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Autowaves and Spatio-Temporal Chaos in
CNNs—Part II: A Tutorial

Ladislav Pivka

Abstract—In this paper, we reproduce and discuss some of
the spatio-temporal phenomena, recently simulated in discrete
CNNs of dimension one, two, and three. We show how target,
or concentric waves, can be generated in both excitable and
fluctuating 2-D media, and how several types of scroll waves
can be simulated in 3-D arrays. The basic property of autowaves
exhibited in interactions—mutual annihilation—is demonstrated
through examples. Also included is a discussion of the coexis-
tence of low- and high-dimensional attractors in a CNN ring.
Chua’s circuit is used as the basic cell in the CNN arrays.
Parameter values and initial conditions for the corresponding
simulations are given so they can be reproduced with different
simulators.

1. INTRODUCTION

RAVELING waves and spiral waves have been discussed
Tin Part I of this tutorial. The same types of CNN media
(excitable or fluctuating) can also be used to generate other
types of wave phenomena, e.g., trigger waves and target
(concentric) waves. These will be demonstrated in Section
II, where we also discuss three different combinations of
interaction between spiral and concentric waves in excitable
media.

Three-dimensional vortex rings were first observed and
described in [1]. Because of the complexity and high com-
putational costs, three-dimensional analogs of planar spiral
waves have begun to be studied in depth only recently,
largely inspired by experimental observations of wave propa-
gation in nerve and heart tissues [3], [4]. In most cases, the
FitzZHugh-Nagumo equations and the Oregonator model were
used previously to model the dynamics in excitable media
[5], [6]. Simulations of 3-D scroll waves in arrays of Chua’s
circuits [2] are described in Section III. Finally, in Section IV,
a CNN medium is considered, in which two limit cycles are
exhibited by each uncoupled neuron. Media of this type have
been shown to give rise to complex spatio-temporal chaotic
phenomena.
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Fig. 1. (a) Target wave in a 98 x 98 array of excitable Chua’s circuits,
with diffusion coefficient D = 0.5. The variable = of cell (50, 50) was set
to —3 periodically every 10 time units. (b) Time waveform of the x variable
of cell (45, 45).

II. TARGET WAVES IN EXCITABLE AND FLUCTUATING MEDIA

A. Target Waves in Excitable Media

We will use a 2-D excitable medium described by the
following system of coupled Chua’s equations

f(ij))

ij = oyi; —

+ D(-TH-I,J' ‘w1 + x4+ Tio1 — 4.’52"]')
Yijg = Tij — Yij + 2ij (t,j=1,2---,1)
Zij = —Pyij M
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Fig. 2. Devil’s staircase breakdown for decreasing coupling strength D in
a 5 x 5 array of excitable cells. Parameter values (3) were used with s =
55.78573 and constant amplitude of forcing A = 1.2. The symbol W denotes
the winding number, i.e., the ratio f, / f4 where fs is the frequency of forcing
and fg is the system’s response frequency. P denotes the period number, i.c.,
the number of local minima, per least period, in the waveform of one of the
state variables. The cell (3, 3) was forced and the response of cell (5, 5) was
monitored. (a) Devil’s staircase at D = 0.3. (b) Devil’s staircase at D = 0.1.
(c) Devil’s staircase at D = 0.03.

where

f(z) = (1/2)[(s1 + s2)z + (s0 — s1)(|x — B1| — | B1])
+ (89 — s0)(|z — Ba| — |Ba|)] + ¢ (2)

is a three-segment piecewise-linear function with breakpoints
By = —1 and By = 0.023744, o and (3 are appropriately
scaled circuit parameters, D = «/(GR) is the diffusion
coefficient, and [ is the array size.

The parameters will be chosen as follows:

10, 8= 0.3014987,
0 = —1.25719,

a s1 = 0.078573, so = 55,

e=0. 3)

In all simulations we use zero flux (Neumann) boundary
conditions. With the above parameter values, each individual
cell exhibits two stable equilibrium points P* = (—1.238,
0, 1.238), P~ = (0.02385, 0, —0.02385). When all cells
are set to the stable equilibrium point P+, no motion can
be observed, even if the diffusion coefficient D is nonzero.
By perturbing one of the cells of the array a traveling wave
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Fig. 3. Contour snapshots of target wave development in a fluctuating
medium (D = 5) of 98 x 98 cells. (a) through (r) correspond to time ¢ =
20, 40, 60, 80, 100, 120, 300, 400, 500, 600, 700, 1500, 1800, 2100, 2400,
2700, and 3900, respectively.
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Fig. 4. A fully developed target wave in a 2-D array of 98 x 98 cells.

