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Homoclinic Orbits and Solitary Waves in a
One-Dimensional Array of Chua’s Circuits

Vladimir I. Nekorkin, Victor B. Kazantsev, Nikolai F. Rulkov,
Manuel G. Velarde, and Leon O. Chua, Fellow, IEEE

Abstract—The possible propagation of selitary waves in a
one-dimensional array of inductively coupled Chua’s circuits is
considered. We show that in the long-wave limit, the problem can
be reduced to the analysis of the homoclinic orbits of a dynamical
system described by three coupled nonlinear ordinary differ-
ential equations modeling the individual dynamics of a single
Chua’s circuit. Analytical, numerical, and experimental results
concerning the bifurcations associated with the appearance of
homoclinic orbits and thus with the propagation of solitary waves
are provided.

1. INTRODUCTION

ODELS composed of coupled nonlinear oscillators play

a significant role in the understanding of the dynamical
behavior of many systems which are studied in nonlinear
physics, biology, chemical kinetics and in other branches of
science. Many of these systems can be described as a group of
identical or almost identical interacting self-excited oscillators
which are located at the junctions of a space lattice or cellular
neural network. In particular this sort of system has been
considered in the studies of Josephson arrays [1], arrays of
reaction cells [2], collective behavior of biological oscillators
{31, neural networks [4], nonlinear synchronization arrays [5],
and arrays of electronic oscillators [6]-[8]. Some regimes of
collective behavior of these systems can be considered from
the viewpoint of spatio-temporal dynamics of a nonequilibrium
medium. Therefore, the analysis of these regimes can be based
on methods which have been developed for the studies of
nonlinear waves and structures in continuously distributed
systems (see e.g., [9]-[11]).

Recent interest in the studies of spatio-temporal dynamics of
coupled electronic oscillators is connected with the use of elec-
tronic circuits for modeling collective behavior of biological
systems. In a number of papers [12]-[14] arrays of resistively
coupled Chua’s circuit’s have been employed as models of
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Fig. 1. (a) Block diagram of the 1-D array of Chua’s circuits coupled by
the inductors/self Lo. (b) Three-segment piecewise-linear v — ¢ characteristic
of the nonlinear resistor Np.

self-excited media. It has been shown that these arrays can
sustain wave front propagation and generate spiral waves [15].

In this paper we study the existence of solitary waves in 1-D
array of inductively coupled Chua’s circuits. In the remainder
of this section we show how the problem of the existence of
the solitary waves can be reduced to analyzing the bifurcations
of homoclinic orbits in an auxiliary system which actually
describes the behavior of an individual circuit. In Section II
we provide the results obtained about the homoclinic orbits
associated with solitary wave solutions of the array. In Section
III we consider conditions for solitary wave propagation. Ap-
pendices A-D contain some results of the qualitative analysis
of the dynamical system associated with the array.

The 1-D array of inductively coupled Chua’s circuits (see
diagram in Fig.1(a)) can be described by the following set of
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equations:
daVv;
(G = ~g(%)+GU; - Vi),
C% = GV -U)+I,+11 -1
\ ar, ey
LS¢ = -U;-Roly,
(Lo% = Uj-Ujp

Iy=1,Uny =Un

ji=12,...,N

where V;, Uj, and Iy ; are the voltage across the capacitor Cj,
the voltage across the capacitor C5, and the current through
the inductor L, respectively. I; is the current through the
coupling inductor L. The function g(V) is the voltage—current
characteristic of the nonlinear resistor shown in Fig. 1(b). The
index j stands for the variables of the j th cell of the array.
N is the number of cells in the array. In dimensionless form
equations (1) become

(& = oly; —z ~ f(z;)),
Y= ai-ytztwi - w,
1. 2)
H o= Py — vz,
(= dy; - yi)
i=12...,N
where
G ; U I, I
= —t¢ :—J :—] ;o= 2 ;o= J
TG TB, YT B, %" B6 T B,G
and
oG 5O _RGC G
cy’ LG?’ LG~ LyG?*

Note that a, 3, characterize the individual dynamics of the
cell in the array, and have positive values. The parameter
d characterizes the strength of the coupling between the
elements. The nonlinear function f(x) describes the three-
segment piecewise-linear resistor characteristic g(V), i.e.,

br+a—-5b ifzx>1
f(z)={ az f-1<z<1 3)
br —a+b ifz<-—1
with a = 73, b = 2.

A “‘travelling’”’ wave solution of the system described by
(2) and (3) is

o

Y; = ¥y

5 = 2(8) “
wi(t) = w(f)

where £ = t — jh , 0 < h is a parameter. Substituting (4)
into (2) we obtain

z = a(y—m—f(w)),

:’) = x—y+z+w(§~—h)—w(§), 5)
2 = —Py—1z

W= d(y§) -y(€+h)

where the dot denotes differentiation with respect to £. Notice
that £ is the coordinate moving along the array with a velocity
equal to ¢ = 1/h. Let us assume that h is sufficiently small
(i. e., c is sufficiently large). Then the two difference terms
in equation (5) can be replaced approximately by the first
derivatives w and —y (with respect &), respectively, and we
obtain the following system of coupled first-order ordinary
differential equations

pt = y-z- f(z)),
g = gla-y+a, ©)
z = —Py—-nz

where 4 = L1 | § = 1 — 4. This system describes the

waveforms of the travelling waves which can propagate with
velocity c along the array.

Solitary waves of the model (2) correspond to nonconstant
solutions of (6) which satisfy the condition

lim (x(¢),y(£),2(£)) = 0. Q!

|€]—o00

Condition (7) is satisfied by the homoclinic orbits of the system
(6).

Observe that in the case of § = 1 the system (6) coincides
with the equations describing the local cell of the array.!
Therefore, the following investigation is important not only
from the point of view of the travelling wave model (2), but
also from the viewpoint of canonical Chua’s Circuit dynamics
{171, [18].

II. HOMOCLINIC ORBITS

In this section we investigate the homoclinic bifurcations of
the system (6) which indicates the existence of solitary waves
in the array (1). Using analytical and numerical analyses we
evaluate the parameter values for the appearance of homoclinic
orbits in the phase space of the system (6). This section is
divided into three subsections. Each subsection deals with a
different approach to the investigation of the homoclinicity. In
Section II-A the existence of homoclinic orbits is proved by
a qualitative analysis of the trajectory behavior in the phase
space of the dynamical system (6). In Section II-B these results
are exemplified by numerical simulations of the system (6).
Finally in Section II-C we show the results of our experimental
studies dealing directly with real electronic circuits modeling
the system (6).

