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Abstract

The interaction of two coupled chains of Chua’s circuits
is investigated. The estimated value of coupling be-
tween the chains above which mutual synchronization
of all dynamic processes occurs is found. The exam-
ples of the synchronization of two steady patterns and
traveling wave fronts are given.

1 Introduction

Synchronization of motions is one of the fundamental
features of nonlinear systems. In recent years possible
synchronization of not only periodic (regular) oscilla-
tions but chaotic (irregular) ones has been proved in
[1] for identical coupled subsystems and in [2] for dif-
ferent systems. Such phenomenon has been found in
a number of systems being extremely diverse in there
physical nature [3, 4, 5, 6, 7]. It looks like complete or
almost complete coincidence of time realizations gener-
ated by coupled identical or almost identical nonlinear
systems.

From the other side there has been growing interest to
studying the collective behavior of arrays consisting of a
large number of interacting subsystems. The phenom-
ena investigated in such systems include formation of
patterns which can have both ordered and disordered
spatial structure [9, 11, 14], synchronization of oscil-
lations [7, 8, 10, 14], propagation of wave fronts and
solitons [9, 11, 12, 13}, spatio—temporal chaos and the
others. It means that such arrays represent, in fact, ac-
tive extended media where, as it is known, the problem
of interaction of patterns and waves is of great impor-
tance both from the fundamental and applied points of
view.

We study the problem of mutual interaction of two
coupled one-dimensional arrays {chains) of Chua’s cir-
cuits. We show that for certain conditions they synchro-
nize and display the identical collective behavior both
in time and in space. We also numerically illustrate
how such synchronization leads to different effects in
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spatio-temporal dynamics of the two coupled chains.

2 Model

Consider the case when all elements of two independent
arrays are identical and coupled diffusively in each of
the arrays. The interaction between the arrays is pro-
vided by “point by point” coupling between the cor-
responding elements of two arrays. The equation de-
scribing such system are
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where ! and -2 denote the variables of the first and
the second array respectively; d*,d? are coefficients
describing the strength of coupling between units in
the arrays; h characterizes coupling between the ar-
rays; the nonlinearity f(z) is taken in the smooth form
f(z) = o(z — a)(z +b).

The dynamics of each chain taken independently(h =
0) can be quite complex. The phenomena of spatial
disorder [10], different nonlinear waves including soli-
tons [13], pulses, fronts and chaotic pulse trains {14,16},
different synchronous regimes [6] have been recently
found in such a system. Studying the interaction of
the two chains(h # () we show the possibility of com-
plete synchronization of all motions in the identical
chains(d! = d? = d) and provide a few examples of
the interacting chains when their intra-array diffusions
are not equal(d® # d?). In particular, it can be proved
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Figure 1: Synchronization of disordered steady patterns.
Parameter values: ¢ =2, b=2.,, a=1, 8=
0.5, v=01 d=02, h=1

that increasing h above some critical value

az(a2 + ab+ bz)
6

yields the existence of the synchronization manifold M
and its global stability in the phase space of the system
(1). The manifold is

h* =

M:{u;=0, vj=0 w; =0},j=1,2,...,N

where u; = :c} - zf, vj = y}- —y;, w; = zJ1 - z_f.
Thus, for h > h* all initial conditions after some tran-
sient process tend to the manifold where motions are
governed by the system which is equivalent to the equa-
tions describing the independent array. It means that
complete synchronization occurs for all processes in two
coupled identical arrays of Chua’s circuits. Now we give
some examples of such synchronization obtained by nu-
merical simulations of the system (1). Note, that h*
obtained theoretically gives only an upper estimated
value of h enough for the synchronization. The real
value of h* depends on the types of synchronizing mo-
tions and usually appears to be smaller.

3 Synchronization of ordered and disordered
patterns

It has been shown in a number of papers (see, for ex-
ample, [9, 14]) that for d < d*, where d* is a some
critical value, each independent array (h = 0) can
have a very large number of steady patterns includ-
ing ones with chaotic spatial structure. Let the initial
conditions of the system (1) be two different patterns
which are the stable equilibrium of the independent ar-
ray. When the interaction starts and becomes strong
enough (h > h*) these distributions evolve to the syn-
chronization manifold where the synchronized steady
patterns are formed. The structure of the terminal
patterns can be quite different depending on the system
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Figure 2: Synchronization of ordered steady patterns. Pa-
rameter values: a =2, b=2, a=1 8=
0.5, vy=0.1, d=0.2, h=1.
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Figure 3: Synchronization of two different steady pat-
terns. The left pair of pictures is the initial
distribution and the right pair is identical ter-
minal patterns in two coupled chains. Param-
eter values: a =2, b =18, a=1, 8=
05, y=01, d=0.15 h=1

parameters and the form of initial patterns. In the Figs.
1,2 a few examples of such interaction are displayed.
Figure 1 illustrates the interaction of two initially dis-
ordered patterns (the left pair of the pictures is ini-
tial conditions, the right pair is terminal patterns).The
synchronized patterns are also disordered (Here we can
speak about the synchronization of spatial disorder.).

