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Chaotic Dynamics of the Driven Chua’s Circuit

K. Murali and M. Lakshmanan

Abstract— The nonautonomous version of Chua’s circuit ex-
hibits a wide variety of bifurcation phenomena and chaotic
structures depending upon the strength of the forcing parameters.
In addition, control of chaos can be effected in this circuit. We
also point out that synchronization of chaos is possible in this
system, which can be effectively used for secure communication.

I. INTRODUCTION

HE STUDY OF nonlinear circuits is a convenient frame-

work to undertake systematic exploration of fundamental
mechanisms underlying the onset of chaos. In this connection,
in a recent series of works we have studied the dynamics of
a very simple nonlinear electronic circuit, namely the driven
Chua’s circuit [1]-[5]. Since its discovery in 1984 [6], [7],
Chua’s autonomous circuit has been studied extensively. It is
an extremely simple system and yet it exhibits the complex
dynamics of bifurcation and chaos. In addition, under the
influence of an external periodic signal Chua’s autonomous
circuit turns out to be a veritable black box to study various
bifurcation sequences, chaotic structures, controlling of chaos,
synchronization of chaos, and so on. In this paper, we briefly
report the various phenomena associated with this driven
Chua’s circuit.

II. CHAOS IN THE DRIVEN CHUA’S CIRCUIT

The experimental circuit realization of the driven Chua’s
circuit is shown in Fig. 1. In this circuit Ly, Lo, Cy, Cs, and
R are all linear elements. A single nonlinear element N is
employed in the circuit; it is a piecewise-linear resistor (sub-
circuit V) called Chua’s diode [13]. By applying Kirchoff’s
laws to the circuit of Fig. 1, the following circuit equations
are derived:

dv,
Cr—24 = (1/R)(Vez - Ver) = g(Ver)
v, o
2 d? = (1/R)(Ve1 = Vea) + iz —in1
;
lel—[;l = Voo — (Fy sinwyt + Fy sinwat)
dira
Lz—dt— = —Vea. (D)

Here V1, Vo, t11, and ipo are the voltage across Cy, the
voltage across Cs, current through L;, and current through
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Lo, respectively. Here Fj sinwit and Fjsinwst are the two
sinusoidal signals. The term g(V1) provides necessary non-
linearity for the circuit’s chaotic behavior [1]-[7]. When the
second inductor L, is absent and the external forces F; and
Fy are zero (F; = F» = 0), we have the standard Chua’s
autonomous circuit exhibiting a chaotic double-scroll Chua’s
attractor. We will consider the nonlinear dynamics of this
nonautonomous circuit.

A. Effect of Sinusoidal Excitation on the
Fixed-Point Attractor [1], [2]

To start with we consider the effect of the single sinusoidal
force (F} # 0, F» = 0). We fix the circuit parameters L;, Lo,
C1, Cy, and R at the values 80 mH, 13 mH, 0.017 uF, 1.25
uF, and 1310 2, respectively, and study the system behavior
in the ) — f; parameter plane. Particularly the amplitude F;
is varied from O to 800 mV and the frequency fi(= w;/27)
from 800 to 1500 Hz. In the autonomous case (F; = 0), for
this choice of circuit parameters, the system exhibits the usual
fixed-point attractor.

Based on the extensive experimental measurements of volt-
age changes across the capacitors C; and Cs, for different
forcing parameter values (F; and f; with F; = 0), a profile
of bifurcation diagram in the F; — f; plane has been drawn
as in Fig. 2. This figure depicts the kind of behavior that this
circuit admits, for each value of the driving amplitude F; and
frequency f;. In Fig. 2, the numbers indicate the period of
the observed attractors and the shaded regions (Chy, Chs,
and Chg) represent chaos. From this figure one can easily
identify the regions of period-doubling bifurcation, windows,
period-adding sequences, and boundary region [1], [2]. A
typical chaotic attractor projected onto the Vi1 — Vo plane
and its corresponding Poincaré map for the region Ch, are
depicted in Fig. 3. In addition, this circuit admits period-
adding bifurcations, intermittency route to chaos, hysteresis
and coexistence of multiple attractors [1], [2].

