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Spiral Waves-on a 2-D Array of Nonlinear Circuits
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Abstract— Spatio-temporal patterns formed in a 2-D array of
Chua’s circuits have been studied numerically. It has been found
that spiral wave solutions can appear over a large range of
parameters and some of their properties have been measured.
This demonstrates that spiral wave dynamics can be studied
in arrays of discrete electronic circuits, such as a 2-D array of
Chua’s circuits, where real-time results can be obtained. We also
study the influence of small differences in the parameters of the
circuits, as is the case in real electronic components, where a 5%
device tolerance is typical.

1. INTRODUCTION

HE TENDENCY OF excitable media to organize them-

selves into highly structured periodic waves or spirals has
been the object of intense research interest. Rotating spiral
waves (or vortex) have been observed in various excitable
media, including cardiac muscle [1] (their formation is one of
the fundamental mechanism of dangerous arrhythmias which
often leads to sudden death), retinae [2] (their appearance is
a manifestation of some pathology such as Leao’s spreading
depression), cultures of the slime mould Dyctiostelium dis-
coideum [3], [4] (here, spirals play a constructive role in a
morphogenetic process), chemical waves on the surface of
platinum catalyzers [5], and chemical oscillators such as the
Belousov—Zhabotinsky (BZ) reaction [6], [7].

Most of these systems have been successfully modeled (e.g.,
Oregonator’s model for the BZ chemical reaction [8], [9]) and
this spiral dynamics can be studied by tedious time-consuming
computer simulations. Nevertheless, all these simulations share
the fact that they are represented by a continuum model via
partial differential equations, even though many real systems
are more realistically modeled as a set of discrete coupled cells
(cardiac muscle or the Dyctiostelium discoideum bacterias, are
some of the most well-known examples).

Recently, it has been shown that a 1-D array of Chua’s
circuit can support traveling waves propagating through the
resistively coupled cells [10]-[12]. Properties such as the
dispersion relation [13], [14] or the propagation failure phe-
nomena {15] have been measured in arrays of active nonlinear
circuits and compared with their equivalents in continuous
dynamical systems.
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In many cases, the global system can be viewed as an assem-
bly of a large number of identical local subsystems which are
coupled to each other by diffusion. Here, the local subsystems
are defined as those obeying the Chua’s circuit equation [16].
From this point of view, spatio-temporal structures, such as
those mentioned above, can be understood on the basis of a
synchronization of the local periodic processes occurring in
the global system [17].

In this paper, we will show how spiral waves can be
reproduced numerically in a 2-D CNN array of resistively
coupled globally unfolded Chua’s circuits [18] henceforth
referred to as Chua’s circuit for simplicity. Descriptions of
the tip of the spiral as well as some properties (period and
wavelength) of the spiral wave have been measured.

These results show that it is possible to build an electronic
circuit that enables us to study the spiral wave dynamics in
real time and where all the parameters of the medium can be
easily controlled.

II. MODEL OF THE TWO-DIMENSIONAL
ARRAY OF CHUA’S CIRCUIT

The basic unit (cell) of our 2-D CNN array is a Chua’s
circuit, a simple active nonlinear circuit which exhibits a
variety of bifurcation and chaotic phenomena. The circuit
contains three linear energy-storage elements (an inductor and
two capacitors), a linear conductance, and a locally active
nonlinear resistor. Every cell is coupled to its four nearest
adjacent neighbors through linear resistors, thereby simulating
a diffusion process.

The equations modeling the 2-D array of resistively coupled
Chua’s circuit were presented elsewhere [11] and here we
rewrite for each circuit cell at the position (z, 7) of the array as

Eij = a(yi; — Tij — f(Zi;))

+ D(@it1,j + Tic1,j + T+ + Tijo1 — 434 5)
Yig = Tij — Yij + 2
Zi5 = —BYis — Vi (hH
where 1 < {7, j} < n, n is the size of the array, and f(z; ;) is
a three-segment piecewise-linear voltage—current characteristic
of the nonlinear resistor described by

miz + mg —my, T > T
f(z) = { moz, 1<z <z ()
Mol — Mg + My, z <71

Notice that f(x) is nonsymmetric in this paper because m; #
ma,
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The relevant nonlinear boundary-value problem we are
concerned with is defined by (1) and (2) and by imposing zero-
flux (Neumann) boundary conditions. A uniform time step of
5x10~* was used throughout as the differential equations were
integrated using the explicit Euler method. The spatial step size
is kept at a constant value equal to one as a consequence of
our assumption of a discrete array.

