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Autowaves for Image Processing on a
Two-Dimensional CNN Array of Excitable
Nonlinear Circuits: Flat and Wrinkled Labyrinths

V. Pérez-Mufiuzuri, V. Pérez-Villar, and Leon O. Chua, Fellow, IEEE

Abstract— We describe a two-dimensional CNN array of re-
sistively coupled Chua’s circuits which can be designed to im-
plement some elementary aspects of spatial recognition, namely,
recognizing open curves from closed ones and locating the short-
est path between two locations. In the latter, two situations are
analyzed: flat and wrinkled surfaces. The two-dimensional CNN
array of Chua’s circuits is shown, for the first time, to be capable
of finding the shortest path between two points on a wrinkled
labyrinth. The performance of this parallel processing approach
was examined using computer simulations although this method
can be implemented in real time via VLSI technology.

I. INTRODUCTION

IOLOGICAL systems ordinarily perform reasoning and

logical decisions beyond the capabilities of our most
sophisticated computer systems. Intuitively, these tasks seem
to require mechanisms in which each aspect of the information
being processed can act on other aspects, simultaneously
influencing and being influenced by them. To implement
these mechanisms a class of models called parallel distributed
processing (PDP) have been developed [1]. These models
assume that information processing takes place through the
interactions of a large number of simple processing elements
called units, each sending excitatory and inhibitory signals to
other units.

PDP models are related to analog neural networks. Their
key features are asynchronous parallel processing, continuous-
time dynamics, and global interactions of network elements.
In the Hopfield networks [2], [3] each neuron is coupled to
every other neuron, thereby rendering it impractical for VLSI
realizations.

Cellular neural networks (CNN’s) [4], [5] have been de-
veloped to overcome this massive interconnection problem.
They possess the key features of neural networks, but each
unit/cell of the CNN is connected only to its neighbor cells.
Each cell contains linear and nonlinear circuit elements. Cells
not directly connected together may affect each other indirectly
because of the propagation effects of the continuous-time
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dynamics of the CNN. The CNN can perform parallel signal
processing in real time; many examples of its possibilities
can be found in the literature [6], e.g., noise removal, corner
extraction, edge extraction, connectivity analysis, the Radon
transform, thinning, and half-toning.

Recently, Krinsky ez al. [7], [8] have proposed what they
called “the autowave principles for parallel image processing.”
Autowaves represent a particular class of nonlinear waves,
which propagates in an active excitable media at the expense
of the energy stored in the medium. The term “autowaves,”
was coined by R. V. Khokhlov in [9, see Preface] as an
abbreviation for “autonomous waves,” since such waves can
propagate without a forcing function. Autowaves are character-
istic of strongly nonlinear active media. They are self-sustained
signals that induce a local release of stored energy in an active
medium, and use it to trigger the same process in adjacent
regions. Typical examples of autowaves include the waves
of combustion, of phase transitions, concentration waves in
chemical reactions, and also many biological autowave pro-
cesses (propagation of nerve impulses, excitation waves in
the heart muscle, epidemic waves in ecological communities,
spreading waves in the cerebral cortex, etc.). These examples
stress the importance of the autowave phenomena.

The fundamental properties of autowaves differ basically
from those of classical waves in conservative systems. The
shape and amplitude of autowaves remain constant during
propagation, whereas the amplitude of classical waves atten-
uates rapidly with the distance and the waveform is distorted
by both dispersion and diffusion processes occurring in the
medium. Autowaves do not reflect from either the medium
boundaries or inhomogeneities. Two colliding autowaves an-
nihilate rather than penetrate one another, and, therefore, no
interference takes place. However, both autowaves and clas-
sical waves share the property of diffraction. These properties
are shared by all the phenomena cited above [10].

Using these properties, Krinsky ez al. prove the ability of
the autowaves for some image processing operations, such
as contrast regulation, restoration of a broken contour, and
edge detection [7]. Principles of parallel analog information
processing by means of distributed systems are also discussed
in [11].

