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Study of Reentry Initiation in Coupled Parallel Fibers

Inés Pérez Marifio, Maite de Castro Rodriguez, Vicente Pérez-Munuzuri, Moncho Gémez-Gesteira,
Leon O. Chua, Fellow, IEEE, and Vicente Pérez-Villar

Abstract—Initiation of reentries in coupled parallel fibers is
studied as a function of several control parameters intrinsic to
those fibers. The influence of inhomogeneities in the fibers leading
to drift of the vortices and the interaction between them is also
analyzed numerically and experimentally.

I. INTRODUCTION

HE HYPOTHESIS that a circulating wave of excita-

tion, usually referred to in the literature as a reentry
phenomenon, could occur in a region of the myocardium of
the heart was first documented by Allesie et al. [1]-[3], who
described a type of reentry in which a wave front traveled
around a functional obstacle, such as a region of blocked or
prolonged action potential. In that case, the central vortex!
of activity is out of phase with the rest of the tissue, and
its features may change somewhat with each passage of the
reentrant wave front. In a similar way, Spach er al. [4], [5]
have demonstrated that reentrant activity can be initiated in a
two-dimensional tissue with uniform membrane activity. This
phenomenon is known as vulnerability and its properties have
been analyzed recently in both continuous and discrete media
[6]-[8]. The most dangerous disturbances of cardiac rhythm;
namely, paroxysmal tachycardia and fibrillation, are associated
with the appearance of vortices [9].

The simplest possible medium where vortices can occur is
a system of two coupled fibers. In particular, such a system
can be formed by the Purkinje fibers in the heart, or by the
trabeculae in the myocardial tissue. The vortex in this system
consists of a narrow pulse rotating along a closed path.

In the system of two coupled fibers, two basic types of
inhomogeneities attract great interest among the scientists;
inhomogeneities along the fibers and transverse to them. In
the latter case, both fibers have equivalent properties but the
coupling between them is not homogeneous, as for example,
in the atrial tissue, where it is known that with age, there is
a loss of side-to-side connections between myocardial cells
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'In the literature, the term vortex is used to describe the phenomenon
of narrow pulses circulating periodically around a thin annulus in two-
dimensional excitable media. In turn, this vortex excites its neighboring cells,
giving rise to a spiral wave.

and more arrhythmias are possible under this condition. On
the other hand, inhomogeneities along the length of the fibers
have been shown to develop a drift of the vortex occurring in
too-weakly coupled fibers [10]-[13].

Understanding the dynamics of these waves is a problem
of fundamental interest, and could lead to new methods of
treatment of cardiac disease by controlling the dynamics
of rotating waves making them drift toward the inexcitable
borders of the myocardium (auricle or ventricle) where they
are annihilated. Such a drift has been observed in the my-
ocardium [14], [15] or in chemical excitable media, such as
the Belousov—Zhabotinsky reaction, where it has been shown
that rotating waves can be made to drift under the action of a
constant or alternating electric field [16]-[18].

Here, the authors provide a more exhaustive study of
the reentry properties when intrinsic parameters such as the
coupling strength along the fibers, the transversal coupling
strength between fibers or, the excitability of the fibers, are
changed. Drifting and interaction of vortices is also analyzed
in this kind of system. The study has been numerically and
experimentally performed with two one-dimensional arrays of
Chua’s oscillators previously used for the study of complex
patterns arising in excitable media (see [19] for a review).
These circuits provide an analogy of similar discretely coupled
systems occurring in, for example, the cardiac muscle.

II. NUMERICAL MODEL

The basic unit (cell) of our one-dimensional array is a
Chua’s oscillator,? a simple electronic oscillator exhibiting a
variety of bifurcation and chaotic phenomena [20].

The circuit dynamics can be modeled by a system of 3V
first-order autonomous nonlinear differential equations. The
explicit dimensionless form of the equations is [19], [21],

@ =a(y; — z; — h(xi)) + D(ziq1 + xim1 — 214)
Vi =Ti —Yi+ 2

Zi =Py — 7% i=1,---,N (N
where
Co Oy (Caro)
a=—, pf=— =
Ci LG? (LG)
_ Go _& G2
mo a’ m1 a’ mo = G
=% and p= iy
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2Chua’s oscillator is now generally used in the literature [20] when a linear
resistor is added in series with the inductor in the original Chua’s circuit.
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The dimensionless equation of the three-segment piecewise-
linear characteristic of the nonlinear resistor (Chua’s diode) is
given by

h(z) = ap + a1z + by|x — 21| + bolz — 2o+ (2)

where a; = (my +m2)/2,b1 = (mo — m1)/2,b = (mg —
mo)/2 and a9 = biz1 — bazg,e is a dc offset which is
related to the excitability of the medium, and mg, m; and
mg denote the slopes of the middle, left and right segments,
respectively, of h(z). We will choose z; = —1 and z3 =
(mg — m1)/(mo — mg) so that the classical symmetrical
situation [19] is recovered when m; = mo.