is initiated. The neighboring cells trigger each other through
a mechanism similar to that described in Part I, Section II-
A, of this tutorial. In this case, however, since each cell is
monostable, it settles down to its original state after a short
period of time, and the wave front disappears when it reaches
the boundary of the array. A series of concentric wave fronts
can be induced by forcing the center cell periodically (Fig. 1).
When forced with a periodic signal of the form A cos(wt)
the response of the other cells, and hence the density and
frequency of the wave fronts, will depend on the amplitude
A and frequency w of the forcing, as well as on D. It has
been known that the response of an oscillator to such forcing
can be very complicated, giving rise to the so-called devil’s
staircase [7]-[9]. The situation is no different in coupled arrays
of oscillators as long as the diffusion coefficient is large
enough, i.e., the devil’s staircase structure translates into arrays
without any change ((Fig. 2(a)). A more complicated response
is observed if the diffusion coefficient is small, resulting in the
breakdown of the devil’s staircase which no longer represents
a monotone increasing function [Fig. 2(b) and (c¢)]. Among
other phenomena observed from such responses in arrays is
the appearance of noninteger winding numbers (e.g.. for 4 =
1.2, = 1.238 in which case the winding number W = 3.5)
in contrast to integer ones in single forced cells.

B. Target Waves in a Fluctuating Medium

With the parameter values

o = 10,
—0.921,

4 =0.334091, s, = 0.020706, s9 = 15,
e=0 (4)

S0

corresponding to a periodic regime in each cell, and initial con-
ditions from Section III-A, Part 1, a spiral wave is generated.
By placing a U/-shaped obstacle in the path of the spiral, which
is accomplished by clamping appropriate cells ((z, 10). (4, 20)
for ¢ = 10, 11.---,20, and (10, k) for k = 10,11,---,20)) at
fixed values (e.g., at (—1.25, 0, 1.25)), the spiral structure is
gradually destroyed and a sustained train of concentric waves
takes over, with the obstacle as the “source” (Figs. 3 and 4).
Thus by changing the boundary condition, a different type of
wave 1s generated.

C. Interactions of Autowaves in Excitable Media

There is a fundamental difference in the properties of
autowaves and classical waves in conservative systems. During
the propagation of autowaves, the shape and amplitude remain
constant, in contrast to classical waves which become distorted
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Fig. 5. Two target waves annihilate upon collision. r variables of cells (25, 25) and (75. 75) were set to —3 every 10 time units.
Snapshots (a) through (j) correspond to ¢+ = 20.40.60.---.200.

through diffusion processes in the media. Autowaves do not This is clearly demonstrated in an interaction of two target
reflect from each other upon collision, nor do they penetrate  waves in Fig. 5. Two cells are excited periodically to generate
or interfere with one another, but they annihilate instead. concentric wavefronts that annihilate when they collide. The



654 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995

Fig. 5. (Continued.)

annihilation property makes it possible for multiple spirals to
coexist (Fig. 6), without destroying or interfering with one
another.

However, despite the annihilation property, coexistence of
two types of autowaves is only temporary if one of them causes
reexcitation of array cells with a higher frequency. The spiral
wave in Fig. 7 propagates through the medium faster than the
target wave, resulting in a gradual swamping of the concentric
wave pattern.

III. SCROLL WAVES IN 3-D CNN ARRAYS

We consider 3-D CNN arrays of resistively coupled Chua’s
circuits each of which operates in a periodic (stable limit cycle)
regime. The associated dynamical system is described by the
following system of equations

Eijk = Uik — Tijk — f(Zijk))
+ D; jx(Tit1,5k
+Zi—15k T Tij41,6 T Tij-1k
+ Zij k41 + Tij k-1 — 65 5k)
Vi k = Tigk — Yijk + % jk
Zijek=—Pyijr (1<i<N;y,1<j<N;1<k<Ng)

)

where

f(x) = (1/2)[(s2 + s1)x + (80 — 82)(|z — B1| — |B1])
+ (81 = s0)(|z — Bz| — |B2])]

is a 3-segment piecewise-linear function with the slopes sq =
—0.921 (middle segment), s; = 15 (right-hand segment), s, =
0.020206 (left-hand segment), and the breakpoints By = —1,
By = 0.0591173. These parameters and a = 10, 8 =
0.334091, as well as diffusion coefficients D; ; = D = 0.1
will be fixed unless otherwise stated. Also the size of the 3-D
array was the same in all simulations, namely N; = N; =
N = 50.! We used Euler’s integration routine and stepsize
0.01 to integrate the system. In all cases, zero flux (Neumann)
boundary conditions were used. We consider three types of
scroll waves: the straight scroll wave, twisted scroll wave,
and scroll ring wave.