IThis is a typical situation for inductive coupling (see [16]).
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A. Homoclinic Orbits. Phase space Analysis

Consider the behavior of the trajectories in the phase space
of the system (6) as a function of the parameters of the system.
Let us restrict our considerations to the parameter range:

uKl, d>0, 6> 0, B > Bab, ®)
720, a<-1, -1<b<0

with
Bab = maz{B,, B}

2
)
et st
2
+% (q-?—l)2 - 52(qq+ 1)4] 1+ O(u?)

where the index ¢ can take one of two values, a or b. When
(8) is satisfied, the system (6) has three stationary points:

0(0)070) ’ P+(-’507y0,20) ) P_(—mOa_yOv_ZO)‘

The coordinates of these stationary points are given in terms
of the parameters of the system as follows:

= (+B)D =_2D =__BD
$0—£z;_—,y%*, yO”B_’—L'yH’ 20 = B’ ©

—b—a —__ b
D B— m.

T+ 1
Each of these stationary points have a pair of complex-
conjugate eigenvalues. The stationary point O is a saddle-focus
(see Appendix A) with a one-dimensional unstable manifold
W(0O) and a two-dimensional stable manifold W2(O). The
manifold W (O) consists of the point O and two outgoing
trajectories W1* and W3 In the (z,y,z)-phase space, the
trajectory W goes into the region = > 0, and the trajectory
W3 into the region z < 0. The stationary points P* may
be either stable foci (in the parameter region G, see Fig. 2)
or saddle-foci (in the parameter region G, Fig. 2) with one-
dimensional stable manifolds W; (P*) and two-dimensional
unstable manifolds W (P*). The points P* change stability
at the bifurcation values 3 = [,where

5(b+1)11. 2 1, b+l b
[ 22 (G + ) + )
v+ 3

Bs = (10
At the bifurcation values the trajectories located on the man-
ifolds W;‘(Pi) are equivalent to the trajectories of elliptic
points in a two-dimensional manifold.

Let us consider the homoclinic orbits in the phase space
of system (6) with the parameters taken in the region G,
(see Fig. 2). Let us examine the homoclinic orbits formed by
the trajectory W7, Since the vector field of the system (6) is
invariant under the transformation

(.’L‘,y,Z) - (—ﬂ'}, -Y —Z) (11)
the homoclinic orbit formed by W* coexists with the homo-
clinic orbit formed by W3.

Consider now the behavior of the trajectory W when in the
system (6) one has 1 < 1 which is the coefficient associated
with the highest derivative of the system. In this case we have

24.0 16
3 B=Ps
1 B=By
18.0 -
| Gs
12.0 —Gu
6.0 -
0.0/..A.v.1,.’)1/
0.0 2.0 4.0 6.0 8.0 10.0
Fig. 2. Two-dimensional parametric planar representation (v, () with

a= -2 b=-1/2, p = 0.01,, and § = 0.95. For the parameter values
in the region G, the stationary point Pt is a stable focus. In the region
G the point P is a saddle-focus.

a singular perturbation multiscaling problem, and the motion
in the three-dimensional phase space has both fast and slow
features [19].

We start our analysis with ¢ = 0. In this case a two-
dimensional manifold Wy of slow motions exists in the
(z,y, 2)-phase space of the system (6). The shape of the
manifold is given by

Wo : {(z,y,2) | y=z+ f(z)}. (12)
Comparing (12), (35), and (36) (see Appendix A) we note
that Wy coincides with the two-dimensional manifold of the
stationary points O and P*. In the regions £ > 1, ¢ < —1,
the manifold W, is given by the planes W (P*). In the
region | =z |< 1, Wy is the plane W§(O) (see Fig. 3).
Therefore, the character of the slow motion on the manifold
W) is conditioned by the complex-conjugate eigenvalues of
the points P* and O. As shown in Appendix C, the trajectories
located on the planes W (P¥) form unstable foci, and the
trajectories on the plane W§(O) form a stable focus. Outside
the surface W, the dynamics of the system generates fast
motions with

z = const., y = const. 13)
It can be shown (see equation (6)) that the planes W(P¥)
attract, and the plane W§(O) ejects the trajectories going to
the regions of fast motions. The qualitative behavior of the
trajectories corresponding to fast and slow motions is shown
in Fig. 3.

Now consider 0 < p < 1. In this case the manifold of slow
motions W, of the system (6) consists of two-dimensional
manifolds of the stationary points O and P*. Within the region
z > 1 the manifold W, is formed by the plane W:(P+), and
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Fig. 3. Qualitative picture of the phase portrait of the system (6) in the
relaxation regime with 4 = 0.

in the region | z |< 1 it is formed by the plane W;(O) (see
Appendix A, formulas (29) and (35) for detail). The shape of
W, is presented in Fig. 4(a). It is shown in Appendix B that
W:(0) and W (P™) intersect the plane

U+1 : {(:c,y,z) |$ = 1}

at the lines li and lﬁ, respectively, and the lines l; and
I intersect each other at the point L(y;,21) (see Fig. 4(b),
formulae (40)).

Since the point L lies at the intersection between W (P™)
and W;(O), there is a trajectory that originates from the
stationary point P, passes through L, and then tends to the
stationary point O. In Fig. 4(a) this trajectory is shown by solid
line and marked by I';. The trajectory I'; forms a heteroclinic
orbit.

Besides L, the lines [, and [ contain the points K and
M which are essential for understanding the dynamics of the
system. The location of these points is shown in Fig. 4(b),
and their coordinates are determined in Appendix C, formulae
(41) and (42). These points divide the trajectories located in
the planes W*(P*) and W;3(O) into trajectories which leave
the planes and trajectories which come to the planes at the
lines I5, and [};. The trajectories passing above the point M
come to the plane W;(O) . The trajectories passing below the
point K come to Wi(P¥).