For a model consisting of two coupled fibers, we coupled
two sets of (1) to obtain

& =y, — 2 = h(z7)) + Di(wiy + 35y — 237)

+ p(a? — x})

<1 _ .1 1 1
Y =T; —Y; +Z1.
I 1 1
2 __ﬂyi —Z;

i=1,---,N 3)

where p is the parameter determining the coupling between the
fibers and the superscripts 1 and 2 denote the fiber number. We
usually choose D = D; = D, for isotropic one-dimensional
fibers.

Experimentally, (3) corresponds to connecting a linear resis-
tor with conductance p between the floating nodes of capacitor
C) in each corresponding Chua’s oscillator in the two fibers.

The set of (3) together with zero-flux boundary conditions
were integrated using an explicit Euler method with a uniform
time step of 0.001. The set of fixed parameters used for numer-
ical calculation throughout this paper is {,3,y,m¢,m1,m2,G}
= {10,0.3,8.2,1073-1.26,0.77,55.8,0.9,10~3}. The constants
e, D, and p were used as control parameters.

In all the simulations shown here, the vortex was generated
as follows: an excitation wave was initiated to propagate
along fiber 1 (Fig. 1(a)) by setting circuits number one and
two to the initial value of (z!,y!,z') = (-10,0,0), with
p = 0. At a certain moment, both fibers are connected (i.e.,
p # 0) and a wave of excitation propagates to the second
fiber, where two waves propagating in opposite directions are
formed (Fig. 1(b)) in view of the symmetry of the line. Both
waves (at fibers 1 and 2, respectively) traveling to the right of
Fig. 1 form a collective wave (the second lags the first by a
small time delay which becomes zero as the waves approach
the boundary) while the single wave traveling to the left of
fiber 2 remains alone. The left-moving wave in fiber 2 will
excite corresponding cells in the first fiber (Fig. 1(c)) after
they have recovered from refractoriness. After the first fiber is
excited, two waves are formed traveling in opposite directions,
repeating the scenario that took place moments earlier in fiber
2. In Fig. 1(d) the steady final situation is shown. This one
corresponds to the excitation of the second fiber. Note during
each excitation process, in either fiber 1 or 2, two collective
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Fig. 1. A vortex in a homogeneous system of two coupled parallel fibers.
First, (a) with p = 0 in (3), a wave initiated at fiber 1, moves with constant
velocity to the right of the array. At some time, (b) fibers 1 and 2 are coupled
by setting p # 0 in (3), thereby inducing a wave in fiber 2. The single wave
moving to the left in fiber 2 (c) excites the opposite fiber after the passage of
the refractory tail of the first wave in fiber 1. (d) The vortex remains rotating
around the core marked by two dashed lines which covers a size of 23 circuits.
The parameters are: €1 = €3 = —0.02, D = 0.6, p = 0.06, and N = 1000
circuits. Iteration times: (a) 110 t.u., (b) 130 t.u., (c) 140 t.u., and (d) 150 t.u.

waves travel to the right, while only one travels to the left.
A single wave travels to the left through the second fiber
for a time equal to the refractory period of the cell and
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Fig. 2. Sketch of vortex rotation in a system of two homogeneous coupled
fibers. The core (corrsponding with the number of circuits in between the
dashed lines in Fig. 1) corresponds to the length between points A and B. The
gray shadow between fibers shows the cell-to-cell coupling. Collective waves
are emitted by the reentry (vortex), rotating around the core with velocity
Vising» and they propagate in opposite directions to the ends of the fibers with
velocity Veon-

velocity Viing, until it will be able to excite the first fiber.
The positions at which a single wave traveling to the right
in fiber 1 (to the left in fiber 2) can excite the opposite fiber
are marked by dashed lines in Fig. 1. The number of circuits
located between the two lines is called the size of the core
of the vortex. Note that periodic pulses originate from the
boundaries of the core and propagate in opposite directions
toward the ends of the fibers with velocity V.. The two
velocities Viing and Vo are different because the coupling
p mainly affects the dynamics (3) of those cells within the
core as it will be shown below. Fig. 2 shows a sketch of the
vortex rotation around a core in a system of two homogeneous
coupled fibers. This pulse generation mechanism is called the
reentry phenomenon because a pulse remains steadily rotating
around a core. This is intrinsically different from a pulse
rotating in a ring, since in the former case the vortex emits
waves to the ends of the fibers moving in opposite directions.
Observe any information (e.g., a pulse or a sequence of pulses)
that could be propagating through the fibers before the reentry
initiation, will be destroyed if its frequency is lower than the
vortex one.