In the simplest case, an active medium cannot return to the
same state after propagation of an autowave (as for example
the case of waves of combustion). Therefore, only one wave
can propagate through such a medium. These traveling waves
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can be represented essentially by two states, one is assigned to
those parts of the system that are moving along a limit cycle,
while the remaining points are represented by the second state.
Traveling waves are a particular case of autowaves since they
only trigger from one stable equilibrium state to a second one
where they remain from then on.

By coupling several Chua’s circuits we have been able to
show analytically the existence of traveling wave solutions in
this system [12], [13]. The diffraction and annihilation of these
waves have been found to be extremely interesting properties
for image analysis. The purpose of this paper is to show that
a two-dimensional CNN array of coupled Chua’s circuits can
be used for image processing. We will bring to focus some
examples, namely, distinction between closed and open curves
and finding the shortest path in a labyrinth.

In the last case, two possibilities can appear in real life,
since the labyrinth can be flat or wrinkled. For example, the
first situation is typical for hospitals or large office buildings
where large open surfaces with only walls or furniture blocking
the way are common. The second situation could correspond
to the case of anyone going from point A to point B separated
by some hills with gentle and steep slopes. In this case, the
shortest path may not be the one that takes less time since other
factors must be considered, for example, the available stored
energy. In other words, instead of taking the geometrically
shortest path between A and B, which may include climbing
steep hills, it may be better to go around the obstacle in order
to save energy.

Because our array is a set of resistively coupled Chua’s
circuits, it has been found that the velocity of the traveling
waves decreases with the diffusion coefficient and can fail
to propagate at, or below, some critical value of the diffusion
coefficient. This phenomenon can be found in a discrete model
where the internal dynamics of each circuit cell plays an
important role. The distinction between closed and open curves
and the finding of the shortest path in a flat labyrinth are well-
known examples of image analysis in the literature. But, to
the best of our knowledge, we have solved, for the first time,
the wrinkled labyrinth problem as a three-dimensional spatial
image problem with a two-dimensional nonhomogeneous array
of Chua’s circuits.

II. MODEL OF THE TWO-DIMENSIONAL
CNN ARRAY OF CHUA’S CIRCUITS

The basic unit (cell) of our two-dimensional CNN ar-
ray is a Chua’s circuit [14]-[19] (Fig. 1), a simple active
nonlinear circuit that exhibits a variety of bifurcation and
chaotic phenomena. The circuit contains three linear energy-
storage elements (an inductor and two capacitors), a linear
conductance, and a single nonlinear active resistor. Every cell
is coupled to its four closest adjacent neighbors through linear
resistors, thereby simulating a diffusion process.

The circuit dynamics for each cell can be described by
a third-order autonomous nonlinear differential equation. In
particular, we will choose the dimensionless form given by
[14, equation (1.1)] [14] which we rewrite for each circuit cell
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Fig. 1. Chua’s circuit consists of a linear inductor L, a linear resistor of
conductance G, two linear capacitors Cy and Cj, and a nonlinear resistor
known as the Chua’s diode. Each unit is connected to its neighbors through
linear resistors R at node V).

at the position (%, j) of the array as
Tij = (i, — h(zi5))
+ D[zi_1j + Tig1j + Tij—1 + Tij41 — 4T 5]
Yij = Tij — Yij + %
%= —Pvi; 1)
where 1 < {7, j} < n and n is the size of the array. The

function h(z) describes the three- segment piecewise-linear
curve of the nonlinear resistor described by

h(z) = myz + (mo — my)zs + € T >z
=mpxr+¢€ 71 <z <19
=mz + (mo —my)zy + € <1 2

where ¢ is a small constant called the “dc offset.”

We will choose z; = —1 and z2 = 1. Observe that in view
of the symmetric configuration of the nonlinear characteristics
(i.e., its integral is equal to zero), it is necessary to include an
offset, € # 0, in order to have a traveling wave solution [12].

