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Effect of Sinusoidal Excitation on the
Chua’s Circuit

K. Murali and M. Lakshmanan

Abstract—We examine the effect of an external periodic exci-
tation on the Chua’s piecewise-linear circuit. Under the action
of such a force this circuit exhibits a large variety of bifurcation
sequences, including period-doubling, period-adding, and win-
dows in chaos regime. In addition, at certain parameters equal
periodic bifurcations, hysteresis, quasi-periodic, and intermit-
tent behaviors and coexistence of multiple attractors have also
been observed. A bifurcation diagram that classifies the attrac-
tors in the forcing parameters plane is presented.

1. INTRODUCTION

N recent times a great deal of interest has been focused on

exploring complexity of nonlinear circuits and dynamical
systems [1], [2]. Observations of different properties such as
period-doubling bifurcations, period-adding sequences,
quasi-periodicity and intermittent transitions have been stud-
ied in a number of different physical circuits and systems. In
this connection one of the most prominently and extensively
investigated circuit is Chua’s piecewise-linear circuit [3], [4].

A number of experimental, numerical and theoretical in-
vestigations have been carried out on this circuit to study the
nature of chaos for various parametric choices [3], [4].
However, up to now, the nonautonomous version of this
circuit seems not to have been explored, as far as the authors’
knowledge goes. Since nonautonomous versions can give rise
to a rich variety of nonlinear phenomena, the emphasis of
this paper is on the effect of an external periodic excitation on
the Chua’s autonomous circuit. The resultant study reveals a
very rich variety of bifurcation sequences. In a recent report
[5], we briefly pointed out the observation of many bifurca-
tion sequences in the nonautonomous circuit for certain para-
metric choices. Presently, we have performed a detailed
investigation on the dynamics of this circuit to observe an
immense variety of bifurcation sequences such as period-ad-
ding, quasi-periodicity, intermittency, equal periodic bifurca-
tions, hysteresis, and coexistence of multiple attractors in
phase-space besides the standard bifurcation sequences. Thus
this simple circuit alone is seen to possess almost all the
bifurcation sequences reported to date. Due to the simplicity
and rich content of nonlinear dynamical phenomena, under
the environment of external periodic signal, Chua’s circuit
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can be viewed as a black box to study almost all bifurcation
sequences reported so far.

II. EXPERIMENTAL SETUP AND RESULTS
A. The Circuit

The experimental circuit that we have employed is shown
inFig. 1. Here L, L,, C,, C,, and R are all linear passive
components. This circuit contains only one nonlinear ele-
ment: a nonlinear-resistor (subcircuit N) whose function
curve ip — Vp is shown in Fig. 2, which is piecewise-linear
in nature. It is straightforward to see that the dynamics can
be modeled by the following equations:

dV, 1
T ZE(VCZ_VCI)_g(VCI)
dVey 1 ) .
T :E(VCI_ Vea) +ipn = iy,
diy, v Fsi
= _ t
ar c2 sin (wr)
dig,
L, dt = -V (1)

where V., Vi, i,,, and i,, are the voltage across C,, the
voltage across C,, the current through L,, and the current
through L,, respectively. Here Fsin{w?) is the external
forcing source. g(V) is the piecewise-linear function hav-
ing its functional representation [6] as

g(Vey) = moVe, + (1/2)(m, — mg)
'(lVCI + Bp| - IVCI - PI) (2)

where m,, is the slope of the first and last segments and m, is
the slope of the middle segment of the functional curve of the
nonlinear resistor as shown in Fig. 2. Here, B, is the break
point voltage. When the second inductor (L,) is absent and
the external force is zero in the circuit in Fig. 1, we have the
standard Chua’s autonomous circuit. This version admits
period-doubling bifurcations and double-scroll chaotic attrac-
tor for certain ranges of parameter values [3], [4]. One can
introduce the external periodic signal in series with inductor
L, and study the dynamics of (1). However, for the range of
parametric values we have studied, it admits no new bifurca-
tion phenomena other than the ones admitted by the au-
tonomous version. We have therefore included one more
passive element (L) as shown in Fig. 1 and investigated the
underlying dynamics.
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Fig. 1. Electronic circuit representing the driven piecewise-linear system.
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Fig. 2. V-Icharacteristics of the nonlinear resistor.