The parameters that appear in these equations can be related
to the physical parameters of the circuit through the relations
a = Cy/C, B = Cof/(LG?), v = (Caro)/(LG), my =
G()/G, my = Gl/G, and mo = GQ/G, where C] and Cz
are the capacitances of the circuit, L is the inductance, o
is the resistance in series with the inductor, Gg, G1, and G
are the slopes of the piecewise-linear segments, and G is the
conductance of the linear resistor in Chua’s circuit. In (1), D
represents the diffusion coefficient of the variable z and is
given by D = o/(GR) in its dimensionless form, where R is
the coupling resistance between two Chua’s circuits. However,
a diffusion coefficient which is a function of the position,
D = D(i,7) is necessary in order to model the influence of
small differences in the coupling resistances which cannot be
matched exactly in practice.

In case we wish to study the influence of small differences
in the nominal values of the internal parameters, (1) and (2)
are no longer valid since the scaling process used to derive
them fails. In this case, the nonscaled differential equations
should be used.

III. BIFURCATION DIAGRAM AND LIMIT CYCLE

Spiral waves can be described in polar coordinates by
the equation ¢(r) = k(r) — wt, where w is the rotation
frequency. This simplest description of an archimedian spiral
becomes more complicated when we deal with a full reaction-
diffusion system. In this case, the waves are not isolines but
have some finite thickness and amplitude depending on the
properties of the medium. In this case, if we look at any
radial direction, it is possible to observe how the property
under observation periodically oscillates in space. The distance
between two consecutive maxima is called the wavelength. The
time period between two consecutive waves at any test point
of the medium is considered to be the period of the spiral
wave. For the archimedian spiral described by the equation
©(r), the spiral period is exactly equal to 1/w.

Numerically, those points which belong to the wave are con-
sidered to be excited and those nonexcited cells are considered
to be at the rest state. A wave propagates because an initial
excitation spreads out through the whole array by diffusion,
exciting its neighborhood (see coupling term in (1)) and, after a
given time, decaying to its fundamental state where it reamins
until a new wave arrives. An array of oscillators having the
above properties is called an excitable media. Spiral waves
are considered to rotate around a hole consisting of unexcitable
cells which is called the core of the spiral. The end of the spiral
wave, henceforth called the tip, follows a trajectory that can
be circular or a more complex pattern [19], and in this case the
period of the spiral becomes more complicated to define since
the distance between waves is not conserved anymore [7].

On the other hand, we can consider each single circuit of
the grid to be operating along a limit cycle. This limit cycle
should have a fast and a slow regime. In the slow regime, the
beginning state of the limit cycle must remain at an almost
constant value for some [jefiod of time 74, after which the
cycle returns rapidly to the beginning in a significantly shorter
period of time, 7., < T, Let us consider a single grid point
which has been externally excited from its rest state to the
excited state. This means that we move from the slow regime
of the limit cycle to the fast one. After a short time period 7e
the state will begin its slow regime (fundamental state) and
remain there until a time period equal to 75, where another
revolution of the limit cycle will begin autonomously, or a
new perturbation arrives.

If we consider a grid of such circuits, a spiral wave
propagating in this medium is a set of excited circuits, where
each one excites its neighbor circuits by diffusion and after a
time period 7., will decay to its fundamental state. This system
will be stable only when 74 is much larger than the spiral
period because otherwise the grid points can be spontaneously
excited before a new wave arrives, thereby destroying the
spiral structure. It is also important that the decaying time,
which corresponds to the “fast” time period 7., in the limit
cycle, is not too small because the spiral wave’s thickness
depends on this time.

This is the reason why not all limit cycles available in
Chua’s circuit can support a spiral wave solution, but only
when the condition 7., < T is satisfied.

In order to obtain spiral wave solutions, it is necessary to
analyze the behavior of a single circuit as a function of the
model parameters L, G, ro, Cy, and Co. After a systematic
study of the eigenvalues of a single circuit, we found a region
in the parameter space in which the circuit behaves as desired.
The values of the parameters used were L = 0.33 H, C;=10
nf, C; = 100 nF, 7o = 0§, 1/Go = —1.14 x 1072 kQ,
1/G1 = 0.07 x 1072 kQ, and 1/G> = 50.71 x 107 kQ.

