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Autowaves and Spatio-Temporal Chaos in
CNNs—Part I: A Tutorial

Ladislav Pivka

Abstract—This paper presents a summary of the most com-
monly observed spatio-temporal phenomena in discrete cellular
neural networks (CNNs) of dimension one and two. Among the
phenomena discussed are traveling wave phenomena in chains
and 2-D arrays, and spiral waves and target waves in both
excitable and fluctuating media. Chua’s circuit is used as the basic
cell in the CNN arrays. Parameter values and initial conditions
for the corresponding simulations are given so they can be
reproduced with different simulators.

1. INTRODUCTION

UTOWAVES and especially spiral waves are the most

frequently encountered wave phenomena in the study of
natural phenomena in biology, chemistry, and physics [1]-[3].
While traveling waves can arise in discrete media in which
each elementary cell is excitable or bistable, spiral waves and
scroll waves—3-D analogs of spiral waves—can develop in
either excitable [4], fluctuating [S], or even chaotic media [6].
We will explain briefly the notions of excitable, fluctuating,
and chaotic media. The global behavior of a discrete medium
depends on the dynamics of its constituent parts—neurons,
and the type of interconnections between them. Since Chua’s
circuit [7] can exhibit a wide variety of dynamic behaviors
we can use it conveniently as a building block for any of the
above-mentioned type of media.

Excitable medium is one in which each individual neuron
(Chua’s circuit) exhibits one stable state (rest state). Under
excitation or forcing (which can be provided by the neigh-
boring cells via coupling, or externally) the cell “fires,” i.e.,
one or more of its variables change their values dramatically
(excitation state). A period of relaxation follows with a slow
change in the variables, after which the system recovers
quickly in the refractory period, and is ready to fire again.

In a fluctuating, nonexcitable, discrete medium each neuron
operates in a stable periodic regime (i.e., each cell exhibits
only one stable limit cycle), whereas in a chaotic medium
the regime of each cell is chaotic (corresponding to a chaotic
attractor).

In addition to the above discrete media we will consider
media represented by bistable cells (i.e., there are two point
attractors for each cell), used in the generation of traveling
waves.
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Fig. 1. Schematic diagram of a one-dimensional array of resistively coupled
Chua’s circuits.

II. TRAVELING WAVE PHENOMENON

Transport processes in living tissues, chemical, and physio-
logical systems have been found to be associated with a special
type of autowaves called traveling waves [8]-[10]. Earlier,
continuous models were created to describe such phenomena,
but failed to cover all important aspects of the traveling
wave behavior. One of the most important of them is the so-
called traveling wave propagation failure, occurring at weak
coupling between cells. It has been proved by Keener [11] that
propagation failure cannot be observed in a continuous, one-
variable, homogeneous reaction-diffusion system. Therefore,
in studying those phenomena we must use discrete models.
Traveling waves and propagation failure in arrays of Chua’s
circuits have been studied in [12]. Here we reproduce those
phenomena and give an intuitive explanation of the underlying
triggering processes by using numerical simulations.

A. Traveling Waves in Chains of Chua’s Circuits

Fig. 1 shows a schematic representation of a chain of
resistively coupled Chua’s circuits. The dynamics of the chain
is governed by the following system of equations

T = oy — f(xk)) + D(zk-1 — 2z + Th+1)
=rr—yYe+2z (b=1,--,1)
2k = —Byk ¢))

where

f(z) = (1/2)[(s1 + s2)x + (s0 — 51)(|z — B1| — | B1|)

+ (52 = s0)(lz — Ba| — |B2|)] + ¢ @
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Fig. 2. Traveling wavefront in a chain of 28 Chua’s circuits, with diffusion
coefficient D = 0.6. The wave propagation was initiated by setting cell 1
to equilibrium point P+. After about 50 time units all cells have switched
to PT.

is a three-segment piecewise-linear function with breakpoints
B, = —1and B, = 1, a and (3 are appropriately scaled circuit
parameters, D = a/(GR) is the diffusion coefficient, and { is
the chain length. To obtain bistable cells, parameter values
were chosen as follows [13]:

B =30,
Sg = —1/7,

a=29, 81 =89 =2/7,

e=—1/14 3)

where sg, s1, s are the slopes of the middle, left-hand, and
right-hand segment, respectively.

For a traveling wave to arise with a symmetric choice of
slopes s and sy it is necessary to include an offset € # 0
in the function f: ¢ = —1/14, according to [13]. Another
possibility would be to use an asymmmetric function f, e.g.,
with sg = —1/7, s1 = 2/7, s3 = 1/7 and zero offset €. Zero flux
(Neumann) boundary conditions were used in our numerical
computations, which in this context means setting o = 1
and z;41 = z; at each integration step; similarly for variables
y and z.

