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We show that the synchronization of chaotic systems can be achieved by using the observer design tech-
nigues which are widely used in the control of dynamical systems. We show that local synchronization is
possible under relatively mild conditions and global synchronization is possible if the chaotic system can be
transformed into a special form. We also give some examples including the Lorenz, dblelrRystems, and
Chua’s oscillator which are known to exhibit chaotic behavior, and show that in these systems synchronization
by using observers is possib[&51063-651X96)10511-0

PACS numbe(s): 05.45+b

I. INTRODUCTION global synchronization of drive and observer systems can be
guaranteed. Hence this synchronization scheme offers a sys-
The concept of synchronization of chaotic systems mayematic procedure, independent of the choice of the drive
seem somewhat paradoxical since in such systems solutiogystem. It is our belief that the interaction between these
starting from arbitrary close initial conditions quickly di- fields may be beneficial for both of the fields.
verge and become uncorrelated. However, recently it has This paper is organized as follows. In Sec. Il we present
been shown that such synchronization is possible, see e.g9me basic material for the design of observers and show
[1-3], and this subject then received a great deal of attentiofhat local synchronization may be possible under certain con-
among scientists in many fieldd—9]. One of the motiva- ditions, which are not very restrictive. We consider the Lo-
tions for synchronization is the possibility of sending mes-renz and Resler systems and show that for these systems
sages through chaotic systems for secure communicatid@cal synchronization may be possible by using the observ-
[4—6]. Such synchronized systems usually consist of twcers. We also show that some of the existing schemes for
parts: a generator of chaotic signétsive system, and a  Synchronizatiorte.g.,[2,3]) are related to the observer based
receiver(response systemThe response system is usually a Synchronization. We also show that the proposed synchroni-
duplicate of a partor the whol@ of the drive system. A Zzation scheme is robust with respect to measurement noise.
chaotic signal generated by the drive system may be used 4 Sec. Il we consider a special form called the Brunowsky
an input in the response system to synchronize the commoganonical form and by using the result [df2] show that if
signals of both systems, see e[g@]. After the synchroniza- the chaotic system can be transformed into this form, global
tion, one may add the message to the chaotic signal used féynchronization is possible. We also show that some of the
synchronization, and under certain conditions one may rechaotic systemsge.g., the Resler system and Chua’s oscil-
cover the message from the signals of the response systdafor) can be transformed into this form. In Sec. IV we
[4]. We note that once the chaotic “drive” system is given, Present some numerical simulation results and finally, in Sec.
most of the synchronization schemes proposed in the litera¥, We give some concluding remarks.
ture do not give a systematic procedure to determine the
“response” system and the drive signal. Hence most of these Il. FULL ORDER OBSERVER
schemes depend on the choice of the drive system and could
not be easily generalized to an arbitrary chaotic drive system. We begin with the definition of observability for a linear
A related problem encountered in the systems and contrdlystem, which plays an important role in modern control
theory is the estimation of the states of a dynamical systerfheory. Consider the following linear system:
by using another system, called an “observer.” The theory )
of the design of observers, although not fully exploited, is a u=Au, y=Cuy, (1)
relatively well-studied branch of system theory and is widely
used in the state feedback control of dynamical sys{diis ~ whereAeR"*", Ce R™" are constant matricey, is called
16]. In this paper our aim is to show that this existing theorythe “output” of the system. The problem of observability is
of observers may naturally be used in the relatively new fieldelated to the computation of initial conditiam0) eR" by
of synchronization of chaotic systems. In this approach, oncenly observing the output(-) over an interval of time.
the drive system is given, the response system could be cho- Definition: (Observability Consider the system described
sen in the observer form, and the drive signal should bdy (1). Two statesly andu, are said to be distinguishable if
chosen accordingly so that the drive system satisfies certaiy(t,u,) #y(t,u;) for somet=0, wherey(t,u;)=Ce*u;, is
conditions. Under some relatively mild conditions, local orthe output y(t) corresponding to the initial condition
u(0)=u;, i=1,2. The system given bl) [or, in short, the
pair (C,A)] is said to be observable if all distinct states are
*Fax: 90-312-266 41 26; distinguishablgsee, e.g.[14,13,15).
Electronic address: morgul@bilkent.edu.tr We next state the following well-known fact.
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Theorem 1:Consider the system given ). Then the
following are equivalent:

(i) The pair C,A) is observable.