Since 0 < p < 1, the slow motions take place not only
on the planes W3(O) and Wy (P™), but also in some thin
layers (thicknesses of order of u) containing these planes.
Let us consider the trajectory W{* which originates from the
stationary point O and describes its evolution in the (z,y, 2)
phase space. This trajectory has intervals of fast and slow

(14)

T

\y'~<t

(®)

Fig. 4. (a) A portion of the qualitative picture of the phase portrait of the
system (6) in the relaxation regime with 0 < u < 1. (b) Relative location of
cross sections of the manifolds W (P1) and W;(O) at the plane z = 1.

motions. Fast motion along the trajectory occurs in the region
of the phase space which is located outside the thin layers
associated with the planes W3(O) and Wy (P*) (see Fig.
4(a)). In this region of the phase space the shape of the
trajectory W is close to the straight line {z = 0, y = 0}.
After passing this region the trajectory W{* comes into the thin
layer of slow motions associated with the plane W (P*). In
this layer the behavior of the trajectory is qualitatively similar
to the behavior of the nearest trajectory located in the plane
W, (P*). Since under the conditions (8) the trajectories in
the plane W3(P*) have the shape of an unwinding spiral,
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the trajectory W}* will also have an interval of the form of
an unwinding spiral (see Fig. 4(a)). Therefore, being in the
thin layer of slow motions the trajectory W makes one or
several rotations under the plane W;‘(P*) and then intersects
the plane U ;. Let M{* be the point of the first intersection of
the trajectory W* with the plane U, ; when it leaves from the
domain z > 1. Two statements concerning the location of the
point M}* can be made based on the fact that the trajectory W}
passes the region of slow motion under the plane W(P).

* M7} is located to the right of the line lﬁ.
* The point M7 is located in a p-neighborhood of the line
.

Now let us consider the line I}, which is given by the
intersection between the planes W;(O) and U, (see Fig. 4(b)
and Appendix B). In the plane U, ; this line divides the right
p-neighborhood of the line Ij; into two domains U, . and Uy
located to the right and to the left of the line I¥, respectively.
The point M7 can belong to either one of these domains or
to the line [}. If the point M} is in the domain U}; then after
intersecting the plane Uy, the trajectory W goes into the
region of fast motions under the plane W;(O). If the point
My is in the domain U; then after intersecting the plane U,
the trajectory W} stays in the layer of slow motions in a
p-neighborhood of W;‘(P‘*), and therefore, above the plane
W;(O). Finally, if M} € I3, then the trajectory W* belongs
to the plane W;(0O) and with £ — 400 tends to the stationary
point O. Since W1* originates at O, the last case corresponds
to the existence of a homoclinic orbit in the phase space of
the system (6).

Similar arguments can be used for the analysis of ho-
moclinic bifurcations in the parameter region G,. The main
difference from the case considered above is that in the region
G one can only find the bifurcations of the homoclinic orbit
which make only one rotation in the slow motions layer. The
detailed description of the bifurcations of this type is presented
in Section II-C.

In order to obtain the parameter values corresponding to a
homoclinicity we use the property of piecewise-linearity of the
function (3)°. First, we find the point Mg where the trajectory
W intersects the plane U, for the first time. It follows from
(34) that the coordinates of this point are

z = 2y (15)

w_ 1 w_ 1+Ekf—k%
WETR A=

where k3 and k% are given by (32). In the region z > 1,
the solution of the system (6) corresponding to the trajectory
passing through the point M} can be presented in the form

T = <Pl(§7cu) y ¥y = 902(57011.)7 z = (pg(é-,Cu) (16)

Since the system (6), for region x > 1, is linear, the functions
 may be easily obtained. The equation

(Pl(gacu) =1

2Notice that the formulae obtained using this approach are correct for any
value of p

an

enables us to determine the interval of ‘‘time’’ £ = 7 required
for the trajectory to reach the point Mj* starting at M . The
existence of the point M}* is guaranteed when the parameter
values are taken in the region G,. Therefore, the solution of
equation (17) exists for the considered parameter values. The
coordinates of the point M;* can be given in the form

c=1, y=y, 2=z (18)

with
yil = ‘102(7-7 Cu) ) Zf = (P3(7', Cu)'

It follows from (18) and (37) (see Appendix B) that the point
My € [, if the parameters of the system (6) satisfy the
equation

kSpo(r,Cy) + k3ps(r,Cy) +1=0. (19)

Equation (19) defines the bifurcation set II corresponding to
the appearance of the single-loop homoclinic orbit® of the
system (6) associated with the stationary point O. Note that a
single-loop orbit can have a rather complicated shape because
such orbits may rotate many times in a thin layer near the plane
W;‘(P+). Unfortunately, the equation (17) can not be solved
exactly by analytical methods. However, it can be solved
numerically. The results of our numerical analysis of the
bifurcation set II using the equation (17) will be discussed in
Section [I-B. The bifurcation set II can also be examined using
an approximate description of the behavior of the trajectory
W when it can be divided into fast and slow motions. Then
the fast and slow motions can be considered separately. The
fast part of the motion of W7* is close to the line {y = z = 0}.

Let us consider in detail the slow part of the motion of
the trajectory Wi. It has been determined above that if the
homoclinic orbit exists, then the point Mj* € [, is located
between the points L and M. First, we discuss how the
trajectory W{* approaches the point M7*. As it follows from
(37) (see Appendix B), when 0 < p < 1, the line [, is close
to the line y = a+1. Therefore, when the trajectory W}* comes
close to the point M7, its motion satisfies the condition y = 0.
On the other hand, in order to remain in the thin layer of slow
motions the trajectory W' must satisfy the condition & ~ 0
in the vicinity of the point M7*. Taking into account these two
facts we find that the point M7}* with such properties in the
plane U, is located in the vicinity of the point

Y=Ya, 2 =24
where
Ya=a+1, z, =a.

Besides, in the layer of slow motions W{* moves very close
to the plane W*(P*). Therefore, during the slow motion W7
may be approximated by some trajectory located in the plane
Wy (P*). Taking into account the properties of the trajectory
W1 near the point M{* we choose the trajectory from the plane
W2 (P*) which passes through the point

Y=Yag, 2 = 2q4.