In (1), D represents the diffusion coefficient of the variable
z, and is given by

x

D= CR 3)
in its dimensionless form,! where G is the conductance in
Siemens of the linear resistor in the Chua’s circuit, and R is the
coupling resistance in Ohms. D is assumed to be constant in
the first two cases presented in this paper. However, a diffusion
coefficient which is a function of the position, D = D(%, j),
is necessary to describe a wrinkled labyrinth, as we will show
later.

The set of fixed parameters used throughout this paper
is {a, 8, mg, m} = {9,30,-1/7,2/7},G = 0.7, and
e = —1/14. For these values of the parameters the propagation
failure mentioned above occurs at, or below, some critical
value of the diffusion coefficient D* = 0.51(R* = 25 in (3)).

The equilibrium states of (1) obtained by setting &; ; =
%,; = %i; = 0 (for the uncoupled system) are summarized
as follows:

State z y z

P+ (mlfmo)/mlfe/ml 0 (mo—ml)/m1+e/m1
Py —€/mg 0 €/mo

P (mg—mi)/mi—€¢/m1 0 (mq—mg)/mi+e/my

I'We use the same scaled parameters as in [19].
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Here z, y, and z are vectors of dimension n x n. Each of
these three equilibrium states represents a solution to (1) for
all values of the parameters. The study of the behavior of the
solutions in the neighborhood of the “trivial” equilibrium so-
lutions and the questions of their stability are straightforward,
and, in particular, for the Chua’s circuit have been described
extensively [14]. For the set of parameters given above, the
equilibrium states P, and P_ are stable fixed points, namely,
sinks, while the stability of the state Py depends upon the value
of the coupling resistances, R. Bifurcation of solution branches
from the trivial branch is called “primary bifurcation” in the
literature of traveling waves [20], [21]. Only real bifurcations
are of interest to us in this paper. Recently, we have shown
[12], for the one-dimensional problem, that there is a critical
value of the coupling resistance, for a given number of
coupled circuits, at which we proved the existence of traveling
waves. The simulations shown throughout this paper fulfill this
condition. Above this critical value, P, is a saddle. Thus the
interval (P_, Fy) plays the role of a threshold, exceeding it
leads to a transition from the state P_ to state P,.

The nonlinear boundary value problem described by (1) and
(2) was completed by imposing zero-flux boundary conditions.
A uniform time step of 0.01 was used throughout as the
differential equations were integrated using an explicit Euler
method. The spatial step size is kept at a constant value equal
to one, as a consequence of our assumption of a discrete array.

IIIl. EXAMPLES OF HOMOGENEOUS TWO-DIMENSIONAL CNN
ARRAY OF CHUA'S CIRCUITS FOR IMAGE PROCESSING

Here we present two examples for illustrating the possibili-
ties of using a two-dimensional CNN array of Chua’s circuits
for image processing. Recall that autowaves, and by definition,
traveling waves, are not reflected by obstacles and boundaries
and do not interfere when two of them collide with each
other. Our model is able to recognize open curves and shapes
from closed ones, and can identify the shortest path between
two locations. Since the autowaves propagate throughout the
medium with a constant velocity, a large number of circuits
operate simultaneously. On the other hand, classical methods
for detecting closed curves usually consists of scanning all
possible points of the array in order to locate first the objective
being classified, and then following the boundary of the object,
by trial and error, until the closed curve is identified.

For the two examples to be presented below, we make the
following assumptions

1) The input image for pattern recognition is “stored into
the memory” of our array by keeping (i.e., clamping)
those circuit cells that coincide with the position of
the obstacles, at the same initial state, at all times.
This assumption is equivalent, from the point of view
of numerical simulation, to imposing some kind of
boundary conditions for the obstacles so that traveling
waves can surround them because of the diffraction
properties of the autowaves.

2) Only binary images are assumed in these two examples.
The two allowed states coincide with the two equilibrium
states Py and P_ in Chua’s circuits.

