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Equation (3) is a piecewise linear difference-differential equation,
we can utilize eigenvalue approach to analyze its dynamics in each
linear region separately. There are total three equilibria: 20 = 0 and
r_1 = —20/23 =~ —0.87, z1 = 20/23 = 0.87, when the system is
without delay, i.e., 7 = 0, x¢ is unstable while x_; and x; are stable.
From [6] we know that for a first-order linear difference-differential
equation with constant coefficients

de
i ox(t) + bax(t — 1) G))

the origin is asymptotically stable for any 7 € [0, oc) iff

a+b<0 )
and

b—a>0 (6)

clearly for (3), none of the equilibria z_;, zo. ) satisfies conditions
(5) and (6) simultaneously. For zo, (5) does not satisfy, so for any
7 €0, 00), o is unstable. For z_; and z, (5) holds but (6) does not
hold, so although when 7 = 0, z_ and z; are asymptotically stable,
as 7 increases, — and z; may become unstable and the system may
be through bifurcations to chaos. Our computer simulation confirms
this and from Figs. 2 and 3, we can see that the solution oscillates
around z;. We also found in our simulation that when the initial
condition is chosen as any positive constant function on [—25,0], then
the solution oscillates around x,. Inversely, if the initial condition
is chosen as any negative constant function on [—25, 0], then
solutions oscillate around z_ ;. This is because the property of the odd
symmetry of (1). Furthermore, in our all trials with various function
as the initial condition only one of the two cases mentioned above
occurs, no other cases (for example, double-scroll-like) were found.
This indicates that the two kind of pseudoattractors (around z—;
or z1) are relatively more “stable” than chaos in higher dimension
systems. Thus, the basins of attraction of the two pseudoattractors
are roughly (—oo, 0) and (0, +00), respectively. Detailed bifurcation
phenomena will be discussed in forthcoming paper.

Fig. 4 is the power spectrum of =(t), 2'* Runge—Kutta iterations
were performed with a step size equal to 0.5. The figure shows the
first 2'? spectral components with normalized frequencies in log-log
scale.

IV. CONCLUSION

A first-order piecewise linear continuous-time system with delay
was constructed, which can exhibit chaotic behavior. A pseudoattrac-
tor was displayed, the dynamics of the system were briefly analyzed.
The present example shows that chaos can occur in one-dimensional
continuous-time systems with delay.
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Elementary Canonical State
Models of Chua’s Circuit Family

Jiff Pospi§il and Jaromir Brzobohaty

Abstract— Two simple state models of the third-order autonomous
piecewise-linear (PWL) dynamical system, topologically conjugate to
Chua’s circuit family, are proposed. Unlike the known canonical systems
they are canonical also with respect to the relation between their parame-
ters and the corresponding eigenvalues, i.e., their state equations contain
minimum nonzero coefficients directly determined by the equivalent
eigenvalue parameters associated with the two regions of PWL vector
field in R®. The corresponding circuit models containing integrators and
adders are introduced. The mutual linear conjugacy between these two
elementary canonical state models and their relation with Chua’s circuit
family is suggested. The computer generated chaos for the double-scroll
attractor using one of the developed models is shown.

I. INTRODUCTION

Third-order piecewise-linear (PWL) dynamical systems are inten-
sively studied as the simplest autonomous systems which can exhibit
chaotic behavior [1]-[4]. Such systems belong to the so called Class
C of vector fields in R® [4] and can be described by the general
matrix form

% = Ax + bh(w) . )

where w = a’x. A € R*3, b € R® a € R?. The simple
memoryless PWL function

h(w) = % (lw+ 1] = |w — 1]) )

is continuous and odd-symmetric partitioning R® by two parallel
planes 'y : w = 1 and U_; : w = -1 into inner region
Do(-1 < w < 1) and two outer regions Dii(w > 1) and
D_ (w < —1) as shown in Fig. 1.

The dynamical behavior of such systems is given by two sets of
three eigenvalues determining two characteristic polynomials associ-
ated with the corresponding regions [3], [4], i.e.,

Do: det (51 — Ag) = (5 — p1)(s — p2)(5 — p3)

=5 —pi& +p2s—ps 3)
Dyy, Doy: det(s1 — A) =(s — 1/1)(5 —wv2)(s —v3)
=5 —qi15" + @25 — @3 )
where
Ao = A + ba’ (5)
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Fig. 1. Basic memoryless PWL feedback function.

and 1 is the unity matrix. State matrix A determines coefficients
(equivalent eigenvalue parameters) ¢, g2, g3 while matrix Ao, i.e.,
scalar product ba®, determines coefficients p1, p2. p3. Some of
the known systems topologically conjugate to Class C (e.g., Chua’s
universal circuit [3] or Chua’s oscillator [4]) are canonical with
respect to the behavior, i.e., capable of realizing all possible behavior
of the associated vector field, and with respect to the number of circuit
elements, i.e., containing the minimum number of elements necessary
[7]. They are not canonical, however, with respect to the relation
between their parameters and the equivalent eigenvalue parameters
[31, [4]. Such a property is useful for both the theoretical and practical
studies of chaos. In the present letter two new canonical forms of
the state equations, in which this relation is quite elementary, are
introduced. The integrator-based circuit models, their relations with
Chua’s circuit family and use in chaos modeling are shown.