a) Straight scroll waves can be generated from the initial
conditions in which the “2-D” initial conditions for
spiral generation (see Section III-A, Part I) are simply
stacked one on top of the other in the 3-D array in one

1Considering zero flux boundary condition, the actual array size is 48 x
48 x 48. Similarly in other arrays.
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Fig. 6. Coexistence of multiple spirals in excitable medium (D = 0.5). Parameter values (3) and standard initial conditions for
spiral generation (Section III-A, Part I) were used in the first and third quadrants of the 98 x 98 array. Other cells were set to
equilibrium P7T. Snapshots at ¢ = 20, 40, 60, 80, 100, 200.

direction. Fig. 8 shows a projection of the isosurfaces b) Twisted scroll waves can be produced in two ways.
of the resulting scroll wave. Note the two wavefronts 1) In homogeneous medium, the initial conditions can
corresponding to the same level of variable z for the be generated from those for the straight scroll wave

isosurfaces. through the rotation, by appropriate angles, of in-
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Fig. 7. Spiral and target wave interaction in excitable medium (D = 0.5). Initial conditions for spiral generation were used in the
first quadrant of the 98 x 98 array, and the x variable of cell (25, 25) was set to —3 every 10 time units to generate the interaction.
The target wave was swept away by the spiral after about S00 time units. Snapshots (a) through (p) correspond to t = 5, 10, 15,
20, 25, 30, 35, 50, 70, 90, 110, 130, 150, 170, 330, and 450, respectively.
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Fig. 7. (Continued.)

dividual 2-D layers of the 3-D array. An example
of this type of twisted scroll wave is given in
Fig. 9. According to [10], twisted scroll waves in

657

P)

homogeneous medium are unstable, and tend to
untwist for large simulation times, which was indeed
the case with our particular simulation.
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Fig. 8. Isosurfaces for a straight scroll wave, generated from a 48 x 48 x 48 array of Chua’'s circuits. Here, as well as in all
subsequent figures, the isosurfaces correspond to the level —1.503 of variable ..

Fig. 9. Twisted scroll wave generated in a homogeneous discrete active medium, at time ¢ = 80. Initial conditions were obtained

through gradual rotation of a developed spiral by angle 47 from top to bottom of array. The scroll wave has untwisted by
almost 37 by the time ¢ = 3000.
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(b)

Fig. 10. (a) Inhomogeneous discrete active media give rise to twisted scroll waves. The snapshot is at time ¢ = 300. (b) Snapshot
of the wave at ¢ = 3000.

659
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(b)

Fig. 11. (a) Scroll ring at t = 700. (b) Cross section of the scroll ring at level ; = 25.
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(b)

Fig. 12. (a) Scroll ring in its later stages of development at + = 3000. (b) Cross section of the scroll ring at level j = 25.
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Fig. 13.  Scroll ring created through the rotation of a developed spiral (¢

2) Another way of obtaining twisted scroll waves is to
use an inhomogeneous medium, e.g., by introducing
a uniform gradient for the diffusion coefficient, in
the k—direction for instance, as follows: D; jr =
D(1 + k/25), ie., D, ;) varies between 0.1 and
0.3 (Fig. 10). Since larger diffusion coefficients give
rise to greater wavelengths and smaller periods of
rotation, the initial conditions evolve into a twisted
scroll wave which, in contrast to 1), is stable [11].
Different shapes and degree of twist can be achieved
by simultaneously imposing a gradient to parameters
« and D.

¢) Scroll ring waves have been previously studied numeri-
cally, e.g., in [12], using the classical FitzHugh-Nagumo
equations. Here we use the same parameter values as in
a) and bl), and change only the initial conditions. A
scroll ring can be thought of as the trace of a spiral,
rotated along a circle in the three-dimensional space. In
our particular case we used the mapping

x(i.j k) = X (i. I(N/4)
+I(\/(j = N/2=1)2+ (k- N/2 - 1)?))

where N is the array size (N = 50 in our case), I(r) is
the nearest integer approximation to real number 7, and
X(m,n) is the x-variable of the cell with coordinates
(m.n) in the 2-D array of initial conditions for the
spiral. The same formulae were used for the y- and z-
variables. A scroll ring develops after about 1000 time
units. Although circular in its early stages (Fig. 11(a)),
it developed *‘corners™ after several thousand time units

(Fig. 12(a)). On a larger time scale, the scroll waves
were unstable, drifting along their axes and disintegrat-
ing after hitting the boundary of the medium. The objects
in Figs. 11-13 seem to resemble tori at first sight, but
their cross sections (Figs. 11(b) and 12(b)) reveal a scroll
structure.