3) A traveling wave is always initiated at the left top corner
of our array by setting some cells in the Chua’s circuits at
the positive equilibrium state Py while maintaining the
remaining cells at P_. The traveling wave triggers from
P_ to P4 at constant velocity, and spreads throughout
the image. We should point out that even though each
cell can settle to either P, the state dynamics of each
node is continuous (the state of a node is not binary
valued).

The pictures presented in this section are obtained by com-
puter simulations with a SUN 4 Workstation. The numerical
simulations take 15 minutes to “complete” an array of 45 x 45
Chua’s circuits.

3.1. Detection of Closed Curves

Fig. 2(a) shows two possible obstacles that our model can
detect and differentiate. One of them is an open cavity (left
top of the figure) while the second one is a closed obstacle.

The set of computer snapshots in Fig. 2 shows the traveling
wave propagating throughout the input image. Because of the
dispersion (with neither interference nor reflection) property of
autowaves, the traveling wave surrounds the wall of the open
cavity and differentiates the closed obstacle by bypassing it,
from those that are opened by filling up the open space. Thus,
the closed objects will remain at the initial state P_. This
criterion can distinguish a closed curve from an unclosed one.

This method can be implemented by adding a simple deci-
sion circuit designed to identify the cells that have triggered
from a negative initial state to a positive final state. Another
possibility is to generate the difference picture of the result
of this transformation from the original image. Then, the
closed curves can be detected. Observe that unlike many
other approaches, this method for closure detection is invariant
against translation, rotation, and scaling.

This application of autowaves for image processing can also
be implemented by a CNN cloning template [27].

3.2. Shortest Path in a Flat Labyrinth

This application follows from the first example. After a
traveling wave is initiated at the left top corner of Fig. 3(a),
it propagates throughout the image (see consecutive snapshots
Fig. 3(b) to (). Because of its constant velocity, the shortest
path will coincide with the path that takes the least time. Let
us suppose that our wave must find the shortest path to reach
the left bottom corner of the image. In this case, our autowave
“explores” all the possible ways to reach that point. In the
successive snapshots shown in Fig. 3, observe that upon hitting
the obstacle, centered at cell (17, 26), the traveling wave splits
and eventually surrounds this object (Fig. 3(d)), and finally
annihilates each other when the two wave fronts collided with
each other [7].

Fig. 3(f) shows the final state when the program stops after
the wave reaches the left bottom corner.

IV. THE WRINKLED LABYRINTH

In this case, a new third degree of freedom is added to our
problem. Suppose the ground is not flat but wrinkled. In this
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Fig. 2.

initiated at the top left cell (1, 1) of the figure spreads throughout the image surrounding the obstacles and enters the cavity.
In this way, both objects are identified.

case, the shortest path is the path that takes the least energy.
This class of problems could be useful for moving systems
with a limited amount of stored energy between two points on
an undulated surface.

From a numerical point of view, this situation can be
achieved with a discretized array of cells, each one connected
to their adjacent neighbors through different linear resistors R.
These resistors, which vary from R; to Rmax are used to
code the difficulty of the slopes. Gentle slopes will correspond
to values of R which are close to R,;,, while steep slopes
correspond to values of R close to Rmax. This code can
distinguish whether the wave is climbing upward on downward
between two cells by assigning two different values of the

(a) The input image; a cavity and an obstacle on a 45 x 45 CNN array of Chua’s circuits. (b)-(f): the traveling wave

resistance depending upon the direction of the traveling wave
propagation.

Then, the input image is a black and white photo with
different tonalities of greys of the wrinkled terrain where for
example, the clearest parts of the photo correspond to the
higher zones of the terrain and are therefore identified with
Rmax. The remaining tonalities are identified with correspond-
ing values of resistors until the minimum allowed value, R,
is reached. This can be achieved experimentally by fixing the
value of the coupling linear resistors with voltage-controlled
resistances [28], [29]. Thus, the different grey tonalities are
discretized into discrete voltages levels.

