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Abstract

This paper deals with the problem of synchronization,
or observer design, of chaotic dynamical systems. It
is argued that the complex nature of the transmitter
dynamics may provide additional tools for finding a
suitable observer. A number of characteristic examples
illustrate the idea, and reveal some challenging open
problems in this context.

1 Introduction

In recent years there has been considerable interest in
the dynamics and control of systems exhibiting com-
plex behavior. The number of papers related to this
subject seems to grow at an almost exponential rate
[8]. For an admittedly already ‘dated’ review of some
of the prevailing research problems the reader may con-
sult the seminal papers in [23].

The purpose of the present note is first to revisit the
concept of synchronization from a mathematical con-
trol theoretic perspective. More specifically we want
to explore how the observer notion from (non)linear
control theory links in with synchronization. Further
results along this line are reported in [19].
Synchronization, as introduced by Pecora and Carroll
[5, 24] has been studied from various angles. Often a
master-slave formalism is taken, {5, 24, 12, 6, 25, 10, 17]
and {7]. Given a particular dynamical system, the mas-
ter, together with an identical (sub)system, the slave,
the aim is to synchronize to the master system the com-
plete response of the slave system, by driving the latter
with a (scalar) signal derived from the master system.
In this context synchronization is often considered to
be a remarkable property when the master dynamics
are chaotic and thus sensitive to initial condition vari-
ations. A promising application in secure communica-
tion suggested in [9) uses such a chaotic master dynam-
ics to mask a message and a synchronized slave system
to recover the message.

The above master-slave viewpoint leaves some ambi-
guity as to what the actual slave system should be,
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given the master system. A naive, but often realistic
approach, would be to consider the master dynamics
(transmitter) as transmitting a signal to the slave dy-
namics (receiver) and the receiver is requested to re-
cover the full state trajectory of the transmitter. The
problem is of course only interesting if the signal re-
ceived is not equal to the full state. In this situation
the receiver has in principle the freedom to build any
dynamical system. The receiver system could be a copy
of the master system, but it need not be. The real re-
quirement is that given the received signal the receiver
dynamics will synchronize to the transmitters’ dynam-
ics. In thus allowing the receiver the freedom of which
dynamical system to implement, we enlarge the class of
master /slave systems that allow synchronization. Note
that at this point we do not consider the actual physi-
cal realization of the new receiver’s dynamical system.
In certain applications this may be crucial, but this
aspect lies beyond the scope of the present paper, see
however [20].

The problem just described is in fact the observer prob-
lem from control theory. For linear dynamical sys-
tems a complete solution to the problem is well known
[13]. For nonlinear systems only partial results exist
[27, 11, 15, 16, 28].

Besides the master-slave perspective on synchroniza-
tion another viewpoint is expressed in [22]. There syn-
chronization is seen as the design of a (feedback) mech-
anism for the receiver, using the transmitted signal, so
as to ensure that the controlled receiver synchronizes
with the transmitter. This approach to synchroniza-
tion is in essence a control problem, which we do not
discuss in this paper, but see [4, 20].

A standard approach in solving the observer problem in
control theory is to use as receiver a copy of the trans-
mitter (of course with unknown initial state) modified
with a term depending on the difference between the
received signal and its prediction derived from the ob-
server. The additional term aims at attenuating the
difference between the state of the transmitter and the
state of the observer system. This procedure may be
shown to be successful in many instances, but certainly
no global validity can be claimed. The synchronization



problem requires one to establish global asymptotic
stability for the zero solution of the error dynamics,
i.e. the dynamics governing the difference between the
transmitter state and observer state. Rigorous proofs
often rely on Lyapunov arguments. Most of the ex-
isting results concerning synchronization also rely on
Lyapunov based arguments [9, 7] and [12].