(ii) The following rank condition is satisfied:

C
CA
ran =n. (2
CAn—l
(iii) The following rank condition is satisfied:
)\ —
ran c /=N VieC. 3
(iv) For any polynomialp(A\)=A"+a \""1+. . .+

a,_i\ta,, aeR, i=1.2,...,n, there exists a constant
matrix K e R"*™ such that de®(| — A+KC)=p(\).
Proof: See e.g.[13], p. 80, p. 136, and15], p. 61.
Consider the nonlinear system given below
u=Au+g(u), 4
where AcR™" and CeR™" are constant matricesy:

R"—R" is a differentiable function. Assume thgtsatisfies
the following Lipschitz condition:

y=Cu,

©)

where L>0 is a Lipschitz constant anfl|| is the standard
Euclidean norm irR". We will use a technique proposed in
[10] for the observer design. We assume that the fajA]

is observable. Now choose the matkxe R"*™ such that
A.=A—KC is a stable matrix, which is always possible

lg(u) —g(up)||<Llluy—ugll,  Vuy,upeR",

since the pair C,A) is observable, see Theorem 1. Then for

any symmetric and positive definite matr@eR"*" there
exists a symmetric and positive definite matixe R"*"

such that the following well-known Lyapunov matrix equa-

tion is satisfied:

AlP+PA=-Q, (6)
where the superscript denotes the transpo$&4]. For the
system given by4), we choose the following “observer”
equation:

U=Al+g(l)+KC(u—1), 7
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5_4
)\min(Q)
L P’ ©)
then we have the following:
le(H|=Me™*e(0), (10
where
)\maxp)rlz )\min(Q)
=|l— , = —7L>0,
[)\min( P) “ 2)\ma>€(P)

and N\pad ), Amin(T) denote the maximum and minimum
eigenvalues of a symmetric matrik, respectively. For de-
tails, sed10], and for a survey on observer theory, $&&].

In the application of the observer theory given above, the
main difficulty is in the Lipschitz property given bib),
which should be satisfied globally. But(®) is satisfied, then
the observer given by7) works globally, i.e., for all
e(0)eR", provided that(9) is satisfied. We may relax this
condition as follows, but then the resytO) may hold lo-
cally, i.e., in a compact region fa(0).

Lemma 1 Consider the systems given li§) and (7).
Assume that the pairG,A) is observableg:R"—R" is dif-
ferentiable and that the following is satisfied:

lim[Dg(u)[ =0,

u—0

(11)

whereDg(-) denotes the Jacobian gf Then there exist a
matrix K e R"™*™ and a real number>0 such tha{10) holds
if |e(0)||<r and|u(t)|<r, Vt=0.

Proof Choose a matrixX e R"*™ such thatA,=A—KC
is a stable matrix, and choose the symmetric and positive
definite matrices? and Q which satisfy(6). For R>0, we
may takeL >0 in (5) as

L=sud[Dg(u)|[[ul<R}. (12

Now chooseR>0 such thal. >0 given by(12) satisfies(9).
Note that since(11) holds, this is always possible. Let
[G(0)[|<r, and|u(t)|<r,, Vt=0 for somer ;>0 andr ,>0.
By using the Bellman-Gronwall inequality5) and (7) (see
e.g.,[14,16, it can be proven that if; andr, are sufficiently
small, thenu(t) remains bounded afi(t)||<r; for some
r;>0. Moreover, as;—0 andr,—0, we have ;—0 as well.
Hence there exists a>0 satisfying R>r such that if
[u(t)||<r and|e(0)||<r, then we havdu(t)||<R, hence the
Lipschitz constantL given by (12) remains validVt=0.
Then it follows that(10) remains validvt=0.