III. EXPERIMENTAL SETUP

Experiments were carried out with two linear arrays, each
one consisting of 30 resistively coupled Chua’s oscillators,
with each cell operating in an excitable (monostable) state.
Initially, all cells were adjusted to have the same initial
stable state within the tolerances allowable for commercially
available discrete components used in each unit (10% for
inductance, 5% for capacitance, and 1% for resistance). In
order to study the wave propagation and vortex initiation
process, a single pulse was applied to a cell of the first
array. The pulse was triggered by a waveform generator
(Hewlett—Packard 33120A) with a constant amplitude of 3.2
V, and a pulsewidth of 20 us. In order to prevent the pulse
from initiating two waves propagating in opposite directions
and finally disappearing at the boundaries, a diode was first
inserted in series with the coupling between the triggered cell
and one of the adjacent cells in the first array. This allows us
to select the direction of the vortex rotation.

Once the wave is initiated, the diode is automatically short
circuited by a PC so as not to disturb the subsequent wave
propagation process.

Trying to experimentally reproduce the same method to
initiate a reentry as described in the previous section will
mean initiating a wave in the first fiber when p = 0, and
all 30 corresponding Chua’s oscillators are connected side-
to-side in both fibers simultaneously when the wave at the
first fiber passes through the central cell, for example. This
procedure should be automatically controled by a PC with
an acquisition board with a trigger time of the order of
microseconds or even less. Unfortunately, this setup requires
high-precision instrumentation to synchronize the PC and the
electronic devices connecting all the cells, which is presently
not available in our laboratory.

On the other hand, it is well known in cardiology that
vortices can be anchored to some obstacle occurring in a
tissue, as for example veins. In order to experimentally initiate
a reentry by this method, both fibers are initially connected by
means of resistances R, = 5.6 k{2 cell-to-cell, except five of
them, to the left of the diode (cell 21). Those are connected
by means of high resistances (R} = 22 k(2), above the value
for propagation failure [19]. By doing so, a pulse initiated in
fiber 1 at cell 21, will follow the same procedure as described
in the previous section, except the wave moving to the left in
fiber 2 will now necessarily reenter in fiber 1, just after the
obstacle in cell 16, which was previously calculated to the left
behind the refractory tail caused by the first wave at fiber 1.

After several clockwise rotations, around the obstacle, the
period, velocity and shape of the emitted collective waves
stabilize and remain invariant thereafter (I' = 103 £+ 2 pus
and V.ou = 95 £+ 5 circuits/ms). The minimum size of the
obstacle for vortex initiation to be possible is 4 circuits.
Once the reentry has been initiated, and in order to obtain
a homogeneous transversal coupling between fibers, the high
values of the resistances Rj between cells at the obstacle
were smoothly decreased to the same value as the adjacent
cells, R, = 5.6 k. However, for values of R; below 10 k€2,
this procedure led to the annihilation of the vortex. Probably,
because the cells are not identical, and the fibers are not
homogeneous, this nonuniformity induces a drift of the reentry
as Ry — R, because the obstacle dissappears and the vortex
cannot remain anchored any longer. Nevertheless, we were
unable to prove this hypothesis due to the high wave velocities
and the small length of the arrays.

The circuits were sampled with a digital oscilloscope
(Hewlett-Packard 54601) with a maximum sample rate of
20 MSa/s, an 8-b A/D resolution, and a record length of 4000
points.

The electronic cell components were fixed throughout this
paper as follows: C; = 1 aF, C; = 12 nF, L = 10 mH, o =
10 Q,G = 3.71073 Q71 Gy = —4.56 1072 Q1. G, =
3811073 Q1 Gy =371072 Q! and R = 4.7 k. The
parameters ¢ and R, were used as control parameters of the
experiments described below.