That a solution to the above synchronization problem,
or observer problem, may be feasible under certain con-
ditions may be deduced from the Takens embedding
theorem ([26], which is closely related to the observ-
ability property for nonlinear dynamical systems [1, 2.
In essence the observability property states that the
history of the transmitted signal contains all the in-
formation required to reconstruct a state variable for
the master dynamics. The observability property is
a generic property of dynamical systems. However it
falls short of implying the existence of an observer or
receiver that synchronizes. In the case of linear systems
the link between observability (or better detectability)
and the existence of an observer can be made explic-
itly. However in the nonlinear context the situation is
not that clear, and apart from some local results, cited
before, few results are available.

In [19] we have argued that the complexity of the trans-
mitter dynamics is of little concern in the observer de-
sign or synchronization. Since synchronization of com-
plex or chaotic dynamical systems is believed to be of
utmost importance in practical secure communication
this conclusion may seem little surprising. On the other
hand we will argue in this paper that in the observer de-
sign of complex dynamical systems there may be room
for exploiting chaos. Our results in this direction are
partial, like is the case with the general nonlinear ob-
server problem, and will be established by means of a
number of examples from the synchromization litera-
ture. In a future publication a more complete picture
will be presented.

Throughout the paper we use standard notation from
nonlinear control, and we refer to [21, 19] for details.
The organization of this note is as follows. In
section 2 we discuss synchronization for the hyper-
chaotic Rossler system. In section 3 we treat the ob-
server /synchronization problem for the Lorenz system
and in section 4 we do the same for the Chua-circuit.
Concluding remarks are given in section 5.

2 The hyperchaotic Réssler system

Consider the hyperchaotic Rossler system (see [25])

:tl = —X9—I3

o = 1+ 0.25z2+ 24 1)
3 = 3.0+ 2173

Ty = —0.5.’L‘3 + 0.05.’]5'4
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together with the output equation

(2)

Standard synchronization methods from [24] or [7]
seemingly fail to achieve a proper synchronization
mechanism. Also, a linearized observer as proposed
in [25], will not always yield synchronization, see [25].
Following the methodology of [19] we treat (1,2) in a
similar fashion as the usual Rossler system. In order
to do so, we note that whenever (1) is initialized at a
point with x3(0) > 0 then z3(¢) > 0 for all £ > 0. This
permits to introduce the coordinate change in state-
and output-space

Yy =x3.

(3)

§=Iny. (4)

In these new coordinates, the system (1,2) takes the
form

(zlv 29,23, 24) = (xla o, lnl‘g, ZL'4)

2 = —zy— exp(zs)
2o = 21 +4+0.2520+ 24 (5)
z3 = 21+ 3exp(—23)
Za = 0.05z4 — 0.5exp(z3)
g = z3 (6)

Since the linear part of (5), (6) is observable, and since
the only nonlinearities in (5) depend on the measured
output it is clear that a simple observer can be con-
structed as

7 —Zy + k1(Z3 — 23) — exp(z3)

Zo = Z1+0.25Z3+ Z4 + ko(Z3 — z3) (1)
Zy = 71+ k3(%s — 23) + 3exp(—z3)

74 = 0.05% + ke(Z3 — 23) — 0.5exp(z3)

where the gains ki, ko, k3 and k4 have to be chosen
appropriately. Note that the error dynamics under
the coordinate changes (3) and (4) are linear. The
above reasoning, which is purely based on the obser-
vation that the system admits linear observable er-
ror dynamics after suitable coordinate transformations,
does not employ any knowledge on the complexity
of the system (1). On the other hand, it is conjec-
tured that the hyperchaotic Rossler possesses, like the
Rossler system, a chaotic attractor and for appropri-
ate initial conditions the system will remain confined
to a bounded box B in R* Note that this conjec-
ture, though natural from the way the hyperchaotic
Rossler system was constructed, is far away from be-
ing proved. This box B contains the chaotic attractor
of (1) and is contained in the set {x € R* | z3 > 0}.
the (local) observability of the system (1), (2) requires
that the 4 functions h(z), Lyh(z), L3h(z), L}h(z) are
independent in B; here f denotes the vectorfield de-
fined in (1) and A(z) = z3 is the output map defined
in (2). In the present case we obtain the functions
z3, 3.0+x123, —$2$3—$§+3.0$1+x%$3, —Z3L4Fernnns
which are (z3 > 0!) independent. But then, see [11}, a



high-gain observer exists for the system (1) restricted
to the bounded region B:

.’il = —Fy— I3 +k1 (573 — .’153)
.’1:712 = F1+0.25%3+ %4 +k2(.’f§3 — 333) (8)
T3 = 3.04+T1%3 +k3(Zs — z3)
iILJ4 = —0.5Z3 4+ 0.05Z4 —I—k4(.’i‘3 - 173)

where ki, kg, ks, k4 are chosen sufficiently large, see [19].
Clearly, computationally the observer (11) might be
preferable to the observer (10), where one first has to
compute the appropriate coordinates although (11) is
a suitable (high-gain) observer only if the functions
h(z), Lsh(z), Lh(z) and L}h(x) are verified to be
independent.

3 The Lorenz system

The well-known Lorenz system is given by the equa-
tions

& = o(y—2x)
7 = —zz4rz-—vy (9
2 = zy-—bz
Together with the output signal
w=z (10)

the transmitter (9,10} — which exhibits chaotic motion
for suitable parameters o, r and b — admits for synchro-
nization the receiver

o(j - %)
—zE4+rr— 7§
Ty — bZ

Il

(11)

N e e

The fact that (11) and (9) synchronize was discov-
ered by Pecora and Carroll in [24] and has lead to
the huge interest in synchronization. Introducing e, =
r—-I, ey=y—Yande, =2—21if follows that the
error dynamics are given as

ér = oley—es)
éy = —ze,—{y (12)
é, = xe,—be,

which can be shown to be asymptotically stable at
(ex,ey,e,) = (0,0,0) by introducing the Lyapunov
function

1/1
V(es ey, €z) = = <—ei +él +‘ez> (13)
2 \c
having as time-derivative along (12)
. 1 \* 3
Ve ey, €2) = — (e,; - —2-ey) - Zei —be2.  (14)

On the other hand, a general format for an observer for
(9,10) is given by

."? = U(g“{ﬁ) +k1(:i,37,2,m)
5 = §j-—bz +k3(Z, 9, %, x)
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with k1(%,9, 2, 2), ko(%,7,%,z) and k3(Z,7,Z,z) suit-
able smooth functions that satisfy k;(z, 7, Z,z) = 0 for
all (z,7,%). In fact, the particular receiver (11) is ob-
tained by taking

kl(j7gygam) = 0(57—11)
ko(%,9,%,2) = &E-zE+r(z—1I) (16)
k3(5"7g)23x) = mg—i'g

but one can seek a better error tracking by adding
to (16) additional gains I~cl(~§c,ﬂ,2,w),k2(:i,gj,2, z) and
ks(%,§,%,z) that satisfy ki(z,9,%,2) = 0, for all
(2,9, ).

Remark As noted in [19] an alternative to the receiver
(11) consists in using the receiver as

{

and establishing that (x, 7, Z) converges to (z,y,2) as
t goes to infinity. This follows easily by taking as Lya~
punov function %(6124 + €2} for the (ey,e,)-dynamics.
Clearly (17) corresponds to one particular reduced ob-
server for the system (9,10). The general structure for a
reduced observer is slightly different, but similar to the
general full order observer (15). Both in the reduced
observer case and the full order observer the selection
of the functions (ki(Z,9, Z,z), ¢ = 1,2, 3, as to improve
the error response is far from trivial, and certainly more
difficult than in the linear case. We will leave this issue
for future research.

—zZ+TT

xfj — bz (17)

e Qe

An interesting alternative for the design of an observer
(receiver) for the system (9,10) lies in the use of an ex-
tended Kalman filter for (9,10). Typically, in this case
the signal (10) is replaced by a noisy one:

w=z+7n (18)

with 7 ~ N(0, R) a white noise signal. The structure
of the extended Kalman filter is given by

£ = o(§-1) +k1(8)(w — %)
g = —2i+ri-g +ha(t)(w — &) (19)
i = {&—bz +hz () (w — 2)

where the gain vector k(t) = (k1 (t)kz(t)k3(t))7 is given
by

1
0
0

k(t) = P(¢) R™! (20)

with P(t) the solution of a corresponding matrix Ric-
cati differential equation

{ P = F@)P+PFt)T — PHt)TR*H(t)P
PO) = P >0

(21)
where F(t) = 2L(3(t)), H(t) = Z&(2(t)), with f and h

denoting the right hand side in {9) resp. (10).