Now the behavior of the circuit depends on the parameters
C,, C,, L, L,, R, the amplitude F, and the frequency
f(= w/2w) of the external forcing source. In the present
study we carried out the experiment by fixing all the parame-
ters as in Fig. 1 except the external driving source parame-
ters. We varied the amplitude F from 0 to 800 mV(rms) and
the frequency f from 800 to 1300 Hz to study the bifurcation
sequences. It may be noted that for the present circuit
parameters, the autonomous case F' = 0, corresponds to the
usual fixed point attractor.

B. The Bifurcation Diagram

Based on our extensive measurements of voltage changes
across the capacitors C, and C, and the associated transition
to chaos with different forcing parameter values, a profile of
bifurcation diagram in the (F — f)-plane has been con-
structed as shown in Fig. 3. This figure exhibits the kind of
oscillations that the circuit admits, for each value of the
driving amplitude F and frequency f. We traced the wave-
forms of voltage V., across C, and voltage V., across C,,
which are the two signals under surveillance to study the
bifurcation sequences. We have noted the changes in the
attractor projected onto the (V. — V,)-plane directly on
the oscilloscope. A Poincaré map circuit as shown in Fig. 4
has been employed to produce a live picture of the strobed
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Fig. 3. Bifurcation diagram in F-f plane. Numbers are the period of the

attractors. Shaded regions express the chaos.

Poincaré map of the projected attractor, that is, by triggering
the beam of the oscilloscope at the driving source frequency
f(= w/27) (Z-modulation). In Fig. 3, the numbers indicate
the period of the observed attractors and the shaded regions
indicate chaos.

C. Period-Doubling Scenario

For the experimental circuit, when the drive voltage (F) is
small, only period-one motion synchronized with the external
signal takes place. For F = 0, only fixed point motion is
observed. As F is increased from 0 mV, Hopf bifurcation
initially occurs, and beyond F = 200 mV, the system under-
goes a cascade of period-doubling bifurcations in the middle
of the frequency region (see Fig. 3). These bifurcation
sequences can be easily identified either by direct observation
of the projected attractor or by the observation of the Poincaré
map displayed on the oscilloscope. As the order of the period
in the period-doubling sequence increases, the difference
between the drive voltage (F) corresponding to two succes-
sive bifurcations becomes smaller. The calculated conver-
gence rates are close to the Feigenbaum’s constants. Also,
there are some periodic windows appearing within the chaotic
regimes. Further period-doubling of these basic windows is
too narrow and therefore is not indicated in Fig. 3.

A typical chaotic attractor projected onto the (Vi — V,)-
plane and its corresponding Poincaré map in the region Ch,
are depicted in Fig. 5. However, for higher drive amplitude
values, beyond the chaotic region Ch,, boundary crisis is
usually observed. Also, at lower drive amplitude values, one
can observe period-halving or reverse period-doubling bifur-
cations upon increasing or decreasing the forcing frequency
values at fixed drive amplitudes.

D. Period Adding Scenario

Recently, the period adding sequence has been reported in
some driven negative resistance oscillators [7], [8]. In these
studies a complicated succession of periodic and chaotic
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Fig. 4. Strobed Poincaré map circuit.
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Fig. 5. (a) Typical chaotic attractor projected onto the Vi~, — V(~, plane in
the Ch, region for F = 500 mV and f = 1200 Hz. (b) Strobed Poincaré
map of Fig. 5(a).

oscillations have been experimentally observed. During our
experiments with the present circuit, we observed periodic
windows of all orders from period-2 to period-8 in addition
to the period-doubling cascades to chaos. Although we have
noticed up to period-12 window in the period-adding se-
quence, it is difficult to observe higher period windows since
the separation between successive window regions decreases
and the width of the window regions diminishes. If we look
at Fig. 3, for higher drive amplitude values a succession of
large periodic windows whose period increase exactly by one
appears, as we move from one window to the next, as the
drive amplitude is increased. These windows are found to
satisfy the Farey sequence [9]. In the chaos region Ch,
between 3P and 2P window regimes, there is a 5P win-
dow(= 3 + 2); between 3P and 1 P there is 4P(=3 + 1)
and between 4P and 1P there is SP(=4 + 1). Also, a
period 7P window(= 3 + 4) appears in the chaos region
Chy.

In the period adding sequence, each periodic window is
found to persist over a limited range of forcing parameter(F’)

values, thereby creating a step-like bifurcation diagram where
the forcing amplitude (F) versus the period of the observed
window is plotted. In order to elucidate this structure the
period diagram for f = 941 Hz is shown in Fig. 6. The
transition from one periodic state to another is initiated by a
period-doubling bifurcation to chaos followed by recovery to
the next periodic state in the period adding structure.