II. ELEMENTARY CANONICAL STATE EQUATIONS

Lemma: Any third-order autonomous PWL dynamical system of
Class C is elementary canonical, i.e., with respect to the behavior,
to the number of free parameters, and to the relation between these
parameters and the corresponding equivalent eigenvalue parameters,
if state matrix A and vectors b, @ in (1) and (2) have one of the
following dual forms:

1st form:

@ -1 0

A= ¢ 0 -1
q3 0 0
P1—q

b= |p:—~q
P3 — 43
1

a= |0 (6)
10

2nd form:

i q1 g2 g3

A=|-1 0 0
| 0 -1 0
M

b=10
10
Pt —q1

a=|pr—q2|. )
LP3 — 4¢3

Proof: Both the forms of state matrix A in (6) and (7) evidently
determine the characteristic polynomial (4) because they represent
the known canonical forms of the linear system state matrix [5], [6].
They have the minimum number of nonzero parameters, three of
them being directly given by the equivalent eigenvalue parameters
q1, g2, ¢3. Substituting A, b, o from (6) and (7) into (5) the two
related forms of matrix Ao are obtained:

Ist form:
g -1 0
Ao = |q2 0 -1
gs 0 0
P1—q1
+ p2—q2 | [100]
b3 —q3
pr -1 0
= |p2 0 -1 ®
3 0 0
2nd form:
q1 q2 43
A(] = —]. 0 0
0 -1 0
1
+ (0] [p1 — q1p2 — g2 p3 — g3]
0
P P2 P3
=| -1 0 0]. )
0 -1 o0

These matrices determine the characteristic polynomial (3) because
they have formally the same forms as matrix A in (6) and (7).

Then the complete forms of elementary canonical state equations,
which represent the simplest description of autonomous PWL dynam-
ical third-order systems, are the following:

1st form:

&1 =qr1 — 22+ (p1 — q1)h(z1)
&2 = gax1 — 3 + (p2 — q2)h(z1)

&3 =gsz1 + (p3 — ga)h(z1) (10)
2nd form:

1 =qie1 + gz + gzxs + h(w)

To = —a1

T3 = —x9o

w=(p1 —q1)z1 + (p2 — @2)r2 + (pa ~ q3)3. 1)

II. INTEGRATOR-BASED CIRCUIT MODELS

The direct modeling of the first elementary canonical form (10)
leads to the block diagram consisting of three ideal noninverting
integrators, three adders, and one PWL element [Fig. 2(a)]. This
structure is based on the first canonical state model of the third-
order nonautonomous linear system (Analogue Computer network
[5]) completed by a nonlinear feedback block determined by a simple
memoryless PWL function (Fig. 1) where w = z:. The equivalent
eigenvalue parameters g1, g2, ¢s and the differences p; — ¢1, p2 —
q2, p3 — g3 determine the individual adder gains. This structure can
easily be modified by using one additional adder and then both the sets
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Fig. 2. First elementary canonical state models of the third-order au-
tonomous piecewise-linear dynamical system. (a) Three adder- and (b) four
adder-structure.

of parameters, i.e., p1, p2, ps and g1, g2, g3, directly determine the
corresponding adder gains {Fig. 2(b)]. Unlike Chua’s circuit family,
PWL function i (z;) appears in all three state equations but in the
circuit models it is represented by one network element only (Fig. 2).

Starting from (11) the complementary block diagram having the
same number of network elements (two of the integrators are here
inverting) is obtained as shown in Fig. 3(a). This structure is based
on the second canonical state model of the third-order linear system
(Follow-the-Leader-Feedback network [6]) again completed by a
nonlinear feedback determined by the simple PWL function (2) where
w = (p1 — q )z + (p2 — g2)x2 + (ps — ¢3)as. Utilizing the same
procedure as in the previous case, the modified structure having both
the sets of equivalent eigenvalue parameters directly determined by
the adder gains is found [Fig. 3(b)].

IV. LINEAR TOPOLOGICAL CONJUGACY

As both the proposed models as well as Chua’s circuit family
are qualitatively equivalent in their dynamical behavior, all their
mutual relations can generally be expressed by a linear topological
conjugacy condition. Its simplified form derived in [4] for Chua’s
circuit family is valid only for the special case whene” =[1 0 0]
ie, w = wx1. As follows from (6) it corresponds also to the first
elementary canonical form which is therefore more suitable for direct
expressing the linear topological conjugacy with Chua’s circuit family
in terms of [4].