Finally, let us observe that the above simulations were all
performed for parameter values corresponding to an active
medium with periodic (limit cycle) local behavior. However,
similar results can also be obtained by using excitable dynam-
ics of the local cell behavior, e.g., by modifying the parameter
values to § = 0.3014987, D = 0.2, s = —1.25719, s
0.078573, and using the same initial conditions as above.

IV. SpATIO-TEMPORAL CHAOS IN RINGS OF CHUA’S CIRCUITS
One-dimensional CNNs consisting of resistively coupled
Chua’s circuits can exhibit a variety of spatio-temporal phe-
nomena which are typical of spatially extended reaction-
diffusion media.
An investigation of spatio-temporal dynamics was con-
ducted in [13] for the system governed by equations
Tr = a(yp — f(zr)) + D{@p—1 — 225 + Thy1)
Ue=ak -yt (k=1,---.0)
= —Byk )

2k
where

flz) = (1/2)[(s1 + s2)x + (s0 = s1)(|z — B1| — |B1l)

+ (52 = s0)(|x — Ba| — [B2])] (6)



PIVKA: AUTOWAVES AND SPATIO-TEMPORAL CHAOS IN CNNs—PART I 663

Fig. 14. Chaotic spatio-temporal pattern of the variable z for initial conditions (7) and diffusion coefficient D = 04, in a
ring of N = 256 cells.

Fig. 15. Result corresponding to Fig. 14 for initial conditions (8).

is a three-segment piecewise-linear function with breakpoints ~ parameters, and D = a/(GR) is the diffusion coefficient. We
By = — 1and By = 1; a and / are appropriately scaled circuit  can choose parameter values o« =9, 3 = 19, slopes s; = —5/7,
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so = —8/7, ss = —5/7, and periodic boundary conditions
To = ZTN, TN+1 = Z1, where N is the number of cells in the
ring; similarly for y and z variables.

The parameters for an uncoupled Chua’s circuit were chosen
so that it has two stable limit cycles, symmetrical with respect
to origin. Despite simple local dynamics of the basic cell, the
global behavior of the system can be very complicated. The
dynamics were studied for two types of initial conditions. In
the first type

2n(j — 1)

N ¥
the trajectories of all cells are attracted to the same limit cycle.
In the second type

7;(0) = 1+ 0.1sin y;(0) = 2;(0) =0 (7)

2r(j — 1)
N
the trajectories of cells belong to the basins of attraction of
two different limit cycles. The computations showed that for
both types of initial conditions, the dynamics of the system
have much in common. For weak couplings (D < 1), the
spatio-temporal patterns in both cases are simple: weakly
inhomogeneous in space and periodic in time. When the
diffusion coefficient D exceeds the critical value D, a
pattern occurs—so called 7-spatial oscillation—where almost
all adjacent cells are 180° out of phase. Increasing the diffusion
coefficient D further gives rise to envelope waves against a
background of w-oscillations and finally, when D > 0.33,
chaotic spatio-temporal patterns appear. We can sce that these
patterns no longer exhibit any regular structures in space
and are chaotic (with broadband power spectrum) in time.
Chaotic spatio-temporal patterns were further studied based on
a new approach describing the properties of patterns through
characteristics of associated attractors of a multidimensional
dynamical system with matrix phase space. Using this ap-
proach it has been found that the attractors corresponding
to the chaotic patterns for initial conditions (7) (Fig. 14)
have large correlation dimension (>10), whereas for initial
conditions (8) (Fig. 15) the correlation dimension is low
(<5). Thus, it is shown that in the matrix phase space of
CNNs, different high- and low-dimensional attractors coexist,
corresponding to different initial conditions.

The investigations show that the spatio-temporal dynam-
ics of 1-D CNNs are extremely rich and require detailed

z;(0) = sin y;(0) =2;(0) =01 (8

and systematic analysis. Such investigation can elucidate the
spatio-temporal phenomena occuring not only in CNNs but in
a broad range of spatially extended reaction-diffusion media
as well.
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