Another example (Fig. 2) is the interaction of two reg-
ular patterns with different spatial structure. The syn-
chronized patterns are also regular but have another
form “mixed” from two initial states.

Finally, let us illustrate the interaction of ordered and
disordered patterns (Fig. 3). For parameter values
given in the figure the initially disordered chain “stim-
ulated” by the regular pattern of the second chain
evolves to the pattern with the spatial structure al-
most identical to the regular initial pattern. This case
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Figure 4: Mutual synchronization of two chains with
traveling wave fronts. Parameter values: a =
2, b=18, a=1, =05 v=01, d=2.
t < to = 29 — h = 0 the chains are indepen-
dent h = 0, tp — the moment when interaction
switches on, £ > £, — h = 0.5, time interval
to <t < t; ~ 44 corresponds to transient pro-
cess.

may be interpreted as the disordered chain copies the
main features of the regular pattern in the results of
mutual interaction.

4 Synchronization of wave fronts

Consider now the situation when the parameters of the
independent array are taken in the region of possible
propagation of the wave fronts. It occurs, for example,
with increasing the coupling coefficient d above the crit-
ical value d*. Let the initial conditions be two fronts
propagating in the same direction with a finite delay
(Fig- 4, (t < tp)).- By the mutual interaction of the
chains switched on at the time moment ¢ = t5 the de-
lay is eliminated through rather short transient process
(Fig. 4 (tp <t < t1)), the fronts become synchronized
and propagate together (Fig. 4 (t > t1)). The level of
grey color corresponds to the value of the variables z;
in the junctions of the chain.

Another initial conditions are the wave front in the
one chain and a stable homogeneous state in the other.
Such situation is of interest, for example, when study-
ing the reentry phenomenon in parallel neural fibres [6].
When the interaction starts but is not strong enough
to synchronize the chains the front can not “excite”
another “fibre” but changes its own direction of prop-
agation and starts to travel to the opposite side (see
Fig. 5 (fo <t < t1)). Increasing the value of h at
the moment ¢; we provide the condition of mutual syn-
chronization and the front completely identical to the
original one is excited in the fibre which has been ini-
tially homogeneous (Fig. 5 (¢ > t1)).
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Figure 5: Mutual synchronization of two chains with
traveling wave fronts. Parameter values: a =
2, b=18, a=1 Bg=05 =01, d=
2.Initiation of the traveling wave front through
mutual synchronization. ¢ < ¢ = 31 - the
chains are independent h =0, tp <t < t; = 59
— the interaction is not enough for synchroniza-
tion h = 05,1 > t; — h = 1 - complete syn-
chronization.

5 Control of wave fronts

In summary, let us illustrate how the mutual interac-
tion of two chains with different diffusion coefficients
(d* # d? ) allows to control the wave front behavior. In
particular, let a stable wave front in a one chain prop-
agates in the presence of a stable steady pattern in the
other chain. Figures 6,7 show that either the front can
stay traveling when the characteristic scale of the pat-
tern (T < T*) is small enough (Fig.6) or it can fail to
propagate being "locked” within a half-period of the
pattern when T > T as shown in Fig.7.

Conclusion

We have investigated the interaction of two one-
dimensional arrays of Chua’s circuits and showed that
the arrays are able to synchronize. Taking as initial
conditions two different steady patterns and two wave
fronts traveled with a finite delay we illustrate that
their synchronization may lead to non-trivial effects in
the spatio-temporal dynamics of such system (synchro-
nization of the spatial disorder, appearance of new spa-
tial forms by the synchronization, coordination of wave
fronts). Although the examples are quite simple we
hope that the phenomenon of mutual synchronization
we proved will be helpful in understanding dynamic
processes in nonlinear systems of different physical na-
ture.
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Figure 6: Wave front stays to travel interacting with the
steady pattern. Parameter values: a =2, b=
18, a=1, =05 ~=001, d' =0.01,
& =20,T=13, h=01.
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Figure 7: Wave front fails to propagate. Parameter val-
ues: a=2, b=18, a=1 p=05 v=
001, & =0.01,d>=20,T=38 h=0.1
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