As mentioned in the Introduction, the discretized version
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Fig.3. (a) The input image; a labyrinth defined by three obstacles on a two-dimensional array of Chua’s circuits (b)—(f) the traveling
wave initiated at the top left cell (1, 1) of the input image spreads throughout the image. The autowave properties of annihilation
and diffraction are clearly seen. The traveling wave stops when it reaches the final cell (45, 45), left bottom of the figure.

of the coupled Chua’s circuits exhibits an interesting effect
usually found in nerve propagation, namely, “propagation
failure.” By choosing those points of the terrain that are
unreachable for our autowave to values of R at, or greater
than, some critical value R* where the “failure” phenomenon
appears, the traveling wave propagating throughout the array
will fail to propagate from those points that remain isolated
from the rest of the image.

Fig. 4(a) represents a possible undulated terrain. This image
shows the discretized values of the resistance for the interval,
1 < R < 30. The cell located near the top of the Mexican hat
is assumed to be unreachable for the autowave and hence, its
coupling resistances have been set to values of R > R* = 25.
The objective is to find the best path between the top cell

(1, 1) and the bottom-corner cell (45, 45) of Fig. 4(a). As in
the preceding examples, the image processing begins when a
traveling wave is initiated at the top cell (1, 1) of Fig. 4(a) by
setting the cell (1, 1) at the steady state P, at ¢ = 0, while the
remaining cells are set at P_. After that (¢ > 0), the autowave
spreads throughout the wrinkled labyrinth, as expected.
Obviously, for the homogeneous case, the shortest path is
along the diagonal of the array. In this case, in view of the
inaccessibility of the top of the Mexican hat, the autowave
finds the best path by flowing and engulfing around the
obstacle. The set of Fig. 4(b)—~(f) shows this behavior. In those
zones of the array where the coupling resistance is close to
the critical value R*, the autowave velocity decreases, while in
the other favorable zones (gentle slopes) its velocity increases.
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Fig. 4. The wrinkled labyrinth. In this case, a new third degree of freedom is added to our problem; the ground is not flat but
wrinkled. In this case, the shortest path is the path that takes the least energy. (a) The input image; a Mexican hat. This image shows
the discretized values of the resistance in the interval, I < R < 30 (the diffusion coefficient, (3), is a function of the position).
(b)(f); the traveling wave initiated at the top of the figure (a) spreads throughout the image. (f) shows the final state when the
autowave reaches its destination. The hole at the center of the picture represents those places where the autowave can not reach.
The shortest path or the path that takes the least time surrounds the pick of the hat.

Once the autowave reaches our destination cell (45, 45) at the have been widely studied in the literature [22]-[26]. Explicitly,
bottom corner; it stops to propagate (Fig. 4(f)). the “search and trace algorithms” described by Lee in [24] can

This approach allows us to save the system’s stored energy be applied herewith. On the other hand, the flat case could
by choosing the most favored path, i.e., the path where the dif- correspond to the simple all-symbol mapping and the wrinkled
fusion processes involved in the wave propagation are favored. case to the complex cell-symbol mapping routing models [24].
Nevertheless, the task of finding the shortest path is not evident
at all. We have used simple algorithms to find it.

1) With the help of a simple external circuit, the times at

V. FINDING THE SHORTEST PATH
Algorithms for finding the shortest path between two points
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Fig. 5. Shortest path found for the flat (Fig. 3) labyrinth. The traveling wave
was initiated at cell (1, 1) and it stops at cell (45, 1). The crossed squares
in Fig. 5(a) corresponds to the obstacles defined in Fig. 3(a). Our results are
equivalent to those already found by Lee [24], but the optimum path can be
found much faster because of the highly parallel processing of the autowave
method.
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Fig. 6. Shortest path for the wrinkled (Fig. 4) labyrinth. As in Fig. 5 the
traveling wave was initiated at cell (1, 1) and it stops at cell (45, 45). The
contours show the different surface levels (different values of the coupling
resistance (Fig. 4(a)) indicated by the numbers close to each contour). From
the outside to the inside of the graph, the values of the resistance change
continuously from 15 to 5, then increases to the value 30, at the top of the
hill. Note that the traveling wave finds the shortest path by surrounding the
pick of the Mexican hat and then going down the valley and coming back to
the neighborhood of the hill.

which the cells had triggered from state P_ to P, can
be stored and compared in order to determine the path
that takes the least time to reach the final destination.