B. Double-Scroll Chua’s Attractor and
Devil’s Staircase Structures [3]

In a second set of experiments, we carried out the investi-
gation (still with F, = 0) by fixing the circuit parameters, as
C, = 600 pF, Cy = 0.005 pF, L1 = 2.8 mH, Ly = 10 mH,
R = 1430 , and varying the amplitude F; from 0 to 0.2 V
and the frequency fi(= wi/27) in the range 24 to 150 Hz.
In the autonomous case (F; = 0), we note that this circuit
admits the familiar double-scroll Chua’s attractor. By varying
the amplitude F (still with F, = 0) and frequency f;, reverse
bifurcations, quasi-periodic route to chaos, phase lockings,
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Fig. 1. Circuit realization of the driven Chua’s circuit.
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Fig. 2. Profile of bifurcation diagram in Fy — f; plane. Shaded

devil’s staircase structures, and period-adding sequences have
been observed for this choice of circuit parameters [3].

III. CONTROLLING OF CHAOS

From a practical point of view, it is often desired to control
chaotic orbits to an intended periodic orbit and much work has
been done in this context [9]-[11]. In this connection, we have

regions indicate chaos and numbers denote period of windows.

now considered one of the easily implementable methods of
controlling chaos in the driven Chua’s circuit by considering
the influence of one more periodic force. Already this method
of controlling of chaos has been reported by other authors in
different systems numerically [9]-[11].

Presently, we consider the effect of the second periodic
signal Fysinwqt to the circuit of Fig. 1 so that the system
becomes a quasi-periodically driven one (Fy, F» # 0). We
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Fig. 3. (a) Typical trajectory plot in the Vo — Voo plane of a chaotic
attractor (F1 = 500 mV and f; = 1200 Hz); (b) Poincaré map of (a).

fix the amplitude F; and frequency f; at a value for which
chaos is initially observed (with F» = 0), then the amplitude
F; of the second periodic force is slowly increased from zero
(Fy > 0, fo(= wa/27) = 10kHz). Due to the effect of Fy, we
observe a remarkable suppression of chaos to take place giving
rise to ordered motions. For example, when F, = 0, a chaotic
attractor of Fig. 4(a) is observed initially for F; = 584.7mV
(f1 = 1200 Hz) in the Chy region of Fig. 2. Then, as F; is
slowly increased to a value of 212.2 mV (f; =.10 kHz), the
chaotic attractor of Fig. 4(a) is controlled to a period-3 window
of Fig. 4(b). We have performed our experiments pertaining
to all the three chaotic regimes (Chy, Chy, and Chs) and in
general due to the effect of the second periodic perturbation
F3, the circuit’s chaotic behavior is controlled to the nearby
periodic attractors [4].

IV. SYNCHRONIZATION OF CHAOS

Recently, it was shown that it is possible to construct a
set of chaotic systems so that their common signals will have
identical or synchronized behavior [8], [12]. In this section, we
numerically investigate a simplified form of the driven Chua’s
circuit with a different set of parameters. In the absence of
the second periodic signal (F5 = 0), (1) can be recast into the
dimensionless form [5]:

& = a(y—h(z)), z=—PBy+Fi sinwit+£(t),

(-=d/dt). ()

Here, h(z) = Mz + 0.5(My — My)[jz + 1| — |z — 1]]
and £(t) is an additional Gaussian noise term with standard
deviation o. Equation (2) is dynamically equivalent to (1) but
is more convenient since some parameters are normalized.
For our present numerical analysis of (2), we fix a = 7.0,
B = 14.286, w; = 3.0, My = —1/7, and My = 2/7. As

g=o-y+z,

Fig. 4. Controlling of chaos in the Chs region of Fig. 2 (F} = 584.7 mV,
fi = 1200 Hz, and fo = 10 kHz): (a) Double-band chaotic attractor in
Vei1 — Vo plane (Fy = 0); (b) period-3 attractor (Fp = 212.2 mV).

the amplitude F is varied from zero, the system exhibits
the period doubling bifurcations to chaos. Fig. 5a(i) and b(i)
represent the chaotic attractor and its corresponding Poincaré
map in the z—y plane for F; = 1.5 and o = 0.0. In addition,
Fig. 5a(ii) and b(ii) depict the noise influenced chaotic attractor
and its Poincaré map, respectively, for F; = 1.5 and o = 0.1.

