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Chaos and Structures in a Chain of
Mutually-Coupled Chua’s Circuits

Grigory V. Osipov and Vladimir D. Shalfeev

Abstract— The formation and interaction of structures in a
chain of coupled Chua’s circuits are investigated. Primary at-
tention is focused on the control of spatio-temporal structures by
choosing initial conditions and the values of coupling.

I. INTRODUCTION

. ANY PHYSICAL, biological and chemical processes
are modelled by means of large ensembles of interact-

ing bistable cells [1]-[3]. In the simplest case, each cell may
be in one of two locally stable equilibrium states depending
on initial conditions. The cell may be forced to move from
one equilibrium state to the other (e.g., by a stepwise change
of the instantaneous values of the variables describing the
behavior of the cell), with the magnitude of forcing exceeding
a certain critical level. When connected in a network, the cells
having similar behavior may form spatial structures in which
they are separated by transition regions. General regularities of
structure formation have not been investigated in ample detail
although there exists a broad literature on different problems
concerning networks of coupled bistable cells which exibit
transfer waves from one static state to another, and various
phenomena concerning the interaction between transfer waves
and evolution of the arbitrary initial perturbation, etc. [1], [3].
In this paper we consider the structure formation in a chain
of coupled bistable cells of a much more complicated type,
namely, Chua’s circuits. Chua’s circuit is known to be a self-
oscillatory cell with complex dynamics the inherent features
of which are the existence of two stable equilibrium states
and periodic oscillations of different types, including chaotic
oscillations [4], [5]. Our goal is to analyse the formation,
interaction and transformation of spatial structures, both static
and dynamic ones, i.e., we consider spatio-temporal structures.
Note that dynamical behavior, including the formation of
one- and two-dimensional (1-D, 2-D) arrays of diffusively
coupled Chua’s circuits were analysed in {6]-[9] where quite
a number of nontrivial spatio-temporal phenomena were re-
vealed. In this paper, we consider a different type of coupling,
namely, the coupling via coordinates (variables). The coupling
of this type gives some advantages for theoretical analysis
because it may be used as a control parameter. Following [10]
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we suppose that the neighboring cells are coupled linearly
but, unlike [10], the coupling is taken to be mutual rather
than unidirectional. OQur primary attention is focused on the
investigation of the regularities of structure formation and their
control by choosing initial conditions in individual cells and
the value of coupling between cells.

II. A MODEL OF 1-D CNN OF CHUA’S CIRCUITS

The dynamics of a chain of coupled Chua’s circuits may
be described by a system of ordinary differential equations
(ODE) [4], [5], [10]
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The idealization and notation adopted in [10] are used in model
(1). For simplicity we restrict ourselves to the case of identical
coupling coefficients, i.e. we set d; = dp = d.

Equation (1) is a model of a one-dimensional cellular non-
linear network (CNN) where Chua’s circuits are used as cells
[11], [12]. Partitioning of the plane of the parameters (a, )
into regions of different behavior in the absence of coupling
between cells (d = 0) is presented in Fig. 1 for an individual
Chua’s circuit [10]. Partial dynamics of such an individual
cell exhibits a rich choice of regimes ranging from static to
chaotic ones. Therefore, it is natural to expect that a broad
variety of static and dynamic structures may be formed in a
coupled CNN of Chua’s circuits. It is not our intention to give
a complete classification of such structures. Instead, we will
restrict our consideration to results of computer experiments
on model (1) and attempt to understand the regularities of
the formation of structures (clusters), their interaction and
the potential controlling the processes of cluster formation by
choosing initial conditions and coupling coefficients.

III. STATIC CLUSTERS

We will refer to the groups formed by neighboring cells in
qualitatively identical states as clusters and to the partioning
of the CNN into different clusters as clusterization. With the
characteristic features of an individual Chua’s circuit taken
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Fig. 1. Partitioning of the o — 3 parameter plane of Chua’s circuit into
regions of different regimes, as depicted by the insets corresponding to the
parameter points A, B,C, D, E.

into account, the clusters for the cells with z; >0 at any ¢
will be called “+” clusters and those for which z; < 0 at any
t, “=" clusters.