IV. RESULTS

Consider what happens to a vortex in a system of two
coupled fibers, proceeding from its simplest properties. As
it follows from Fig. 1, such a system is characterized by the
following basic parameters: the velocity Vi of a single wave,
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Fig. 3. Experimental reentry in two parallel arrays of Chua’s oscillators. (a), Collective waves propagating toward the boundaries
can be seen in the space—time plot where time is vertical and space is horizontal. Core is seen as the space between discontinuities
at the bands of equal amplitude. Note that the velocity at the core (between circuits 16 and 21) is smaller than the collective one
(Veing = 70 £ 5 circuits/ms and Vo = 95 £ 5 circuits/ms). (b) and (c), Collective waves traveling to the boundaries excite
circuits 5 and 25 first, and then circuits 1 and 30, respectively,. The parameters are: &1 = €2 = 0 pA and R, = 5.6 k2. Gray
scale color codes (a): the white color corresponds to the maximum voltage, while the black color correspond to the minimum

voltage at node 1 in Chua’s oscillators [20].

the velocity V. of a collective wave, and the refractoriness
R of the medium. The constants ¢,D and p control the
values of these parameters. In particular, the ratio ¢/p controls
the number of cycles of reentry a homogeneous system can
develop [12].

Fig. 3 shows an experimentally obtained reentry for two
arrays consisting of 30 circuits as described in the previous
section. In the space—time plot of Fig. 3(a) a vortex is located
between circuits 16 and 21. The distance between the disconti-
nuities at the bands of equal amplitude (equal gray scale color
in Fig. 3(a)) in the horizontal axis determines the effective
size of the wave source (that is, the core). Note the velocity at
the core, Vsing, is lower than the collective one. The temporal
behavior of voltage at node 1 in Chua’s oscillator [20] near
the boundaries is shown in Fig. 3(b) and (c). Note circuits
5 and 25 are excited before circuits 1 and 30, respectively,
showing the effect of the collective waves when moving to
the boundaries. In this case, because the core is located nearest
the right boundary, collective waves moving to the right have
a period smaller than those propagating to the left as it can be
observed in Fig. 3(b) and (c).

Thus, in a homogeneous system of two coupled fibers, a
vortex is a single wave rotating around a core (between both
dashed lines in Fig. 1) with velocity Ve and a period T
equal to the medium refractory period R. If the fibers are not
homogeneous (i.e., some of the parameters defining the waves
are different in both fibers) the steady state circulation of the

vortex becomes impossible and the vortex drifts with velocity
Vir.

For example, by changing the relative excitability &, =
(€2 — €1)/e1 between the fibers, the refractoriness at both
fibers differs. Fig. 4 shows the behavior of both fibers in a
space-time diagram. Note that only after a certain time do
collective waves at the second fiber arise and move in both
directions with constant velocity V. On the other hand,
because of the difference between excitabilities in both fibers,
the positions at which the single wave excites fibers 1 and 2 no
longer remain constant in time, but they move with velocity
Vi, satisfying

Vir <Veon for e, #0. 4)

Once the reentry reaches the right boundary and disappears,
no excitation takes place along either fiber.
Numerically the following properties have been measured.
1) For e, # 0, the vortex drifts with a direction determined
by the following vector relation:

Vi =@ X Ve 5)

where @ is the angular vector velocity of the vortex
rotation and Ve is the vector orthogonal to the fiber and
directed toward the greater excitability.

2) The drift velocity, Vg, increases with the relative ex-
citability until it tends towards a near constant saturation
value equal to the single wave velocity Viing (Fig. 5).
This saturation level, as well as the drift velocity,
increases with a decreasing value of the coupling co-
efficient p between fibers. Note that this saturation level
is obtained for some value of €, which increases with




PEREZ MARINO et al.: STUDY OF REENTRY INITIATION IN COUPLED PARALLEL FIBERS 669

Fiber 1

Fig. 4. Space-time diagrams for (a) fiber 1 and (b) fiber 2 showing the
drifting of a vortex. Time is shown in the vertical direction, while the
number of circuits is along the horizontal. Lines represent the consecutive
positions of the peak of the wave propagating through the fibers 1 and 2.
After coupling both fibers (£ = 125 t.u.) collective waves spread out to the
boundaries with constant velocity, Voo = 3.54 circuits/t.u. The positions
at which each fiber is excited by the other one are shown as a vertex in
the space-time plot. Note their position moves with time (drifting of the
reentry) at constant velocity, Vy, = 0.22 circuits/t.u. In both diagrams, as
t — 0o, the number of fronts arriving to the right boundary is greater than
those arriving to the left, according to Doppler effect. The parameters are:
g1 = —0.01,e9 = —0.02,D = 0.6,p = 0.06, and N = 1000 circuits.
Gray scale color codes as in Fig. 3.

decreasing value of p. For ¢, = 0, both fibers are
homogeneous and the vortex rotates steadily and does
not drift, V4, = 0.

3) The core size decreases while increasing &, until it
reaches a saturation value (Fig. 6). Note that increasing
the coupling p between the fibers leads to a decrease of
the core size.