Notice that we are working with a highly asymmetric
characteristic function f(z) for the circuit. This is not an
arbitrarily imposed condition, but a necessary condition for
obtaining a spiral wave solution. Working with a highly
asymmetric characteristic function f(z), it is possible to
modify drastically the rate 7,¢/7es, and it is this rate which is
mainly responsible for the existence of spiral wave solutions.
If To¢/7Tex ~ 1 then the spiral wave solution will not be stable
because it will be destroyed by the spontaneous oscillations
of the media.

Fig. 1 shows the behavior of a single grid point for different
values of the resistance (1/G) and the capacitance (Cj). In
the vertical axis, the ratio between 75 and 7, is plotted as a
function of the resistance (1/G). Different curves correspond
to different values of the capacitance, C; € [1,100] nF.
Three different regions can be observed; regions I and III
correspond to limit cycles, whereas region II corresponds to
stable equilibrium points and hence is an excitable media. In
regions I and 1II the ratio 7, /7., increases as we get closer
to region II and, hence, the existence of spiral waves can be
expected. When considering a 2-D array of Chua’s circuits
chosen from the “excitable” region, each having the same
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Fig. 1. One-parameter bifurcation diagram in the parametric space for a
Chua’s circuit. The ratio 7s; /7e, is shown as a function of the linear internal
resistance 1/G. Different curves correspond to different values of the capacitor
C1 (the same behavior was observed when L is changed and C is kept
constant). Three different regions are considered: regions I and III correspond
to a “high-relaxation” limit cycle, while region II corresponds to an excitable
system.

circuit parameters, spiral waves were obtained for all cases
as expected, and the results will be discussed later.

A typical limit cycle from the region Il is analyzed in Fig.
2. Fig. 2(a) shows the behavior of the y variable versus the
x variable, and Fig. 2(b) shows the behavior of the three
state variables of our system of differential equations as a
function of time. In this last graph it is possible to observe
that 75, > Te, (in this case, 7, & Tex).

We will now study two different cases. One of them will
be a 2-D array of Chua’s circuits where each circuit is chosen
from region III of Fig. 1. In the other case, the circuits are
chosen from region II, and therefore, an excitable system will
be investigated.

IV. NUMERICAL RESULTS

A grid of 300 x 300 oscillators was used in our numerical
calculations. The model parameters C;, Cs, r9, L, 1/Gy,
1/G2, and 1/Gy were assigned the values 10 nF, 100 nF,
0Q, 033 H, 0.07, 50.71, and —1.14 kQ, respectively, for
both the excitable and the high relaxation limit cycle cases.
The only difference between the two cases is the value of
the linear resistance, 1/G, which was set to 950 and 1050 €,
respectively.

In order to obtain spiral waves, special care must be given
to the choice of the initial conditions. Generalizing the set
of initial conditions described by Jahnke and Winfree for the
Oregonator model [19] to our system, all variables were reset
to their fundamental (slower part of the limit cycle) values in
all circuits except for a front of excited circuits in the z and y
variables, followed by a smoothly declining circular gradient
for the z variable. This set of initial conditions is shown in
Fig. 3.

Generalizing the method described in [18] to three dimen-
sions, we determine the path of the spiral tip by identifying the
points having a large cross product in the z and y gradients. In

0.003

0.006
Time (t.u.)

(®)

Fig. 2. (a) “High-relaxation” limit cycle (z versus y) for 1/G = 1050 £2.
Notice the strongly asymmetric shape of the limit cycle; (b) behavior of the
x, y, and z variables in (1) as a function of time recorded over nearly two
periods of the limit cycle corresponding to the same limit cycle as in Fig. 2(a).

order to avoid boundary problems, we restrict our calculations
of the tip to a small region around the last tip position.

Fig. 4 shows several snap shots depicting the dynamic
process from the initial pattern to a fully developed spiral
wave (only the z variable is shown for the high relaxation
limit cycle case). Fig. 4(a) shows the initial conditions where
all points inside the “wedge-like” region correspond to the
excited value in z (in this case, =-2.9, coresponding to the
fast part in the limit cycle), and all other points correspond
to the equilibrium value (the slow part of the limit cycle).
Observe that the tip of the wave front in Fig. 4(b) begins to
increase its curvature. This process is seen to continue in Fig.
4(c) and (d) where the number of turns of the spiral increases
until it reaches the equilibrium. The configuration shown in
Fig. 4(e) has reached the stationary state but continued to rotate
steadily another 150 time units (t.u.) as shown in Fig. 4(f). Fig.
5 shows a fully developed spiral wave (the same snapshot as
in Fig. 4(f)) in a 3-D view where the vertical axis corresponds
to the z variable (all points on top of the spiral wave have the
same x value—highly excited region).