3Multiloop homoclinic orbits will be discussed later.
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Let I, denote the chosen trajectory from the plane Wy (PH).
From (37) (see Appendix B) it follows that in the (z,y, z)-
phase space the trajectory I'; passes through the point
A(zq, Ya, 24),Where

In order to prove that the point A is close to the line [}, we
evaluate the distance between them. From (37) (see Appendix
B) follows that the distance R between A and I, is

R = |7a+ﬂ§a+l)|\/(a_&1)4 + (b_;_ll)ﬁ ,Uz2+0(f1r3)

which is of order uz, i.e., it is a small quantity. Hence, the set
of parameter values, Il,ppr0., approximating the bifurcation
set I may be obtained by analyzing the conditions which are
applied to the trajectory I', to be the best approximation of
the trajectory Wi*. These conditions may be considered as the
boundary problem for the two-dimensional system (42) (see
Appendix C). The solution of the boundary problem give us
the set of the parameter values Il,;pr0.. This solution takes
the form of the following equation:

__Duy/BL _( _ Dy )
\/3(,3;# - ’;"Bu) B atl p =By (20)

h 2w

exp § z;(27n — arctan ;—%I)

n=12,...

where B,,1,,D,,w and h are given by (42) and (43) (see
Appendix C). The index n characterizes the number of rota-
tions made by the trajectory W}* while it unwinded around the
stationary point P+ moving in the layer of slow motions. The
solutions of the equation (20) obtained for » = 1,2,3 and 4
with the fixed parameter values a = —2, b= —1/2, u = 0.01
are shown in Fig. 5 by dashed curves in the parameter plane
(8,7).

We would like to emphasize that all curves defined by (20)
start from the same point IIy of the plane (3,~). The point
IIp has the coordinates

_B _[Dpt(a+t 1)Bu]2

v=—4 8= CES A
The behavior of these curves near the point IIp has the
following explanation. At the parameter point Ily the system
(42) is conservative and, therefore, the trajectories on the plane
W (P) given by this system are equivalent to the trajectories
near an elliptic point. In this case the trajectory I', is closed
and have the form of an ellipse. The point A is the leftmost
point of the ellipse. The ellipse is ‘‘nearly’’ tangential* to the
line l;. Therefore, we use the contour I'g as an interval of
trajectories which approximate a homoclinic orbit. The contour
Ty goes along the ellipse which is tangential to the line [,
and intersect the line {y = 0, z = 0} originating from the
stationary point O, simultaneously. It is clear that the contour
I'p can approximate a homoclinic orbit making any number of
rotations 7 in a neighborhood of the stationary points P+.

2

4Tangency occurs at the “zeroth-" order of the approximation with respect
to the small parameter p

100.0
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Fig. 5. Bifurcation curves of the homoclinicity of the system (6) plotted in
the parameter plane (v, 3) witha = —2, b= —1/2, p =0.01, § = 0.95.

The results of numerical simulation are shown with solid lines. Dashed lines
are plotted using the approximate formula (20).

B. Homoclinic Orbits. Numerical Simulations

In numerical simulations the bifurcation set II can be
analyzed in two ways. The first way is based on the results
of Section II-A. It consists of a numerical solution of (17)
together with (19) to calculate the parameter values of the
bifurcation set. The second way consists of a numerical
integration of the system (6) in the region z > 1 with initial
conditions at the point M{. The integration is stopped at the
point M}, which is the first intersection of the trajectory with
the plane U, ;. Locating the point M7 for different parameter
values, we find the set of the parameter values which satisfy
the condition My € l; (see, Section II-A). In our numerical
analysis we used both methods. We have found that both
methods give the results which are very close to each other.

In this section we only provide the results obtained from
the numerical analysis of the homoclinic orbits with the direct
integration (i.e., analysis using the second method) approach.
To integrate the system (6) we used a fourth-order Runge-
Kutta routine. The absolute and relative errors of numerical
integration did not exceed 1078 and 1073, respectively. The
system (6) was integrated in the region z > 1 from the point
M to the first intersection of the trajectory Wi* with the
plane U, ;. This intersection gave us the point M7'. Then we
calculated the deviation, dps, of the point M7* from the line
I, located at the intersection between the planes W:(0) and
U,1. Depending upon the location of the point M{' in the
plane U, 1 the deviation d,,, can be either positive or negative.
If M{* € Uy, then dy is negative while if My € Uj,
then dps is positive. Then we varied one of the parameters
of the system, for example (3, and calculated the function
dp(B), called a splitting function. This function shows the
correspondence between the value of § and the value of the
deviation dp;. An example of this function is shown in Fig. 7.
The discontinuity of the splitting function (dashed line in the
Fig. 7) corresponds to the approach of the trajectory W to the
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Fig. 6. Various types of homoclinic orbits of the system (6) associated with the stationary point O(0, 0, 0). (a), (b), (¢), and (d)
provide the homoclinic orbits which, respectively, make n = 1, 2, 3, and 4 rotations in the slow motion layer near the manifold
W2 (P+), respectively. The parameter values are @ = —2, b= —1/2, g = 0.01, § = 0.95, v = 0.5 and $, corresponding to
the solid curves of bifurcation diagram (Fig. 5) labelled by n = 1, 2, 3, and 4, respectively.

plane U, at some point (from a small neighborhood of the
point K'), where the vector field of system (6) is tangent to the
plane U, ;. The parameter value, where the splitting function
crosses the zero value, corresponds to the case M7 € lﬁ and,
therefore, to the existence of a homoclinic orbit in the phase
space of the system (6).

The solid lines in Fig. 5 depict the bifurcation sets II
obtained in the numerical simulations with the bifurcation
value in the parameter plane (v,83) for fixed p = 0.01,
6 =095 a = —2 and b = —1. The index n characterizes
the number of rotations made by the homoclinic orbit around
the point P*. We denote by h,, the parameter values from
the bifurcation set II corresponding to the homoclinic orbit
marked by the index n. The bifurcation values obtained
in the numerical simulations coincide-with the approximate

values of the corresponding bifurcation parameters given by
(20) (dashed lines in Fig. 5). Equation (20) gives the best
approximation for the homoclinic orbits with small n. The
shapes of the homoclinic orbits with different index n for
the parameter values from the bifurcation set II are shown
in Fig. 6. The orbits were obtained with fixed v = 0.5 and 3
values taken within the bifurcation set II (see Fig. 5).

As mentioned in Section II-B, the bifurcation set IT does
not exhaust the whole bifurcation set of homoclinic orbits of
the system (6). This fact can be confirmed with the analysis
of the saddle-focus value, 0,5 of the stationary point O. The
saddle-focus value is

Osf = Ae + he
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where A, is the positive eigenvalue of the stationary point,
and A, is the real part of the complex-conjugate eigenvalues.
In our case A, is given by (39) (Appendix B) and h, by
(43) (Appendix C). When 0 < u < 1, the eigenvalue
Ae > 1 and, therefore, in our case o,y > 0. According
to a theorem by Shil’nikov [20], if the saddle-focus value
is positive, then other bifurcation curves corresponding to
multiloop homoclinic orbits will exist in the neighborhood of
the curves of the bifurcation set II. However, they are hardly
observable in numerical simulations. Indeed when ), > 1, the
plane W;(O) is strongly unstable and any incoming trajectory
to the slow motion layer near W ;(O) rapidly leaves this layer.
This instability in the transition from slow motions to fast
motions causes stiffness of the system (6). When p = 0.1
the situation is easier and mutliloop homoclinic orbits may be
observed in the numerical simulations. Such homoclinic orbits
are generated by the trajectory W} in the following way. At
the first intersection of the plane Uy (from the region z > 1)
the trajectory gets into the region U} (see Fig. 4 (b) and (a)),
moves in the slow motion layer above the plane W;(O), and
at the second intersection with Uy ; (from the region z > 1)
the trajectory gets into the [, and forms the homoclinic orbit.