The above choice of parameter values (3) guarantees the
existence of two stable equilibrium points P~ = [—1.25, 0,
1.251,P* = [1.75, 0, —1.75] for each cell, corresponding to
segments s; and s, respectively. Due to an asymmetry in
function f, the basin of attraction of the point P+ is much
larger than that of P~ and, loosely speaking, it is harder to
steer a trajectory back into the basin of P~ once it is in the
basin of P,

Propagation of a traveling wave in the chain depends on
a triggering mechanism which we describe briefly. A similar
triggering mechanism for a tristable Chua’s circuit has been
described in [15].

Consider a single cell and assume, for example, that the
initial state is in point P~. Let us introduce a constant forcing
term F' in the equation for z: ©x = a(yr — f(zx)) + F. By
choosing F' < F,,, where F, = 0.6, the trajectory will settle
down to a new equilibrium point which is in the basin B(P~)
of the original (unforced) cell. By choosing F' > F,, however,
only one equilibrium point P exists, which is in basin B(P™)
of the original (unforced) cell. Hence by forcing the cell for
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Fig. 3. Time waveforms of the diffusion term D(xp_; — 2z + Tp41)
(dashed line) and variable z (solid line) in cell 5 of the chain in Fig. 2.

20 time

space

Fig. 4. Propagation failure for diffusion coefficient D = 0.2795. The
wavefront propagates until it reaches cell 6; the higher-numbered cells remain
at equilibrium P~

an appropriate time interval with F' > F,, it is possible to
trigger the cell from P~ to P*. On the other hand, if the
initial state is in PT, much larger F' (|F| > 0.9) is needed to
trigger back to P~

Now let us have a look at the behavior in the whole chain.
For large values of D (say, D > 0.4), the system exhibits
only two attractors: {P*} = {Pf,---,P/} and {P~} =
{P7,---,P;}, where P¥ = P* for cell number i, with the
corresponding basins B({P~}) and B({P*}). In analogy with
the single-cell case, basin B({P*}) is larger than B({P~}),
B({P*}) being the “product” of large basins B(P]"). There-
fore, by perturbing the initial condition {P7,P5 --- P/} to
{P},P5 -, P}, the perturbed point will be already in the
basin B({P*}) and the trajectory will settle down to {P*}.
Fig. 2 gives the global view of the transient shown as a
traveling wave front.

From a local point of view, a switching process takes place
as follows: the term D(zk—1 — 2z + Tk4+1) in (1) acts as
a feedback and forcing term for cell k. The time waveform
of this term (Fig. 3) represents a pulse with above-threshold
value and causes the cell to switch from P, to P} A series
of such triggering processes occur, shifted in time, until all
cells have switched to P,
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Fig. 5. Time waveforms for propagation failure. Waveforms of the diffusion term D(zy—; — 2z% + Zg41) (dashed line) and

variable z (solid line) in cells 1-6 ((a)~(f)).

A different scenario can be observed with values of D
below the critical value D, ~ 0.2795. New attractors appear
in addition to {P*} and {P~}, making it possible for the
chain to settle down to patterns different from the trivial ones.
This is similar to Turing pattern phenomenon in two-grid

arrays [16]; however, here only one grid of resistive couplings
and diffusion coefficients is involved. Such patterns occur in
connection with so-called propagation failure (Fig. 4). The
local behavior of the related triggering processes is illustrated
by Fig. 5 where the initial condition is {P},P5 ---, P, }.
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Fig. 6. Traveling wavefront in a 48 x 48 array of Chua’s circuits. The
snapshots were taken at (a) t = 32, (b) t = 64, (c) t = 96 and (d) t = 128.
The obstacles were created by keeping some cells clamped at equilibrium
P~ during the simulation.

The first cell is set to equilibrium P, so there is no switching
[Fig. 5(a)]. In Fig. 5(b), the above-threshold forcing term
(dashed line) causes the z variable to rise sharply. This in turn
causes a decrease in forcing, but is not sufficient to pull the
trajectory back to P~. A time-shifted version of this process
occurs in the third cell (Fig. 5(c)). In cell 4 (Fig. 5(d)), the
forcing is still strong enough to trigger the cell, however, it
remains locked at a constant value < —0.5, and the cell will
go to an equilibrium in B(P+) but different from P*. Due
to further dissipation, the forcing term in cell 5 stays at a
subthreshold value and there is no switching (the equilibrium
is in B(P ™), [see Fig. 5(e)]. The rest of the cells [Figs. 4 and
5(f)], beginning with cell 6, remain virtually unchanged.