The interaction between two reentries moving in opposite
directions was also numerically investigated, although only
preliminary results are shown here. Two vortices initiated at
the same time from opposite sides of the same fiber rotate and
drift in opposite directions leading to their annihilation, for
example, when both fibers have different excitability. Fig. 7
shows a sequence of space—time diagrams for fiber 2. First,

Drift Velocity Vgr
0.4
T T T T
P=0.06
0.3} -
P=0.07
0.2 | i
P=0.08
P=0.10
0.1 | 4
o) L { ! A
o] 4 8 12 16 20
Relative Excitability &,

Fig. 5. Dependence of the drift velocity on the relative excitability between
fibers for different values of the coupling parameter p. Note that for high
values of €., a saturation level is obtained equal to Viing. The parameters for
the numerical simulation are: D = 0.6 and N = 1000 circuits.

o] 4 8 12 16 20
Relative Excitability &

Fig. 6. Dependence of the core size on the relative excitability between fibers
for different values of the coupling parameter p. Note that for high values of
€r, a saturation level is obtained. The parameters for the numerical simulation
are: D = 0.6 and N = 1000 circuits.

two reentries are initiated at opposite sides, 7 out of phase, and
drifting towards the center of the array as shown in Fig. 7(a).
After several iterations, both reentries diminish their drifting
velocities and remain rotating close enough while the periods
of rotation synchronize and the phase difference between both
vortices becomes zero, finally annijhilating both vortices and
disappearing as shown in Fig. 7(c). We were not able to find
any set of suitable parameters where both reentries could
remain synchronized while rotating around a single core.

V. DISCUSSION

The influence of the coupling strength between fibers
and their relative excitability has been studied in discretely-
coupled fibers by means of one-dimensional arrays of Chua’s
oscillators.

Under some circumstances, vortex initiation (also called
reentry) occurs in two coupled fibers. When both fibers are
not homogeneous, it has been shown the vortex does not rotate
steadily but drifts. Let us suppose the excitability of fiber 1 is
greater than the excitability of fiber 2 (i.e., €1 > ¢€2,€6, > 0). In
this case, wave velocity at fiber 1 is greater than in fiber 2 and
the single wave moving around the core in Fig. 2 should need
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Time ->

Space ->

©
Fig. 7. Sequence of space-time plots for fiber 2 when (a), (b), two reentries
moving in opposite directions interact and (c) finally annihilate each other.
Two reentries are initiated in opposite sides of fiber 1 and move to the center
of the array with constant drift velocity. Once they interact, (b) the periods of
rotation and excitation times of the different fibers synchronize, finally leading
to (c) the annihilation of both vortices. Set of parameters as in Fig. 2. Iteration

times: (a), from O to 200 t.u., (b), from 801 to 999 t.u., and (c), from 990 to
1090 t.u. Gray scale color codes as in Fig. 3.

to move further along fiber 1 in order to be possible to excite
fiber 2 (i.e., it recovers from the previous excitation wave).
By this procedure, the path traveled by the single wave along

fiber 1 is greater than in fiber 2 for the same period of time,
and because this process recurs in each turn-over of the single
wave, it causes the vortex to drift. Thus, the drift velocity
increases with the relative excitability between fibers, but the
size of the core decreases with increasing &,, both tending
toward a saturated value when &, — 00.

On the other hand, the coupling terms +p(z? — z}) and
+p(z! — z?) in (3) for fibers 1 and 2, respectively, will be
different from zero only for those cells where a single wave
moves and zero otherwise (i.e., those parts of the fibers where
collective waves spread out are synchronized). Therefore, by
increasing the value of p, the velocity of the single wave
diminishes and the drift velocity also decreases with increasing
p. So, while V oy is not affected by p, Vising becomes smaller
than V., when p is increased.

Since, decreasing the coupling p between the fibers, leads
to an increase in the single wave velocity, Viing, the size of
the core increases (i.e., the single wave travels further along
the fiber for small values of the coupling than for high values
of p, for the same period of time) for e, = 0(e1 = €2).
When e, # 0, a similar reasoning can be made except now
the vortex drifts.

Interaction between reentries and their drift towards the
boundaries is an important matter for controlling abnormal
activities in the heart muscle. In particular, the influence of an
external field on the vortex drift should be studied in detail for
discretely—coupled cells as in the cardiac tissue [15]. Although
we have studied the influence of internal parameters relative to
each fiber, transversal inhomogeneities between them should
be studied in detail, for example, the influence of age in the
side-by-side connections between fibers and its importance
for reentry initiation. The problem concerning the interaction
among vortices with different and equal topological charges
[22] remains to be investigated.
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