Remark 1Lemma 1 states that {fL1) holds, if the initial
error e(0) is sufficiently small and iu(t) remains in a suf-

which is known as the full order observer or the Luenbergeficiently small region, then for the observer given @, the

observer{12]. Note that the signalg=Cu andu are avail-
able, hence, the observer given @y is implementable. Let
us define the error of observation @s u— . By using(4)
and (7) we obtain the following error equation:

e=(A—-KC)e+g(u)—g(l). €S)
Now let the symmetric and positive definite matridesand
Q satisfy (6). By using the Lyapunov functiok'=e"Pe, it
can be shown that if

estimate given by10) is satisfied. Since in chaotic systems
the solutions which are of interest to us are bounded, this
lemma might be used for local synchronization. However,
the lemma does not provide an estimate on the bouhtbte

that the condition given byll) is less stringent than the
Lipschitz condition(5) and(9). In applications, the differen-
tial equation given by4) is obtained by linearization of a
nonlinear system around an equilibrium point. In such cases,
the functiong necessarily contains at least second order
terms, hencéll) is automatically satisfied.
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The observer design technique given above assumes that -0 o 0 0
an outputy(-) which is transmitted to the observer is avail- A=l r -1 o0 gu)=| —Xxxs (14)
able, seg4) and (7). However, in chaotic systems such an 0 0 —-b ' X1Xs '

output is not givera priori and has to be chosen as a part of
the observer design procedure. In view of the observer theorl fo|lows easily that the selection of=c,X;+C,X5 [i.€.,
given above, obviously one should choose the output as it =(c, 0 c,)], or y=c,x,+CX3 [i.e., C=(0 ¢; C,)]

(4) so that the pair €,A) is observable(The observability yije|ds the pair C,A) observable for almost all values of
condition may be changed to a “detectability” condition, andc,, provided thatc,|#0, |c,|#0. For actual values2)
which is weaker than observability. See Remark 3 and th@hould be checked. F@=(c, c, 0) the pair C,A) is not
Example 1 below Moreover, for practical considerations, phservable but detectable, i.e., one can easily find matrices of
the dimensionm should be as low as possible, sincethe formk=(k, k, 0)T such thatA—KC is stable. In par-
y(t) eR™is the signal transmitted to the observer. Caisel tjcylar, the selection of=x, [i.e., C=(1 0 0], or y=x,,

is possible under certain conditions, which are given belowfje c=(0 1 0] makes the pairC,A) detectable, hence by
Note that a matriXA\ERnxn is Ca||edcyC|iC if in its Jordan an appropriate choice CK, one may obtain a stable matrix
canonical form, for each eigenvalueAfthere exists one and A—KC and use the observer given k§) for synchroniza-
only one Jordan block. This guarantees thatign of chaos.

rank(\jl —A)=n—1 for any eigenvalue; of A. At this point we compare the observer given @ with

Lemma 2Let AcR™"" be given. Then there exists a vec- some synchronization schemes proposei@]rand[3]. Con-
tor C' eR" such that C,A) is observable if and only if is  sjder the following system:

cyclic.
Proof. This could easily be proven by using). More- X1= o (%o—%q), (15)
over, let\,, . .. A, be the eigenvalues and, . .. v, be the

corresponding eigenvectors o&. Then for any vector
CTeR" which satisfiesCv;#0. i=1,2,...,p, the pair
(C,A) is observablg13]. . . .