Fig. 6 shows different spiral periods obtained when different
diffusion coefficients were used. Observe that increasing the
diffusion coefficient results in decreasing the rotation period
and its wavelength, as expected. This result reproduces well-
known results obtained in continuous media. The behavior
is qualitatively the same for arrays of Chua’s circuits whose
parameters are in regions II or IIL
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Fig. 3. Set of initial conditions: (a)—(c) ¢orrespond to the initial values for
the z,y, and z variable, respectively, of each circuit in the grid. (a) and
(b) show a “wedge-like” region of excited cells (-2.9 and -1.9 for z and y,
respectively), whereas all other circuits are reset to their fundamental value
(0.02 and 1.52); (c) initial conditions for the = variable, which is a smoothly
declining circular gradient whose maximum value is 2.1 and minimum is 0.

The tip of the spiral wave in such a medium rotates around
a circular region which is called the core of this wave. Inside
the core, the medium remains quiescent, i.e., the cells are not
excited, despite the fact that the properties of the cells in this
region do not differ from the other parts of the same medium.
The core looks like an effective hole. The size of the core has
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1 101 200 301
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Fig. 4. Process followed to obtain a fully developed spiral wave. All figures
show the contour lines connecting those points of the same value of x. (a)
to (f) correspond to times 0, 10, 40, 100, 250, and 400 (time units) (each
time unit (t.u.) is equal to 0.105 ms in real physical time). For ¢ = O the
initial condition is shown, After ¢ = 100, the spiral structure remains while
steadily rotating around the center. In this case, the tip of the spiral follows a
circular pattern (core) with a typical diameter of 15 circuits (1/G = 920 Q)
and D = 1.
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Fig. 5. 3-D view of a fully developed spiral wave. The vertical axis
shows the variable = from (1). The parameters correspond to Fig. 4(f).

been found to depend on the excitability of the cells (in our
case the slopes of the nonlinear characteristic of the Chua’s
circuit in the array).

All results shown above correspond to ideal circuits, i.e.,
all parameters are equal in every Chua’s circuit in the array.
This is not the case in real circuits due to uncertainties in the
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Fig. 6. Spiral period as a function of the diffusion coefficient D. The z axis
is plotted in a logarithmic scale. Two different cases were considered: First, all
internal resistors were set to 1/G = 1050 €2, thus describing an oscillatory
system (diamonds in the figure), and second 1/G = 950 (2, thus describing
an excitable medium (crosses in the figure).

nominal values of the electronic components. Our numerical
simulations have shown that there is no significant influence in
the spiral parameters due to small tolerances in the coupling
resistor.

We have also checked numerically the influence in the spiral
wave’s qualitative behaviors due to tolerances in the internal
parameters of each cell. No discernible effects have been
observed, and for small values of the uncertainty, not even
quantitative effects were found. When the uncertainty is large
enough (above 25%), the velocity of the wave fronts increases
as expected from [12].

V. CONCLUDING REMARKS

It has been shown that, when a 2-D array of resistively
coupled Chua’s circuit is considered, it is possible to obtain
steadily rotating spiral waves if appropriate initial conditions
are used.

A wide range of circuits parameters was studied and it was
found that if an array is excitable for a range of continuous
excitations, it can support spirals. For oscillatory systems, spi-
ral waves can occur only if each Chua’s circuit is sufficiently
asymmetric so that the circuit spends most of the time 7,; in
a resting state, followed by a short time period 7., of rapid
motion per revolution of the limit cycle.

Different values were studied for both cases (excitable
and oscillatory systems) and classical results for “continuous”
media were reproduced in a “discrete” array of Chua’s circuits.

In order to take into account real systems, small differences
in the nominal values of the coupling resistors between circuits
(diffusion coefficients) and the internal resistances were inves-
tigated numerically. No qualitative differences were found for
component tolerances below 5%.

Some of these nuemrical results have been confirmed by
actual experiments in arrays of Chua’s circuits. The complete
details will be published elsewhere.
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