E. Quasi-periodic and Intermittent Behavior

In some nonlinear dynamical systems and circuits [10]-[13]
quasi-periodic and intermittent transitions have been reported
recently. In the present study, however, quasi-periodic mo-
tions have been observed in the regions of lower drive
amplitude (F) and frequency (f) values. A typical quasi-
periodic attractor for F = 516.9 mV, f = 820 Hz is depicted
in Fig. 7. In these regions, small rotating circles are observed
on the Poincaré map. Also, some portions of the trajectory
plot in the V. — V-, plane rotate smoothly in a clockwise
direction, signalling the quasi-periodic state [10]. As the
forcing parameter is varied slowly, the quasi-periodic motion
breaks up and chaotic motion sets in.

Also, beyond some critical forcing parameters the system
transits to intermittent regions. During this motion irregular
bursts of chaos are interspersed with stable periodic window
regions (laminar phases) lasting a variable length of time.
Fig. 8(a) depicts a typical trajectory plotin V-, — V-, plane
for an intermittency region near period-2 window region
(F = 589.7 mV and f = 840 Hz). For a long time exposure
the trace is continuous, indicating a chaotic behavior. A
portion of the time dependence of waveform V-, correspond-
ing to Fig. 8(a) is shown in Fig. 8(b), where the periodic
oscillations are interrupted by intermittent voltage bursts.
Also near the boundary crisis [11] region beyond the period-
adding structure the waveform or the attractors are domi-
nated by the intermittency. A typical trajectory plot in Vs —
Ve, plane with intermittent transitions near the boundary
crisis point is shown in Fig. 9(a) and a portion of the time
dependence of waveform V., corresponding to Fig. 9(a) is
shown in Fig. 9(b), for F = 620 mV and f = 941 Hz. In
these intermittent transition behaviors, the signal V-, or Vi,
loses its regularity and chaotic burst appears at a particular
subharmonic amplitude together with a decrease (or increase)
of the fundamental amptitude. Immediately after this there is
a reappearance of the regular (laminar) behavior. This type
of intermittency is normally classified as type-III [12]. [13].
One can also confirm this by plotting the return maps (V-
versus Ve, e, OF Voo, versus Ves (,00)-
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Fig. 6. Period diagram showing the period-adding structure for f =
941 Hz.
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Fig. 7. Quasi-periodic attractor for F' = 516.9 mV and f = 820 Hz. (a)
Trajectory plot in Vo — Vo, plane. (b) The Poincaré map of (a). (c)
Enlargement of a portion of (a). Trajectories are found to rotate in the
direction as indicated by the arrow.

F. Equal Periodic or Period Preserving Bifurcation

The study of equal periodic bifurcation or period preserv-
ing bifurcation is of considerable interest [14]. In a typical
two-dimensional area preserving map, if the control parame-
ter is larger than some critical value, the original periodic
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Fig. 8. (a) Trajectory plot in (V, — V,) plane for an intermittency
region (F = 589.7 mV, f = 840 Hz). (b) Portion of waveform (V) with
parameters same as Fig. 8(a).
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Fig. 9. (a) Trajectory plot in (Vs — V) plane for an intermittency
region near boundary crisis region for F =620 mV, f= 941 Hz. (b)
Portion of waveform (V) with parameters same as Fig. 9(a).

motion is nonstationary and two new periodic motions appear
together with the same period as the original one [14]. This
phenomenon is called equal periodic bifurcation and it is
recently reported in some dissipative dynamical systems.

Let us look at the period-2 window within the chaos
regime Ch, and Ch, in Fig. 3. There are two regions 2 P,
and 2 P, divided by a dotted line for certain forcing parame-
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(i)

(ii)
(d)

(a) i) The waveform (V) and ii) strobbed Poincaré map of 2 P, region (F = 518.6 mV, f = 940 Hz). (b) Same as

Fig. 10(a) for 2 P, region (F = 523.3 mV, f = 940 Hz). (c) Same as Fig. 10(a) for 2 P, region (F = 524.7 mV, f = 940 Hz).
(d) Same as Fig. 10(a) for 2 P, region (F = 522.9 mV, f = 940 Hz).

ter values and a single 2 P region for another set of parame-
ters. For example, if we choose f = 940 Hz, initially for
F = 518.6 mV, the 2 P, structure of Fig. 10(a) appears. This
structure slightly changes as in Fig. 10(b) for F' = 523.3
mYV. Further increase of F' value gives birth to 2 P, structure
as in Fig. 10(c), and it appears up to F = 524.7 mV. Here
both the 2 P, and 2 P, structures have the same period two

but their waveforms (¥, or V,) and their corresponding
Poincaré sections (¥, — V-, plane) look different.

