syst. Com-

put., vol. 3, pp. 49-61, Mar. 1993.

[21]

[24]

Xavier J. Rodet was born in Lyon, France, in 1948.
He received the Diplome d’Ingénieur en Physique
from Ecole Supéricure de Physique et Chimie de
Paris, Paris, France, in 1971, and the Ph.D. degree
from University Paris-6, Paris, France, in 1977.

From 1972 to 1980, he has been teaching as
Assistant and Maitre Assistant at University Paris-7,
Paris, France, in the Computer Science Department.
In 1981, he joined University Paris-6 as Professor in
the Computer Science Department, where he taught
until 1991. From 1972 to 1978, he pursued research
in the Electronic Department of Centres d’Etudes Nucléaires de Saclay,
France. From 1973 to 1978 he has been doing research at Institut National
de I’ Audiovisuel, Bry-sur Marne, France, on Computer Animation. In 1978,
he joined the Institut de Recherche et de Coordination Acoustique/Musique,
Paris, where he has been head of the Analysis/Synthesis team since 1982.
Since 1984, he has been in charge of the speech research team of Laboratoire
des Formes et de I'Intelligence Artificielle, University Paris-6, Paris, France.
From 1991 to 1993, he was a visiting researcher at the Center for New Music
and Audio Technologies, University of California at Berkeley, and has now
returned to IRCAM. His research interests are in the areas of signal and
pattern analysis, recognition, and synthesis. He has been working particularly
on digital signal processing for speech, speech and singing voice synthesis,
and automatic speech recognition. Computer music is his other main domain
of interest. He has been working on understanding spectro-temporal patterns
of musical sounds and on synthesis-by-rules. He has been developing new
methods and programs for musical sound signal analysis, synthesis, and
control. He is also working on physical models of musical instruments and
nonlinear dynamical systems applied to sound signal synthesis.