For a bistable medium in which each cell may be in one
of two equilibrium states whose coordinates are not odd
symmetric (i.e., symmetrical with respect to the origin), there
may exist waves which transfer the cells from a “less” to a
“more” stable state. As a consequence, a spatially homoge-
neous distribution must eventually be established throughout
the medium. The transfer from one to the other stable state
occurs as a result of external forcing. Both stable equilibrium
states
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of Chua’s circuit are odd symmetric. Therefore, groups of
cells in either of the two equilibrium states, i.e. “+” and
“— clusters, may coexist in the network (1). The control of
such clusters is a very challenging problem. Such a problem
may be formulated, for instance, by shifting the transition
layer between clusters via appropriate perturbation, or by
stabilization of the location of different clusters in space by
choosing appropriate initial conditions and value of coupling.

Consider now clusterization. Let us first analyse a one-
dimensional CNN of Chua’s circuits each of which in the
absence of coupling may be in either of the two equilibrium
states O~ or Ot. We specify the values of the parameters
of each cell deep in the domain corresponding to stable
equlibrium states (point A in Fig. 1, o = 2,8 = 20), as
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Fig. 2. Static clusters in a chain of Chua’s circuits for different values of d.
The initial distribution is identified by the dots.

well as a domain near the bifurcation curve for a transition
to an oscillatory regime corresponding to an Andronov-Hopf
bifurcation (point B in Fig. 1, a = 8, 8 = 20). In all computer
experiments we choose as initial conditions the following
distribution of the variables (symmetric with respect to the
middle of the chain):

2 =-19,j=1,2,---,N. 3)

The coupling parameter d was varied from 0.01-0.8.

In the absence of coupling (d = 0), the image point of
each cell in the three-dimensional phase space (z;,v;, z;) for
the chosen values of the parameters tends, as ¢ — 400, to
the equilibrium state OF when z9>0,37 = 0,29 <0, and
to the equilibrium state O~ when z9<0,9? = 0,29 >0.
Observe that for N = 128, three static “+” and two static “—”
clusters are formed in the chain of N uncoupled cells under

"(3). How does the clusterization process change when the cells

are coupled? Numerical experiments carried out with oo = 2
and 3 = 20 showed that the boundaries between the “+” and
“—” clusters remained unchanged for all values of d that we
have choosen: the boundaries were determined unambiguously
by initial conditions. Their position in the chain coincided
for d = 0 and d # 0. Being odd symmetric, both the static
distributions did not shift to the transition layer separating the
“4+” and “~” clusters. Fig. 2 shows the distributions of the
variable z; = T; for several values of coupling coefficient
d. The dots correspond to the initial m? distribution. As d
is increased, the absolute magnitude of Z; grows for the
cells inside each cluster. The quantities 7;,%; and Zz; for
the central cells of each clusters satisfy approximately the
following relations

Tj-1 =T; = Tjt1
Yi-1=Y; =Yjn

Zj-1 =2j = Zj+1-
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Fig. 3. (a) Space—time diagram of the variation of x;(t): « = 8.5, 8 = 20, and d = 0.1. (b) Space-time diagram of the variation
of z;(t):a = 8.5,8 = 20, and d = 0.3. (c) Space-time diagram of the variation of z;(t): o = 8.5, 8 = 20, and d = 0.5. (d)
Space-time diagram of the variation of z;(t):a = 8.5,3 = 20, and d = 0.8.

Therefore, by using (1) z;,7;,%; can be derived from the
system of equations
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Our experiments with o 8 and 8 = 20, i.e. near
the bifurcation curve corresponding to the Andronov-Hopf
bifurcation (point B in Fig. 1), show that the “+” and “-”
clusters do not change their position as d is increased, similar
to the previous case (o = 2,3 = 20). In this case, however,
the effect of the boundary conditions and closeness of the
parameters o and 3 to the domain of periodic regimes (domain

2 in Fig. 1) for sufficiently large d give rise to oscillatory
motions at the boundaries of the clusters.