2) In the case where several cells have triggered from state

P_ to P, at the same time, then the cell that is closer to
the last point but farther from the first point is added to
the list of cells defining the shortest path. It is possible
to show that this is equivalent to storing the direction
of wave propagation at each cell, i.e., which neighbor
cell contributes more to the diffusion process during
the propagation. In other words, what signals converged
onto a cell before excitation.

We have applied the above algorithms to find the shortest
path for the flat and wrinkled labyrinths (Figs. 5 and 6). For the
flat labyrinth we have reproduced the results already found by
Lee [24]. On the other hand, in our case, the autowave method
improves the processing of the image, since all elements of the
medium evolve their states simultaneously, resulting in a very
high degree of parallelism.

Fig. 6 shows the shortest path found for the wrinkled
labyrinth. The contours correspond to the main surface levels
(different values of the coupling resistance (Fig.4(a)), indicated
by the numbers next to each contour). Observe that the
traveling wave finds the shortest path to arrive at cell (45,
45) by going around the Mexican hat, down the valley, and
then coming back to the neighborhood of the pick. Because of
the different values of the coupling resistances, the traveling
wave naturally chooses those points where its velocity can be
increased in order to take the least time to achieve its objective.

VI. CONCLUSIONS

We have shown that a two-dimensional CNN array of
Chua’s circuits can be used for image analysis. Results similar
to those proposed by Krinsky et al. [7] for autowave propaga-
tion have been reproduced numerically, namely, detection of
closed curves and finding the shortest path in a labyrinth, On
the other hand, we have shown for the first time, how it can
be applied to a CNN array of excitable nonlinear circuits for
the shortest path in a wrinkled labyrinth.

In a resistively coupled homogeneous array of Chua’s
circuits, a traveling wave will propagate throughout the input
image. Obviously, the examples shown in Section III are a
special case of the wrinkled labyrinth. By using a nonho-
mogeneous array it is possible to analyze three-dimensional
surfaces, or undulated surfaces, in order to find the best path
(i.e., the one that favors the autowave propagation) between
two points. The unreachable places for our autowave can be
fixed by setting the corresponding cells of the CNN array to
be coupled to their neighbors through resistances at, or greater
values than R*. Since for R > R* the wave fails to propagate
[12], [13], these points of the input image will remain isolated
from the rest, as if they were obstacles.

It is important to remark that for autowave processes the
traveling wave velocity, v, scale as

R*~R
RR*

IR

vy C))
i.e., for values of the resistance lower than R* and close to
the allowed R,;, the changes in the values of the velocity are
small if we compare with R. Consequently, for the wrinkled
labyrinth shown in Fig. 4(a), our autowave cannot identify
perfectly the best path, which corresponds to going through the
lower values of resistance in Fig. 4(a). To solve this problem
the input image can be discretized for values of the resistance
closer to R*. In this case, the ability of the autowave to identify
the best path is improved, but the process becomes slower.

Simple algorithms have been proposed in order to solve
the shortest path problem. Those algorithms are equivalent to
those proposed by Lee [24]. Nevertheless a more powerful
path algorithm must be developed for all cases, independent
of the degree of wrinkles of the surface or the chosen values
for Rmax and Rmin'

The wrinkled labyrinth is a powerful technique to discrimi-
nate steep slopes from gentle slopes, as well as to indicate to an
autonomous system in real time which places are unreachable,
depending on its stored energy. This technique is based on
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the observation that the state of each cell can be changed in
order to vary the value of the critical resistance R* via some
external controlling parameters [13].

The possibility of building large arrays of Chua’s circuits
via VLSI technology, as well as the use of voltage-controlled
resistors to store the undulated surfaces, make this autowave
approach a unique tool for real time image processing.
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