C. Homoclinic Orbits. Physical Experiment

We have also studied homoclinic orbits in experiments
with electronic circuits (see Fig. 8). To observe the (vy,vs)-
projections of the trajectories of the circuit, the voltages v; and
v9 are applied to the “X” and “Y” terminals of the oscilloscope.
A periodic pulse generated by a function generator is used to
periodically set the initial state of the circuit near the stationary
point O by short-circuiting the nonlinear active element Ng
with a relay. This short-circuiting makes the origin in the
resulting system asymptotically stable. The pulses from the
function generator are also used for intensity modulation (via

4@2 Vel
Buffer M ,
R { Relay
= FEF
Cc
Ry Cy 1} Np
wgr |y =

Oscilloscope noz

Generator of
periodic pulses

Fig. 8. Schematic diagram of the experimental setup for generating pictures
of homoclinic orbits.

the “Z” terminal of the oscilloscope) to display the intervals of
the trajectories starting from the vicinity of the stationary point
O and ending when the relay is switched on. As it follows
from Section II-A the behavior of the trajectories originating
from O changes qualitatively when the parameters of the
circuit cross the bifurcation values of the parameters where the
system has homoclinic orbits. This qualitative change of the
trajectory is used to detect the transition of the circuit through
homoclinicity. For earlier use of this and other techniques for
the same problem (see [21] through [23]).

In our experiments we use the OP AMP implementation of
the circuit proposed by Kennedy [24]. The state equations of
the circuit are [25], [26]

Ci¥ = G(vy —v1) — g(v),
Coz = G(vy —vg) + 1L, (22)
Lid% = —V3 — RQiL

where G = 1/R and the nonlinear function g(v;), which

defines the v — ¢ characteristic of the nonlinear active element
Ng, is described by the piecewise-linear function

g(wn) = movs + 3 (m1 — mo)llun + Byl = or — Byll. 23

In our experimental setup, we fixed m; = —0.5mS, mo =
—0.11mS, and B, = 0.5V. We also fixed the linear elements
of the circuit at L = 129mH, C; = 1nF, and Cy = 47nF.
The values of the resistors R and Ry are used as control
parameters of the dynamics of the circuit. The bifurcations
found associated with homoclinic orbits are given in Fig. 9.
These bifurcation curves are coded by the indices h,. When
the parameters of the circuit are chosen from the bifurcation
curve h,, the homoclinic trajectory starts at the unstable
stationary point O, goes to the plane of slow motions, makes
n rotations around the stationary point P* and then returns
back to O.

As it follows from the analysis of the homoclinic bifurca-
tions the behavior of the trajectory originating at the stationary
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(a) Bifurcation curves measured in the experiment with the circuit. (b)
Bifurcation curves obtained in the numerical simulations of the system (6)
when the parameters of the system are the same as in the experiment (a).

6000.0

hyperbolic point changes qualitatively when the parameters
of the circuit cross the bifurcation values associated with the
homoclinicity. Consider the behavior of the trajectory studied
in the experiment with Ry = 5562. We have observed two
different types of bifurcation associated with the homoclinic
orbit h;. The first type has been observed in the parameter
region where the stationary point P% is stable. Fig. 10(b)
shows the trajectory obtained when the parameters of the
circuit are chosen in the region above the left branch of the
bifurcation curve h;, where the stationary point P is stable.
The trajectory starts from O goes to the manifold of slow
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Fig. 10. The behavior of the trajectory originating at the stationary point o
in the experiment with the circuit. The parameter values of the circuit were
taken close to the homoclinic bifurcation. The trajectories shown in (a)—(h)
were measured with the values used for Fig. 9(a) identified by arrows with
corresponding labels.

motions and then is attracted by the stable stationary point
P*. After the bifurcation, when the parameters of the circuit
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O. The parameters of the measurements (a) and (b) are those used for Fig. 9(a)
identified by arrows with the labels al and b1, respectively.

are below the curve h; the trajectory starting at O, goes to
the manifold of slow motions, makes one rotation around P+,
then falls from the plane of slow motions and travels fast to the
other branch of the manifold of slow motions associated with
the stationary point P~ . This trajectory is shown in Fig. 10(a).

The second type of bifurcation is observed in the parameter
region where both stationary points P and P~ are unstable.
After the homoclinic bifurcation the trajectory behaves simi-
larly to the trajectory measured after the bifurcation of the first
type, as comparison of Fig. 10(a) and (c) shows. However,
before bifurcation the behavior of the trajectory is different
from the trajectory measured before the bifurcation of the first
type. Now it is not attracted by P because this stationary
point is no longer stable. In this case, the trajectory makes
a second rotation in the slow motion layer near the manifold
W;‘(P+) diverging from the stationary point Pt and then
falls from the manifold, as illustrated in Fig. 10(d).

In the experiment we have observed that the homoclinic
orbits h,, with n > 1, appear only with bifurcations of
the second type. The trajectories measured in the vicinity of
higher—order homoclinicity are shown in Fig. 10 (e)~(h).

As mentioned earlier, the existence of two different types
of homoclinic bifurcations h; originates from the change of
stability properties of the stationary point P*. The parameter
regions corresponding to different types of bifurcation are
divided by the bifurcation curve h, where P losses stability.
Fig. 11(a) and (b) shows the behavior of the trajectories
originating from O, and measured before and after the point
P losses its stability.