Remark 2 The requirement thah e R"*" be cyclic may X3=XX2—bX3. (17)
seem a stringent condition. This condition is satisfied if all
eigenvalues oA are distinct, and in the examples given be-

;(2:_Xl§(3+ er_;(2, (16)

In [2], (16) and (17) are called the response system and in
low this condition is satisfied. Moreover, in most chaotic [3], (15—(17) are called the response system, for the drive

systems, the equations depend on certain parameters, a%stem given by13). _Note that herex, is use_d as the glrlve
chaotic behavior is observed when these parameters are nal, hence_ according to our observer design techn_lque, the
certain ranges. In most cases the eigenvalues depend c Qutput of(13) isy=x,. By using the Lyfi‘p””‘i" theory, it can
tinuously on these parameters; hence one may choose thedd , SHOWn _ thdaE B Al'm7w||‘ﬂ(t)T_u(t)||2_30' \ whﬁre
parameters accordingly so that the system exhibits chaoti 1_5)(1((11%203(3% q sg WL:iEe(f):linXch (;(?Z)r,msee[ ,3]. Note that
behavior and the matriA has distinct eigenvalues. Then, by
using Lemma 2, one may find a vectdr e R" so that the
pair (C,A) is observable.

Remark 3 For a given pair C,A), whether the observer
given by(7) satisfieg10) and Lemma 2 depends on whether
the matrixA.=A—KC is stable or not. For observable pairs

by Theorem 1 there always exists a matfixsuch thatA is (17), and hencd18), is similar to the observer given k)

Sta?ﬁh thr _sorpeblpalrSC(A])c t:]here_may Eftx'f)t a m‘gmeS hexcept for the last term if8). Without this term Lemma 1
such thaii, :IS 3 ﬁd ei’ e;/et;: ! ., € g?'r 1S noh 0 _sert\;]a et; UChyyarantees the local convergence of the error. However, due
pairs are cafle etectable,” and for such pairs the ODServef, .o special structure of this term, now we can prove global

g|vEn by(|7) iotld still be usec[C15]. ider the L (exponentigl convergence of the error. Due to the special
xample 1 (Lorenz systerConsider the Lorenz system structure of this term, the error equation now becomes

U=AU+g(l)+KC(u—0)+F(@)Cu—-0), (18

whereA andg are given in(14), K=(0 r 0)",C=(1 0 0
andF(0)=(0—X; X,)". Note thatA— KC is a stable matrix
' with this choice. Hence, the response system givefilBy-

given below
e=(A—KC)e+S(t)e, (19
5(1: O-(X2_ Xl)v where
. -0 O 0
Xo=—X1X3+IX1—Xy, (13 A=A—-KC=| 0 -1 O
C 1
0 0 -b
5(3:X1X2_ bX3. O 0 0
S={0 0 —x(t)], (20)
The parameters>0, r>0 andb>0 are chosen so that the 0 xy(1) 0

system exhibits chaotic behaviff].
We may write (13) in the form given by(4) where Note thatA. is a stable matrix, hence the Lyapunov equation
u=(x; X, X3)", (6) has a symmetric positive definite solutién In particu-
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lar, P=diagy,8,8) is a solution, provided thay>0, >0 (C,A) observable for almost afl;, c,, andcs, provided that
and 43> vo, where diag denotes a diagonal matrix with the|c,|+|c,|#0. For actual values;2) should be checked. In
specified entries at its diagonal. Note that with this choiceparticular, with the selection of=x; or y=x,, the corre-
we haveP §(t) = S(t) P. Hence, by using Lyapunov function sponding pairsC,A) are observable; hence by choosing the
V=e'Pe, differentiating along the error equatig9), we feedback matri¥< appropriately, the observer given 1)
obtainV=—e'Qe, whereQ is given by(6). Therefore(10) may achieve local synchronization. Note that with the selec-

is valid for all e(0)eR®, where tion of y=x5, the corresponding paitQ,A) is not even de-
tectable; hence the observer given @Yy could not be used
o Amin(Q) for synchronization for this output.
2AmadP) In the rest of this section we show that the observer given

o ~ by (7) is robust with respect to measurement noise, i.e., the
For the synchronization of Lorenz system, the following synchronization error remains bounded for bounded noise.

response system has also been propose@ f3y7]: To show this, we assume that the measured outputhich
R . is used for synchronization in the observer, is corrupted with
X1= 0 (X2—Xy), noisen(t), hence in(4) we havey=Cu+n. Then the error