An important point here is that there can be a2 P, or 2P,
structure depending on the initial conditions in the area near
the dotted line in Fig. 3. For example, if we initially cut off
the external sinusoidal source and connect it instantly to the
circuit, then either of the 2P, or 2P, oscillations appear
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(i) (1)
(a) (b)
(a) Same as Fig. 10(a) for 3P, region (F = 594.6 mV, f = 880

Fig. 11.
Hz). (b) Same as Fig. 10(a) for 3 P, region (F = 600.8 mV, f = 880 Hz).

randomly, but it is quite unpredictable. It is interesting to
note that further change in the value of F after the equal
periodic bifurcation gives birth to period-doubling bifurcation
in period-2 P, region. Further, the system also exhibits pe-
riod-doubling bifurcations from 2 P, to 4P, etc. for the set
of parameters (F and f) in the 2 P, region. Also, a similar
kind of equal periodic bifurcation has been observed in small
area of period-3 window region in the area Ch, for F' = 594.6
mV, f = 880 Hz (Fig. 11(a)) and F = 600.8 mV, f = 880
Hz (Fig. 11(b)), respectively.

G. Hysteresis Jumps and Coexistence of Multiple
Attractors

We have also observed the hysteresis phenomenon in our
experiments, but they do not seem to have any influence over
the equal periodic bifurcation. As discussed in the previous
section, within the equal periodic bifurcation region, the
transition from 2 P, structure (Fig. 10(a)) to 2 P, structure
(Fig. 10(c)) is observed by increasing the amplitude F with
fixed frequency f = 940 Hz. However, the structure of Fig.
10(b) is not recovered by resetting the value of F, that is, the
transition path is irreversible. Even if we decrease the F
value from 524.7 mV, the 2P, structure of Fig. 10(c)
persists initially and a slightly changed structure of Fig. 10(d)
is observed for F = 522.9 mV. On small decrease of F
value below 522.9 mV, the 2 P, structure of Fig. 10(a) is
observed instead of Fig. 10(b). Thus the system follows a
different transition path while F is decreased rather than F is
increased, reminiscent of a hysteresis [11], [15]. Even during
this transition, the system still possesses equal periodic bifur-
cation. This kind of hysteresis transition has also been ob-
served in the period-3 window region of the Ch, area.

For nonlinear dissipative dynamical systems, two or more
attractors may coexist in phase-space; that is, more than one
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Fig. 12. Coexistence of attractors for F = 587.2 mV, f = 840 Hz. (a) i)
Period-4 attractor; ii) Poincaré map of i). (b) i) Chaotic attractor; ii)
Poincaré map of i).

dynamical behavior is possible, depending solely on the
initial conditions. Recently, coexistence of multiple attractors
have been reported in some dynarnical systems [15], [16]. In
the following we report the coexistence of periodic and
chaotic attractor in the present circuit. Fig. 12 depicts the
coexistence of a period-4 and a chaotic attractor for F =
587.2 mV, f = 840 Hz, and these two attractors can be
viewed by altering the initial conditions (turning ofF and oN
the forcing source). This interesting behavior indicates that
the system has initial value dependence, and depending upon
the initial conditions one can observe either chaotic or non-
chaotic attractors in the (F-f)-parameter space for certain
parameters.

III. CoNcLUSION

In this present investigation, we have described the effect
of an external sinusoidal excitation on the familiar Chua’s
autonomous circuit. We have performed a detailed experi-
mental investigation of the chaotic phenomena in this simple
experimental system. The bifurcation diagram that classifies
the attractors in the (F-f)-space indicates that the regions of
chaotic behavior are interspersed with periodic regions. The
Poincaré map of the attractors are observed with the aid of a
simple Poincaré map circuit. Significantly, the present inves-
tigation shows that this simple driven piecewise-linear circuit
is endowed with a rich variety of bifurcation sequences,
including new phenomena like the equal periodic bifurcation,
coexistence of multiple attractors, etc. This particular circuit
alone can be effectively used to study almost all bifurcation
sequences reported so far. Further experimental and numeri-
cal analysis of this circuit along with noise-induced studies
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may further produce some interesting results. Work along
these lines is in progress.
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