III. SOLITARY WAVES

As indicated in the Introduction, the appearance of homo-
clinic orbits in the phase space of the system (6) indicates the
existence of solutions of the system (2), (3) in the form of
solitary waves. The parameters of the solitary waves depend
on the parameter values on the bifurcation set II. The wave
profiles correspond to the forms of the homoclinic orbits as
discussed in Section II. The number of pulses in the solitary
wave profile is determined by the number of rotations of the
homoclinic orbits both around the stationary point P+ and
around the stationary point O (see Fig. 6). Since the stationary
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Fig. 12. Solitary wave velocity ¢ as a function of the coupling parameter d
with fixed parameter values a = ~2, b= —1/2, g = 0.01, § = 0.95. ()
v =10.95 =29, (b)y =0.5, 3 = 45. The index n provides the number
of humps of the solitary wave.

point O is of a saddle-focus type, the profiles of the solitary
waves contain oscillating, wavy tails.

Let us see the characteristics of the possible solitary wave
solutions in the system (2), (3) as a function of the coupling
parameter. The dependence of the velocities of the solitary
wave solutions of the system (2), (3) upon the coupling
parameter are shown in Fig. 12(a) and (b). The values were
obtained for two different parameter sets (3, v, ¢t). To find the
values of parameter é corresponding to the existence of the
solitary waves we examined the splitting function described
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in Section II-B with argument §. We have
9 d

¢ = ——m

1-6,

where 6,, are the values of & corresponding to the appearance
of homoclinic orbits of the system (6) with index n. The

propagation of such solitary waves in the array depends on
their stability. Two different approaches have been taken
in studying stability. In the numerical simulations we have
investigated the initial value problem with data close to the
solitary wave solution (see Fig. 13 and the discussion below).
The other approach follows the criteria used in the theory
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of continuously distributed systems, where the stability of a
spatially homogeneous state associated with the solitary wave
may be used as one of the conditions for stability of the solitary
wave. In the case of an array (i.e., a discrete medium) this
condition should be satisfied too. It is shown in Appendix D
that all homogeneous stationary states of the system (2), (3)
are unstable. Therefore, strictly speaking, all solitary waves
in the array (2), (3) are unstable. However, if instability does
not set in too fast, or too strongly, the possible solitary waves
may actually occur and propagate for quite a long time interval
before any appreciable change is seen. Then we may very well
speak of a long time “practical” stability of the waves which
show slow enough “aging” effects.’ In numerical simulations
of the system (2) we have found that there are parameter values
such that solitary waves can propagate rather far with only
slight changes of their profile.

The evolution of the initial wave profiles chosen close to
the solitary waves solutions is illustrated in Fig. 13. Fig. 13(a),
(b), and (c) shows the evolution of solitary waves propagating
with the velocities given in Fig. 12(a). Fig. 13(d), (e), and (f)
corresponds to the velocities given in Fig. 12(b). The ‘‘z’’-axis
in Fig. 13 corresponds to the ‘‘spatial’’ coordinate j, while the
‘‘y’’-axis corresponds to z + s7, where 7 is a dimensionless
time and s is a scaling coefficient. Fig. 13 shows to what
extent can solitary waves of different shape propagate with no
appreciable changes. However, the oscillating tail of the waves
affects the unstable stationary state (z; = y; = 2; = w; = 0)
and indeed after some time interval small perturbations will
develop in the background of the solitary wave (Fig. 13).
These perturbations finally grow strong enough to finally de-
stroy the solitary waves. Notice that the scale of the instability
is different for different parameter sets. In particular, if the
coupling parameter is large (Fig. 13(d), (e), and (f)) the scale
of the instability is also large.

IV. CONCLUDING REMARKS

Our study naturally falls in two parts. The first part deals
with the spatio-temporal dynamics of an array of identical
oscillators modelled by Chua’s circuit. We have shown that
when a group of such circuits are inductively coupled to
form a one-dimensional array, solitary waves are possible for
certain parameter values. These solitary waves may have a
single hump or they may show a rather complicated form
with two, three, and more humps. We have analyzed the
dependence of their (phase) velocity on the coupling pa-
rameter. We have also shown that strictly speaking they are
unstable. However, our numerical simulations showed that
they can nevertheless propagate with no appreciable change
of profile for quite some time. Hence a one-dimensional array
of inductively coupled Chua’s circuits may be considered as
a nonequilibrium ‘‘medium’’ with properties similar to the
properties of dissipative continuous media as for instance
cases where the evolution is describable by a dissipation-
modified Korteweg—de Vries equation (KdVE). Two such

3Such “practical” stability has been advocated in studies of a dissipation-
modified Korteweg-de Vries equation modeling at least qualitative features of
oscillatory Benard-Marangoni convection [10], [11].

cases are the Marangoni-Benard convection when a liquid
layer is heated from above and the evolution of internal
waves in some sheared, stably stratified fluid layers. Thus a
conclusion is that besides their intrinsic vatue and its potential
electronic telecommunication applicability, experiments with
one-dimensional arrays of Chua’s circuits may help in our
understanding of the qualitative properties of these and other
hydrodynamic processes in the atmosphere, or the oceans,
as well as in other fields of science and technology where
dissipation and nonlinearity are key elements acting together.

The second part of our report deals with the individual
dynamics of Chua’s circuit. We have studied the bifurcation
set II corresponding to the appearance of homoclinic orbits
associated with the stationary point O at the origin of the phase
space of the circuit. In the parameter plane (3,~) the set II
represents the bundle of curves originating from the same point
ITo. We have shown that the saddle value of the saddle-focus
O is positive, hence in the neighborhood of bifurcation set IT
there exits a countable set of bifurcation curves corresponding
to homoclinic orbits with any numbers of loops.

APPENDIX A
INTEGRAL MANIFOLDS OF STATIONARY POINTS

Consider the system (6) in the region —1 < z <1
,u,;irzy—x—(1+a)a:,
by=z—y+ 2,
z=—Py—z.
The system (24) has a single stationary point O at the origin.
Its corresponding characteristic equation is

1
,\3+[7+;1§+i]v+

24

I
R R R

Then within the G,, parameter region (defined by conditions
(8)), equation (25) has one positive root A = ), and a pair
of complex conjugate roots. Therefore the stationary point O
is a saddle-focus with a one-dimensional unstable manifold
W1, and a stable separatrix plane W;(O). Let us derive the
equations which describe these manifolds. To define W3(O)
we change variables from (z,y,z) to (u1,us2,us) via the
transformation

z 1 -k -S| [w
z 0 0 1 U3
with
ki o= 6(A. + 2H) o
a a é(a
ke = %{-; — [1 4 Hatbyy, — 522}
Then the system (24) becomes
’U:l = /\aul " .
p = Fuy — S uy — Hilyg (28)
ug = —fug — yus.