For the second elementary canonical form (11), where the argument
of PWL function h(w) is given by the linear combination of
variables x1, 22, x3, the linear topological conjugacy condition must
be derived in a generalized form [10]. Then the linear topological
conjugacy, where the first form of the elementary canonical state
model is given by the second one, can be written in the same explicit

form
x=Tx (12)

where x and x represent the corresponding state variables [4].
However, the transformation matrix T must be expressed from the
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Fig. 3. Second elementary canonical state models of the third-order au-
tonomous piecewise-linear dynamical system. (a) Three adder- and (b) four
adder-structure.

Fig. 4. Computer generated phase portrait in 7 — x3 plane of the dou-
ble-scroll attractor represented by the first canonical model with related
equivalent eigenvalue parameters [3]: p1 = 0.09; po = 0.432961; p3 =
0.653325; g1 = —1.168; g2 = 0.846341; g3 = —1.2948.

generalized formula [10] which leads to the symmetric form

Pr—q1 P2 — 42 P3 = qs
T = |p2—4q2 qip2 —q2p1 +P3 —¢s q1p3 — qa3p1
P3 — 43 q1p3 — g3p1 q2p3 — q3p2

(13)

as a consequence of the mutual duality of both these state models.

V. EXAMPLE

The properties of the new elementary canonical state models have
been numerically verified by PSPICE for all the known sets of the
equivalent eigenvalue parameters producing chaotic behavior [3]. As
an example, the double-scroll attractor modeled by the first canonical
structure of Fig. 2(b) is shown in Fig. 4.
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VI. CONCLUSION

The two proposed state models of the third-order autonomous PWL
dynamical system are canonical not only in the sense of the necessary
number of free parameters needed for the system design but even in
their elementary relation to the corresponding equivalent eigenvalue
parameters. Both the models are topologically conjugate to Class C
of vector fields in R, i.e., qualitatively equivalent to Chua’s circuit
family, and they are suitable namely for basic studies of the chaotic
behavior of PWL systems.

Instead of the simple memoryless feedback PWL function (2) some
other types of nonlinear functions can be used (e.g., sigmoid [12],
hysteresis [13], etc.) for the modeling and PC simulation of any
third-order PWL dynamical system behavior including hyperchaos.
Both the models have been extended also for the n-dimensional
systems [10] so that it is possible to utilize them even in the study
of higher-order chaotic phenomena [7], [11].

All these models can also be used as prototypes for the practical
circuit realizations utilizing multiple-input voltage integrators [8] for
the first canonical form or multiple-output current integrators [14] for
the second canonical form. The digital setting of their parameters and
the consequent PC optimization of the resultant network structure are
also realizable [9]. Some other theoretical and practical details can
be found in [10].
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Comment on “How to Identify
Unstable DC Operating Points”

Michael M. Green

Abstract— The modeling of capacitors and inductors in nonlinear
circuits is discussed. In a previous paper by the author a theorem stated
that all dependent current (voltage) sources must be terminated by a
postive-valued capacitor (inductor). In this letter it is shown that this
requirement can be relaxed so that only ports that contain controlling
signals are required to be terminated by reactive elements.

I. BACKGROUND

In the above paper' a number of results regarding the stability of
nonlinear circuits were given. The main result of this paper (Theorem
1) was a criterion that can identify the stability of a circuit’s operating
point that is based only on the circuit’s dc elements; this criterion is
independent of values and locations of any capacitor or inductor that
might be in the circuit. In particular, this criterion states that if a
certain constant I', derived from a dc circuit linearized at a certain
operating point, is negative, then the operating point is unstable. The
proof of this result comes from showing that as long as enough
capacitors and inductors are appropriately modeled, the linearized
circuit’s characteristic equation can' always be normalized such that
the highest-order coefficient must be positive and the constant term
is I', which does not depend on any capacitor or inductor values.

How capacitors and inductors are appropriately modeled was
addressed in another result, which was derived as a byproduct of
the development of the stability criterion. In particular, Theorem 2
of the above paper states that any dependent current (voltage) source
must have a capacitor (inductor) placed in parallel (series) with it.
This requirement holds even if the value of a dependent source gain
is zero. (Such zero-valued dependent sources are needed when a port
corresponds to an open-circuit voltage or a short-circuit current that
is used as a controlling signal but is not directly connected to an
actual, nonzero dependent source.) This result is important because
there are locations in certain circuits where capacitors and inductors
must be modeled in order to observe unstable natural frequencies.
The dangers of leaving out such critical capacitors and inductors are
illustrated in Fig. 3(b) of the above paper.

As an example, consider the simple model of an operational
amplifier, shown in Fig. 1 with the two reactive elements required
by Theorem 2 of the above paper included. In particular, a capacitor
C' must be modeled across the input terminals; since its voltage
is a controlling signal, it must be considered to be a zero-valued
dependent current source. Also, an inductor L must be modeled in
series with the dependent voltage source at the output. However, the
series inductor is seldom considered important when analyzing the
dynamics of most op-amp circuits. In the next section we will give a
new result that relaxes the topological modeling requirements given
in Theorem 2 of the above paper and hence justifies this observation.
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