IV. CLUSTER FORMATION FROM
REGULARLY OSCILLATING CELLS

In another series of experiments we choose the values of
the parameters (« and 3) so that each uncoupled cell operates
in domain 2 of Fig. 1. This means that a regime of regular
periodic oscillations is realized in each cell in either the
halfspace z;<0,z; >0 or in x;>0,2; <0, depending on
initial conditions. The space-time diagrams of the variation
of z;(t) are given in Figs. 3-6. Here, the time { is laid off
along the horizontal axis, and the number j of the cell in the
chain along the vertical scale. The black color corresponds
to the maximal and white to the minimal amplitude of z;(t).
Examples of typical oscillograms for some cells z(t) at j =
const and distributions z(j) in the chain at some fixed instants
of time (¢ =const) are also presented in Figs. 3-6.
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Fig. 4. (a) Space-time diagram of the variation of z;(t): a = 9.4, 3 = 20,
and d = 0.2. (b) Space-time diagram of the variation of

z;(t);a = 94,3 = 20, and d = 0.8.

Consider first the behavior of the chain for the parameters
o and § specified at point C (a = 8.5, 8 = 20), i.e., far from
the bifurcation curve corresponding to the transition to chaotic
oscillations (see Fig. 1). Computer experiments show that the
regime of synchronized periodic oscillations in the cells does
not break when a weak positive coupling (d > 0) is introduced,
but the oscillations in the neighboring cells (except those near
the transition boundaries) are almost out-of-phase (Fig. 3(a)).
According to the initial distribution (3), three “+” and two “~”
clusters consisting of periodically oscillating cells are formed.
For d = 0.3 (Fig. 3(b)), the time evolution no longer remains
regular throughout the chain. In this case, some cells persist
to generate periodic oscillations, while in most of the other
cells, a regime of chaotic oscillations analogous to a spiral
Chua’s attractor is realized. For d = 0.5, there appears a
tendency for an almost in-phase oscillations in the neighboring
cells (Fig. 3(c)). In this case, the intensity of oscillations is
decreased markedly. For d = 0.8, the oscillations are quenched
in most of the cells in the clusters, i.e. a static regime is

established (Fig. 3(d)). In this case, only the boundary cells
(e.g., 7 = 25) of the clusters (except the boundary cells of the
chain) still oscillate periodically. With a further increase in d,
a static regime is established in all cells of the chain.

The above observed phenomena may be explained by
analysing the dynamics of some neighboring cells in the
chain. It is readily understood that the coupling between cells
may lead to changes both in the coordinates of the equilibrium
states in the cells of the chain, as well as in the quantitative
and qualitative characteristics of motions of the cells. Suppose,
for example, that a regime is realized for which the values
of the variables z; coincide for some neighboring cells by
virtue of initial conditions. Then each of these cells may be
described by the system of equations

&; = aly; — h(z;)) + 2dz;
Y =z; —y; +2;
é’j = —ﬁy]‘.

In this case, for fixed values of the parameters cg,c;, and
d, the partitioning of the plane of the parameters («, 3) into
regions corresponding to different attractors in the phase space
are not identical to the corresponding partitioning for d = 0.
Consequently, the coupling d # 0 may give rise to qualitative
changes, compared to the case d = 0, in the type of motions
which are realized in each cell of the chain.

Besides it is worthy of notice that in a long chain where
broad “+” and “—” clusters are realized, the dynamics of
the cells located near the boundaries between the clusters
must be close to the dynamics of uncoupled cells because
the condition z;4; =~ —z;_1 must be fulfilled. Experiments
on long chains where the effect on the dynamics of boundary
conditions is insignificant show that the cells located in the
transition region between the clusters retain their individual
(uncoupled) dynamics over a broad range of variation of d
(Fig. 3(d)).

Consider now the parameters o and 3 for which a cascade
of period doubling bifurcations of periodic motions (point
D in Fig. 1, d = 9.4,8 = 20) is initiated in an uncoupled
Chua’s circuit. We found that in this case the location of the
“+” and “—" clusters is not determined unambiguously by
the initial conditions, instead it depends strongly on the value
of d and is not fixed in space (Fig. 4(a) and (b)). Evidently,
this is explained by the fact that the introduced coupling is
so significant that it leads to a global mixing in the chain and
may change a regime of periodic oscillations, to a regime of
chaotic oscillations having the form of a double-scroll Chua’s
attractor rather than a spiral attractor.