It follows from the first equation of (28) that in the new phase
variables (u1, u2,us) the separatrix plane W:(O) is given by
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the equation u; = 0. Therefore, taking into account (26), the
equation of the separatrix plane in the phase space (z,y, z) is

W:(0) :
{x +6(ha + &)y + L[-2 — 14 2]y, 5Ag]z:o} :
(29)

Hence motions on the plane W;(O) are governed by the
2-dimensional system

Y T
{?{—‘ 5 YT
z=-Py—z

(30

To derive the equations of the one-dimensional manifold
Wl’f2, we now change variables in the form

T -k 0 1 U1
y| = 1 0 O Vg (31
z 1+ki—k3 1 —1||uvs
where
k§ = —Xib
ke = — 1 . 32)
¢ 7 " dapta+l

Then with the variables (v1, va, v3)) the system (24) becomes

U1 = A1 + %’Uz

vy = [~y — ey 4 [y - eHllyy (33
o 1 _ (at1)
v3 = E(Aau+a+1)v2 m V3.

The unstable one-dimensional manifold is given by the equa-
tions vo = 0, v3 = 0. In terms of the original variables (z,y, z)
it can be represented as

u R I — 2
Wu(o)'{ a=1= 1+kg—kg}'

A similar approach permits us to derive the equations of
the integral manifolds of the stationary points P*. Their
corresponding characteristic equations can be written in the
form ( 25) using the substitution a — b. Both stationary points
P* have one negative eigenvalue A = X, and two complex-
conjugate eigenvalues A = hp £ iwp. In the parameter region
G, (see Fig. 2) h, is positive, and in the region G this
hy is negative. Therefore, these stationary points are either
asymptotically stable points (in the region G;), or saddle-foci
with dim W2(P%) = 1 and dim W} (P*) = 2, respectively.
The equations describing these manifolds are

(34)

We(P¥) {17:F$0+5()\b+ HTI)(yq:yo)

(35)
+5 (4 -1+ SR, - 632 (2 F 20) = 0f
s(pty. ) _TFTo _ YF Y _ _ 2F 2
Wi (P )-{ 2] | 1+kf;—k§} (36)

where k8, k8, k8, kS are defined by the formulas (27) and (32)
using the substitution A, — Ap.

APPENDIX B
RELATIVE LOCATION OF THE
MANIFOLDS W:3(O) AND Wi(PT)
It follows from (29) and (30) that the lines at the intersection
of the manifolds W;(0), W (P;) with the plane Uy are
given by
15 {k{y+k3z+1=0}

 {kb(y — o) + kb(z —z0) +1—mo =0} O7

o~

TEER

a b
respectively.® Since %; + %};,
other in some point L(yl,zli. Therefore, in the phase space
of the system (6) there exists a trajectory I'; which con-
tains this point and simultaneously belongs to both manifolds
W:(0), Wx(P*) . As & — +oo the trajectory I'y tends to
the point O, and as £ — —oc to the point P*. Using (37) the
coordinates of the point L can be written as

the lines I}, I} intersect each

where
A = k2kS — kbkS
Ay =~k — k(o — 1+ kbyo + k320)

Ay = Kb + k¢ (zo — 1+ kSyo + Kb 20). (38)

Note that in (38) the coordinates (y;, 2z;) are given by
the parameters of the system (6) (see Appendix A) and by
the eigenvalues )\, and A,. To make (y;, z) depend only
on the parameters of the system (6), we use an asymptotic
representation of the eigenvalues A, and A,

4
—_gqt1_ 1 9,4 5
Ag = 1 5(g+1) + ;\I’ku + Oq(1’) (39)

where the index g stands for either a, or b, and the values ‘Ilz
are given by the following expressions:

q — g — _ qlg—1) g
V=g BB PG
g = _11=3q+¢%) B 28(1-q)

ST e+ )T T g+ D)t S+ 1)
go = (1-91—5¢+¢%) _ 163 —29)

T 8ty (g +1)°

4380 -3¢+¢*) 8 B
@+ T 8(q+1)° g+ 1)

Using (39), (27), and (38) we obtain the following coordinates
of the point L:
_ _[a+Ba+1)] 3
[ya+Ba+ Dl{a+b+2)
ala+1)(b+1)
[va+Bla+1)] (at 1P+ (+1)°1 , 3
ala+1)(b+1) v S(a+1)2—(b+1)2 W+ O EO)
Note that since the values A, Aq,and A in (38) are of the
order of u, we have used the asymptotic representation of A,

z1=afl — put

6Note that in the case of p =
lh:{y=a+1}.

0 these lines become a single one
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and ), with an accuracy up to p* in order to get (y, 2zy) with
an accuracy of uZ.

APPENDIX C
FLOW TRAJECTORIES ON THE
MANIFOLDS W;(O) AND Wy (PT)

Let us obtain the coordinates of the points M and K which
are located on the lines I}, and l};, respectively. These points are
used as the boundaries dividing the flow located on the planes
W:(O) and W(P*) into incoming and outgoing trajectories
from these planes.

Let us start with the analysis of the trajectory behavior on
the plane W ;(O). This behavior is described by the system of
two differential equations (30). In order to study the orientation
of the vector field (30) on the line I, = W;(0) N U; we
consider the function

w=kiy+kjz+1

and its derivative with respect to (30). Then we apply the
condition

w lw:O = 07

which is used to define the coordinates of the point
M(Ym, zm). This point belongs to the line I5, and divides
the flow located on the manifold W;(O) into incoming and
outgoing trajectories from the plane W;(O). The coordinates
of the point M are

Ym = (a+1)+ O0(u?)

_[Bla+1) +14q]
(a+1)

[Ba+1) +a] o
s(a+1)3 ’

nt +0(1®).
(41)
Hence, the vector field orientation of the system (6) along the
line [}, is the following:
* In the interval z > 2z, it is directed at the decreasing
values of the z-coordinate.
* In the interval z < 2, it is directed at the increasing
values of the z-coordinate.
* At the point 2z = z,, it is tangent to the plane U;.
Using a similar technique we can obtain the coordinates of
the point K which belongs to the line l;;- At point K the flow
located on the plane W:(P+) are divided into incoming and
outgoing trajectories. The coordinates of the point K are

v = (a+1)+0(?)

_ o [BO+1) + 7]
N (b+1)

[B+1)+7b] -
sb+1)3 *

2k u+ + O(p®).