B. Traveling Waves in Two-Dimensional Arrays

Two-dimensional CNNs have been found to be capable of
modeling parallel processing and image processing [13]. For a
demonstration we use a 2-D grid of resistively coupled Chua’s
circuits. Such arrays can be described by the system

&5 = a(yij — f(@i))

+ D(@ig1,5 + Tim1j + Tigar + Tijjo1 — 425,5)
Ui =Tig —Yij+2; (=121
Zij = =By @)

We use parameter values (3) along with zero-flux boundary
conditions and D = 0.5 to integrate this system. Fig. 6
shows several snapshots of the traveling wave propagating
through a simple image. Since traveling waves do not reflect
from obstacles and do not interfere upon collision, the wave
bypasses the closed obstacle but fills in the open one. The
interior of the closed obstacle remains in the initial state
P, thus making it possible to distinguish between the two
obstacles. Another application of the traveling wave is finding
the shortest path in a flat or wrinkled labyrinth [13].

Fig. 7. Initial conditions for spiral formation: (a) variable z, (b) variable y,
(c) variable z.

III. SPIRAL WAVE PHENOMENON

Spirals are among the most frequently observed structures
in the universe, from the microscopic formations in chemical
reactions, through large atmospheric formations, up to gigantic
clusters of galaxies. The appearance of rotating spiral waves
has been studied extensively for several decades, especially
in chemical and biological processes, including those in the
cardiac muscle [1], retinae [10], and chemical oscillators
such as the Belousov—Zhabotinskii reaction [2]. Most of
these systems have been successfully modeled by continuous
models via partial differential equations. However, the above
phenomena can be reproduced more efficiently by using CNNs
of discrete, coupled cells [14].
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Fig. 8. Contour diagram of spiral development (variable z), with D = 0.1 in a 48 Xx 48 array of Chua’s circuits. Snapshots are at
time t = 5, 10, 15, 20, 25, 30, 35, 40, 45, and 150 [(a) through (j)]. The corresponding 3-D figures are shown in (k) through (t).

In this section we will describe initial conditions for the
generation of spiral waves in 2-D arrays of Chua’s circuits.
In order to give the reader an intuitive idea of local behaviors
we plot the waveforms, generated by cells in different sites
of the arrays.

We consider both excitable and fluctuating media to gen-
erate spiral waves. A detailed treatment of the spiral wave
phenomenon in arrays of coupled chaotic Rossler oscillators
is given in [6].

A. Spiral Waves in Excitable Media
For the purpose of generating the spiral wave we again
consider the nonlinear system (4). With the parameter values
a =10,
82 = 55,

3 = 0.3014987,
= ~1.25719,

s1 = 0.078573,

e=0 &)

and breakpoints B; —1, By = 0.023744, each individual
cell is bistable with the stable equilibrium points P~

S0
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Fig. 8. (Continued.)

[—1.238, 0, 1.238], P* = [0.02385, 0, —0.02385]. Of these
two equilibria, point P~ is not significant for the dynamics,
since its basin is very small compared to that of P+ which
represents the rest state of the excitable cell. We use the set
of initial conditions similar to those in [4] and [14], with
all the cells in the rest state:except for a wedge-like front
of excited cells in the z and y variables, and a smoothly
declining circular gradient for the z variable (Fig. 7). The C-
code fragment shown at the bottom of page 645 can be used
to obtain the initial conditions.

u‘ W W
SRR
R Ssttt&&\é\

Here the variable neq denotes the array size. Several snap-
shots of the time evolution of the pattern, from its early stages
to a fully developed spiral, are shown in Fig. 8. After that the
spiral will rotate indefinitely without changing its structure
which means it represents a steady state (periodic attractor).
The spiral shape is sustained by asynchronous oscillations of
individual cells. Some typical features of individual waveforms
during spiral motion are depicted in Fig. 9. Each cell operates
on an orbit whose phase is site-dependent. While the majority
of cells exhibit approximately the same amplitudes and periods
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Fig. 9. Waveforms of variable x from different sites of the array. (a)
Cells (25, 38) (solid line) and (25, 48) (dashed line). The waveforms have
aproximately the same amplitude and period, but are phase-shifted. (b) Cells
(25, 27) (solid line) and (25, 48) (dashed line). The cells near the spiral core
exhibit smaller amplitudes and periods.

of variable waveforms, the cells near the spiral center, also
called the core of the spiral, have both smaller amplitudes and
shorter periods (Fig. 10). The relative phase shift of cells can

645

Fig. 10. Amplitude diagram of the & variable. The vertical axis represents
the difference between the maximum and minimum values of variable x over
several periods of the motion.
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Fig. 11. Phase shift in time waveforms of the r variable for cells (25,¢)
(it = 1.2,.-..48).

be seen in Fig. 11 where a cumulative plot is given of the
waveforms of cells in the center line across the core.