A. Drive-Response System

In order to investigate the synchronization of chaos in (2), let
us now consider the drive-response scenario using the method
of Pecora and Carroll [12]. Then the cascading system of
equations is represented as

F=aly-h(), §=z-y+z
z=—By+ Fysinwt + £(t),

Y=z-y +7, #¥=-FY +Fsinwit+£1),

P = a/(y/ _ h(w")). 3)

Now we numerically integrate (3) with parameters a = o/ =
70, 8 =03 = 14286, Fy = F{ = 15, w; = w| = 3.0,
and the initial conditions z(0) = 0.1, y(0) = 0.1, 2(0) =
0.2, ¥/(0) = 0.15, 2'(0) = 0.22, and 2”(0) = 0.15. For
this set of parameters (3) shows chaos as in Fig. 5a(i) and
b(i). Even though (3) exhibits chaos and the initial conditions
are different, the system exhibit synchronization of chaotic
behavior in which the variables ¥/, 2/, and z”’ become identical
as time evolves to y, 2, and z, respectively, after the initial
transients die out. Fig. Sc(i) and (ii) depict the synchronization
behavior in which the Poincaré map projected along the z—z"
plane in both the absence (¢ = 0) and the presence (¢ = 0.1)
of noise terms, respectively.
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Fig. 5. Chaotic attractor for F; = 1.5 and w; = 3.0: (i) ¢ = 0.0 and (ii)
o = 0.1; (b) Poincaré map of (a); (c) synchronized motions: Poincaré points
are projected in z—z'' plane.

B. Coupled System

Here we have considered two identical driven Chua’s cir-
cuits mutually coupled by a linear resistor. The state equations
are represented as

t=aly—hz))-aelz—1'), y=z-y+z2
2 = —Py+ Fysinwt,
' = a(y — h(a)) + ae(z — '),

'~

¥=1' -y +7, #=-py+Flsinwit. 4)

Here € is the coupling parameter. By numerically integrating
(4) with parameters a = 7.0, 3 = 14.286, I, = F| = 1.5,
w1 = w} = 3.0, and with initial conditions z(0) = 0.1, y(0) =
0.1, 2(0) = 0.2, and ’(0) = 0.15, ¢/ (0) = 0.11, 2’(0) = 0.22,
then for € = 0, the system depicts unsynchronized motions as
shown in Fig. 6(a). But for ¢ = 1.0, synchronized motions are
observed as in Fig. 6(b). Similar synchronization of chaotic
behavior can also be observed for the y and z coupled systems.

Interestingly, the synchronization of chaotic behavior in
cascading systems (3) can be effectively used to transmit signal
in a secure way thus opening up new avenues of research in the
aspect of spread-spectrum communications. Our preliminary
numerical investigation reveals that the present system can be
used as an ideal model to study secure communication aspects.
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Fig. 6. (a) Unsynchronized motion: Poincaré points in z-z' plane for
€ = 0.0; (b) synchronized motion: Poincaré points in z—z’ plane for ¢ = 1.0.

V. CONCLUSION

In this paper, we have briefly discussed the chaotic dynamics
of the driven Chua’s circuit, its rich variety of bifurcations, and
chaotic structures and a simple way of controlling chaos in this
circuit experimentally. Also, we briefly pointed out the possi-
bility of observing synchronization of chaos numerically. Thus
this study reveals that this simple circuit can be effectively

utilized to study various features of chaotic dynamics.
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