At this point, no claim for good performance of the Ex-
tended Kalman filter is made. This is usual, but there
may be reasons the filter may act (reasonably) well for
the Lorenz system (9) which possesses a chaotic attrac-
tor. A Kalman filter type observer has been considered
earlier, see (3] and references in there, but the fact that
(9) when initialized within the domain of attraction of
the chaotic attractor remains confined to a finite box,
is helpful in the filter. Much work remains to be done
here, but some preliminary simulations show the effec-
tiveness of using a Kalman filter as observer. Espe-
cially, care should be taken for the ‘design’ parameters
in the filter, i.e. R, P and (o, Jo, %0)-

4 The Chua circuit

The Chua circuit is given by the equations

z1(t) -¢ & 0 z1(t)

% :Eg(t) = %g —% % :L'z(t)
z3(t) 0 -1 0 z3(t)
~&f(@1(t))

+ 0 ,
0
(22)
y(t) = (1 0 0)x(t). (23)

The nonlinearity f in (25) is given by f(y) = Qiy +
1/2(Q2~-Q1){| y+ys | = | y—wu» |) for some positive Q1,
Q2 and y,. This nonlinearity is not smooth, but this
does not affect the discussion. Because | f(y) |[<~v |y |
for some «y > 0 is is easily shown that the solutions for
all initial conditions are well defined on R®. Chua’s
circuit is shown to have a chaotic behavior for suitable
chosen @1, Q> and ;. Clearly the linear part of the
system equations (25) is observable. An observer may
thus be constructed as

5 _G G
d(a0)-( ¢ % )50
23(2) 0 —% 0 z3(t)
-& f(z () ky
+ 0 + 1 k2 | (30) - y().
0 k3
(24)
g(t) = (1 0 0) &(2). (25)

The choice k1 = ka = k3 = 0 will yield asymptotically
stable linear error dynamics [6]. Using different gains
allows us to select a faster error response. An interest-
ing - and challenging — alternative for the output (23)

in the Chua circuit is to take instead the output
y=(010)z (26)

It is clear that the synchronization problem for (22,26)
could be approached using the methods described in
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the previous sections. However, in [14] a particularly
structured observer for (22,26) is suggested, namely

N G @ N
af ) _ & % 1 p
at | 22 = Q ¢ @ T2
z3 0 -7 0 z3
—~&f(21) 0
+ 0 + K(.’L’z—.’f)z)
0 0

(27)
In [14] it is claimed that for K sufficiently large, syn-
chronization of (27) and (22) occurs. However, see also
[18], it is not clear whether this is true for all possible
initial states for (22) resp. (27). In fact, it is easy to
see that if (22) starts at 0 and (27) not, no synchro-
nization can occur, and the true question is whether
r = 0 is the only exception of this kind. Analysis
and simulations on the error system (22,27) — which is
piecewise linear — clarifies that whenever x| enters the
strip —1 < z7 < 1; then Z; grows. Since the system
(22) possesses a chaotic attractor where x, traverses
an interval [~p,p] with p > 1, it follows that ‘many’
trajectories for (22) will induce the temporarily desta-
bilizing effect for £; in (27), but since the average time
that z; is in the interval (—1,1) is about 14% there
is still good chance that for most trajectories synchro-
nization exists. This leaves open whether this is the
case for all trajectories.

5 Concluding remarks

The main lesson the reader could take from the exam-
ples of the previous sections is that synchronization of
complex (chaotic) dynamic systems, or, equivalently,
the observer problem for a complex (chaotic) system,
may be succesfully solved by exploiting the chaotic
nature of the system. Thus, not only standard ob-
server properties are in this case important, but also
the chaotic nature helps. Further work is needed as
to see how systematic the given examples can be ap-
proached.
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