(42)
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In the remaining part of this Appendix we describe the
properties of the trajectories lying on the manifold W;‘(P*‘).
It follows from (30), (32), and (39) that motions on W;‘(P*)
in the region x > 1 are governed by the following system of
the differential equations:

. B 1 D
i= e
z=—Py—z
where (see equations at the bottom of this page). The system

(43) has a stationary point with coordinates (yg, z0) (see (9)).
Its corresponding eigenvalues are

“43)

)\1,2 = —hb + iwb (44)

with

Buy2
1 + =
YGRS 03
The analysis of these eigenvalues shows that in the parameter
region G, (see Fig. 2) the stationary point (zo, yo) is an
unstable focus (hy < 0), but within the region G, it is a
stable focus (hy > 0).

APPENDIX D
INSTABILITY OF THE SPATIALLY HOMOGENEOUS STATES

In Section I we discussed the instability of the spatially
homogeneous solution associated with the homoclinic orbit
as one of the criteria for instability of the solitary waves.
In this appendix we illustrate the instability of the spatially
homogeneous solution of the system (2) using the following
boundary conditions:

YN+1 = YN
wo = wq.

(45)

Consider the stationary poins of the system (2), (45) which
are contained in the region |z;| <1, (j = 1,2,...,N). The
stationary states of the array correspond to these stationary
points. Then in the region |z;| < 1 the system (2)-(45) has a
one-parameter family of stationary states. This family is given
as

{a;j = y] = z]- = 0, wj = Wy = CO’VLSt}

j=1,2,...,N.

— —b B
Bu = B{l Ty [62(1b+ 0 5+ 1)2] Wt O(“S)}

_ 1-b)
S e [ v Gavd G
D= D{l “sere T 62((1b:-b1))4 Wt O(“?’)}'
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To examine the stability of these states we analyze the char-
acteristic determinant (see matrix at the bottom of the page),
where 0 = —a(l + a). Expanding Qn along the first four
rows, we rewrite it in the form

QN =qAN_1+ @Bn-1 (46)

where Ay_1, By_1 are some determinants, and
a=X+1+7+a(l+a)]
+ [ea+a(l + a)y+y+6] AN +alay+(1 +a)fl A

=
Q2 = 2

Next, let us expand the determinant Ay _; along the first four
rows to obtain

An_1=q3AN_2+ @2Bn_2 47

where

93 =q1 — €

e=d(oc—A)(y+ ).
On the other hand, expanding the determinant Ax_; along
the last four rows we obtain

An_1=@18n—2 — A=Cn_3 (48)

d
where the determinants Sy_s and Cn_s have the following
forms (see matrix at the bottom of the next page). Then we
expand the determinants Sy_o and Cx_» along the last four
rows and obtain

The Lyapunov characteristic eigenvalues corresponding to
the stationary homogeneous states are defined by the following
equation:

(q1 - G)SN-l + 6((]1 - 2€)SN_2 - €3SN_3 =0. (53)
On the other hand, from (50) and (51) we obtain the following
recurrent relation

SN—I = 2ZESN_2 - 635]\1_3 (54)
where
2z€ = q1 — 2e.

Using the technique already applied in [5] and [14] we treat
the recurrent relation (54) as a two-dimensional mapping with
the initial conditions

S1 =€(2z2+1)

Sy = (422 + 2z — 1), (55)
Solving (54) and (55) we obtain
Sn_1 =€V HUn-1(2) + Un—2(2)) (56)

where Uy _o(z) is the Chebyshev polynomial of the second

kind, i.e.,

(24 VZ D)™ — (2 — VTt
222 -1 '

Substituting (56) in (53) and using a property of the Chebyshev

polynomials we obtain the following equation:

Un(z) =

Sn-2=g¢3Sn-3— 2Cn_3 (z+ D[Un-1(2) + Un-2(2)] =0 (67
C = @2S —eC ) “49)
N-2 2ON-3 N-3 which is equivalent to (53).
It follows from (49) that Equation (57) has a root z = —1, hence ¢; = 0; i.e.,
Cn-2A =d(q1 — ¢3)SN-3 + dSNn_2. (50) M4 [L+y+ala- 1A+
From (48) and (50) we obtain [aa + ala+ 1)y + v+ ] pras
An_1=(q1 — €)Sn-2— €*Sn-3. (5D alay + (14 a)B]A=0. (58)
Finally, from (51), (47), and (46) we find To find the values of the other roots we introduce
QN = (q1 - G)SN_l + e(ql - 2€)SN_2 - e3SN_3. 52) v=24+ z2 —1. (59)
o—A @ 0 0 0 0 0 0 0 0 0 0
1 1= 1 0 0 0 0 0 0 0 0 0
0 -3 —=Xx 0 0 0 0 0 0 0 0 0
0 d 0 -A 0 —d 0 0 0 0 0 0
0 0 -0 0 o-—2A «@ 0 0
0 0 0 1 1 -1-A 1 -1
0 0 0 0 0 —3 —=A 0
0 0 0 0 0 d 0 A
Q=
o—A @ 0 0 0 0 0 0
1 -1-A 1 -1 0 0 0 0
0 —B —-y=X 0 0 0 0 0
0 d 0 A 0 —d 0 0
0 0 0 0 0 0 0 0 o-2 a 0 0
0 0 0 0 0 0 0 1 1 -1-A 1 0
0 0 0 0 0 0 0 0 0 - —=X 0
0 0 0 0 0 0 0 0 0 0 0 -A
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Substituting (59) into (57) we obtain

(v)*N-1 = 1. (60)

It follows from (60) and (59) that the other roots of equation
(57) are

2rs
2N -1
s=0,1,---,N - 2.

Z = 2, Zs = COS
(61)
These roots provide the equation ¢; = 2¢(1 + z,) which is
equivalent to

A4+[1+'7+a(a+1)]A3+
[aa+ afa+ 1)y + v+ B+ 2d(1 + z,)} A2
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Therefore, the Lyapunov characteristic eigenvalues associ-
ated with the stationary homogeneous state are determined
by (58) and (62). It follows from (58) that the set of these
eigenvalues contains a root which has a positive value. Hence,
any homogeneous stationary state of the array is unstable.
Notice that in the set of the eigenvalues there is one zero
root associated with the existence in the system (2), (45) of a
one-parameter family of stationary states.
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$§=0,1,2,---,N - 2. Complutense de Madrid.
g—A o 0 o 0 0 0 0O 0 0 0 0
1 —1-A 1 -1 0 0 0 O 0 0 0 0
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0 0 0 0 0 0 00O 0 —3 —=2 0
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