V. CLUSTER FORMATION OF
CHAOTICALLY OSCILLATING CELLS

Let us now consider clusterization in the presence of chaotic
oscillations in uncoupled cells. Computer experiments were
carried out for @« = 10.1 and 8 = 20 (point E in Fig. 1).
A chaotic regime the image of which in partial phase space
may be one of two spiral Chua’s attractors is realized in an
uncoupled Chua’s circuit for these values of the parameters.
In this case, the initial conditions (3) determine the domains
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Fig. 5. (a) Space-time diagram of the variation of x ;(t): & = 10.1, 8 = 20,
and d 0.01. (b) Space-time diagram of the variation of
z;(t):a = 10.1,8 = 20, and d 0.05. (c) Space—time diagram of
the variation of z;(t):a = 10.1,3 = 20, and d = 0.8.
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of the existence of the “+” and “—” clusters (Fig. 5(a))
only if the coupling is very weak, ie., d < 0.02. As d
increases, the oscillation intensity and the extent to which
the cells affect each other increases, which leads to a mixing
of oscillations in the chain and to the onset for each cell of
another regime of chaotic oscillations corresponding to double-
scroll (Fig. 5(b)). At the same time, a regime of periodic
oscillations corresponding to a large limit cycle (enclosing
both equilibrium states O~ and O™) in an uncoupled Chua’s
circuit may be established for large d in some cells of the chain
(Fig. 5(c)), e.g., at 7 = 58, because for § = 20 the interval for
the parameter « in which chaotic regimes are realized is very
small. Thus, in this case, both chaotic and regular oscillations
coexist in the chain (Fig. 5(c)).

VI. CLUSTERIZATION AT NEGATIVE COUPLING COEFFICIENTS

The situation is drastically different when the sign of the
coupling coefficients (d <0) between the cells in a one-
dimensional CNN of Chua’s circuits is changed. Results
of computer experiments for a chain with the parameters
a = 85 and 8 = 20 providing a regime of periodic
oscillations for each uncoupled cell are given in Fig. 6. In-
phase oscillations in the neighboring cells prevail for small
d (Fig. 6(a)), while a regime of static distribution Z; having
different signs in the neighboring cells is realized for large
d (Fig. 6(e)). It is interesting to follow the appearance and
onset of antiphase oscillations in the neighboring cells as we
increase d. Individual small regions of antiphase oscillations
appear first (Fig. 6(b)). These regions are nonstationary and the
oscillations may be either regular or chaotic. With a further
increase in d (Fig. 6(c)), there emerge stationary regions of
antiphase oscillations which gradually spread through out the
chain (Fig. 6(d),(e)).

An analogous mechanism for the transition to an antiphase
distribution of variables along the chain is observed for the
parameters « and (3 such that an uncoupled cell is in an
equilibrium, or a chaotic regime.

VII. CONCLUSION

Numerical simulations of the nonlinear dynamics of a one-
dimensional CNN of Chua’s circuits enables us to summarize
the following conclusions:

i) A rather broad variety of static and dynamic structures
may be formed in the chain considered. The formation
of structures depends significantly on initial conditions in
the cells, boundary conditions in the chain, the type and
value of coupling between the cells, and on the choice
of the parameters of individual cells.

ii) For the coupling coefficients and boundary conditions
considered in this paper, one can effectively control the
structure formation process in the chain by choosing
appropriate initial conditions in the individual cells.

It is to be expected that the phenomena of structure forma-

tion [13] have a rather general nature and may be extended to
2-D CNN, as well as to CNN with nonlinear couplings, etc.
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Fig. 6. (a) Space-time diagram of the variation of x;(t):a = 8.5,3 = 20, and d = —0.1. (b) Space-time diagram of the
variation of z;(t):a = 8.5, = 20, and d = —0.4. (c) Space-time diagram of the variation of z;(t):a = 8.5, 3 = 20, and
d = —0.5. (d) Space-time diagram of the variation of z;(t):a = 8.5,8 = 20, and d = —0.6. (e¢) Space-time diagram of
the variation of z;(t):a = 85,8 = 20, and d = —1.0.
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