One might ask what the minimum size of an array is for a
spiral to develop. While spirals obviously cannot develop in
very small arrays, a rotating stable motion can be generated
in arrays as small as 4 x 4 cells (see Fig. 12). Such a motion
is just a part of the core for a regular spiral in larger arrays.

%11l = 0.02 ; y11 = 1.52 ; x22 = -2.9 ; y22 = -1.9 ;
zp = 2.1 ; zm = 0.0 ; 1w = 5.0 ; 10 = neqg/2 ; jO = neqg/2 ;
for (i=1; i <= neq ; 1++)
for (k=1; k <= neq; k++)
{x[i = x11 ; y[illk] = y11 ; }
for (j=j0+1; J <= neq ; J++)
for (1i=i0+1; 1 <= 1041 + (3-30+1)/1w ; 1i++)
{x[11[3] = %22 ; y[i][3] = v22 ; }
for (i=1; 1 <= neq ; 1++)
for (j=1; j <= neqg ; J++)
{ auxl = sqgrt((1-10)*(1i-10)+(3-3J0)*(3-30)) ; aux2 = 2*3.14159 ;
if (i==10 &&j != jO) z[i][]j] = (zp/aux2)*acos((j-j0)/auxl) ;
if (1>10 ) [ i][3] = (zp/aux2)*acos{((j-J0)/auxl);
if (i<i0) z[il[j] = (zp/aux2)*(aux2 - acos({j-j0)/auxl))
}
z[i0}[30] = zp/2 ;
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Fig. 12. Rotating stable motion (variable x) in a 4x 4 array of excitable Chua’s circuits. The snapshots were taken from a
period of 24 time units. The diffusion coefficient was D = 0.02, parameter values as in Figs. 7-9 and the initial conditions
were generated with the same procedure.
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Fig. 13. A fully developed spiral in a 98 x 98 array of Chua’s circuits (fluctuating medium, corresponding to D = 5).
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Fig. 14.  Time waveforms of variable x from different sites of 2-D fluctuating medium with diffusion coefficient D = 5. (a) Cells
(25, 15) (solid line) and (25, 48) (dashed line). (b) Cells (25, 29) (solid line) and (25. 48) (dashed line). The cells near the spiral
core exhibit smaller amplitudes but approximately the same periods (compare Fig. 9).
B. Spiral Waves in Fluctuating Media and breakpoints 1 = —1, B> = 0.0591486, we obtain a
. . ium i i J ~ ate in a periodic regime.
By using modified parameters medium in which uncoupled cells operate in a p creg

Due to the high relaxational character of the cell motions,
such media are capable of supporting spiral waves (Fig. 13).
s2 =15, s9=-0921, =0 (6) One can use the same initial conditions as with excitable

@ =10, [=0.334091, s, = 0.020706.



648 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995

Fig. 15. State-space trajectories corresponding to cells (25, 15), (25, 25),
(25, 26), (25, 27), (25, 28) and (25, 29) (largest to smallest).

20

i 0
time 0 cell

Fig. 16. Phase shift pattern in the time waveforms of the x variable for

cells (25,i)(¢ = 1,2,---,48) in a fluctuating medium composed of 48 x
48 Chua’s circuits.

2
s
52
5%

Fig. 17. Amplitude diagram of the x variable analogous to Fig. 10. Param-
eter values (6) and diffusion coefficient D = 5 were used.

media. The process of spiral development is similar to Fig. 8,
however, in this case the behavior at the spiral core seems to
be more differentiated from the rest of the cells. The waveform
amplitudes of core cells are much smaller (Figs. 14 and 15).
On the other hand, the periods are approximately the same, in
contrast to Fig. 9(b). A phase shift pattern similar to Fig. 11
is observed in fluctuating media (Fig. 16). In Fig. 17 we plot
the amplitudes for individual cells, analogously to Fig. 10. The
amplitudes for core cells are much smaller than in the excitable
medium.

12
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6 e
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Fig. 18. Amplitude diagrams for the diffusion term. (a) Excitable medium
[D = 0.1 and parameter values (5)]. (b) Fluctuating medium [D = 5 and
parameter values (6)].

By plotting the amplitudes of the diffusion term D(z; j41+
Tij—1+ Ti—1,; + Tiy1,; — 4x; ;) we observe a phenomenon
opposite to Figs. 10 and 17: while the amplitudes of individual
cells at the core are small, in the diffusion term they sum up to
larger values than outside the core. In other words, the cells at
the core are subject to stronger forcing than the rest of array
cells (Fig. 18).
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