) equation(8) becomes
Xo=—X1Xg+ X1 — X5, (21 . .
2o Twse T e=Ace+g(u)—g(i)—Kn(t), (24)
X3=X1Xa~bXs. where A.=A—KC is a stable matrix. We assume that the
: Lo . noise n(t) is bounded by soma,,>0, i.e., [n(t)[|<ny,
Note that here, is used as the drive signal, hence accordin : . M . M
to our observer design technique, the outputid is y=X,. %tzw?’lttbl:: arpltrary otherwise. Then the solution(@#) can
It could be shown that for this response system, synchroni-e en as.

zation is achieved. Note thdR1) could be written in the

t
form of (18), where A and g are as given by(14), e(t)=eActe(O)+J ettt DIglu(r)]—g[U(7)]}dT
K=(oc 0 0)",C=(010), andF(0)=(00X,)". Hence, the 0
response system given §81) and hence&18), is similar to t
the observer given by7) except for the last term if18). - JOeAC“’T)Kn(T)dT. (25)

Without this term, Lemma 1 may guarantee the local conver-
gence of the error. With this term, the Lemma 1 is still valid
if |X,(t)|<M for someM >0, provided that in(9), the left
hand side is replaced dy+ M ;. However, due to the form
of F(-), we can show tha€10) is satisfied for somé/ >0 el <Me™ . (26)
and a>0 provided that the solutions ¢13) are bounded. To
see that, define=(e; e, e;)". Then, from(18) it follows By using(26) and(5) in (25) and after some simple integra-
thate,(t)=e~“'e,(0), and byusing this first in the equation tion and multiplication bye®* we obtain:
for e5, and then in the equation fey, we obtain exponential
decay for all error components, provided tha(t), x,(t),
and x3(t) are bounded. Since the Lorenz system exhibits
chaotic behavior for the selected set of parameters, its solu- .
tlons.\./vhph are Qf interest to us are bounded; hence this +j ML e e(r)|dr. 27)
condition is satisfied. 0

Example 2:(Rossler systemConsider the Resler system

SinceA, is a stable matrix, it follows that the following is
satisfied for somé/1 >0 and 6>0:

MIIKlIny

le”e(t)|<Mle(0)]| + —

(e”-1)

given below: Now by using a generalized form of the Bellman-Gronwall
. inequality, see e.g[16, p. 47§ and after some simple inte-
X1=Xptaxy, gration and algebra we obtain:
Xo=—X;— X3, le(t)||<Any+Ae o+ Aze (oMLY (28)

X3=b—CX3+ XXz, (22)  for some constantd,, A, andAz, where, in particular, we
have

where the parameteid>0, b>0 andc>0 are chosen so

that the system exhibits chaotic motion, $&¢ This system _M IK[l(6—ML+1)

may be written in the form given by(4) where 1 8(6—ML)

u=(X; Xz X3),
Now let us assume that the Lipschitz constanis suffi-
a 1 ©0 0 ciently small so thats—ML>0, [cf. (9)]. Then it follows
-1 0 —-1|, g(w= 0 (23 from (28) that the synchronization error is also bounded,
0 0 -c b+ XoXs which implies the stability of the proposed synchronization
scheme in the presence of measurement noise. Moreover,
It can easily be shown that the selection of asymptotically we havge(t)|<A;ny . SinceA, is indepen-
Yy=CqX1+CyXy+C3X5 [i.., C=(C; C, C3)] yields the pair dent ofny, it follows that the smaller the boundl,, the

A=
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smaller the synchronization error and in the limj}—0, the e(t)=V lerVve0)+V?!
synchronization error also asymptotically decays to zero.
Hence, we may state that the proposed synchronization
scheme is also efficient in this sense in the presence of noise.
On the other hand, if the Lipschitz constdntis not suffi-
ciently small but(11) holds, then a similar result holds lo-
cally; i.e., if ||e(0)|| and ||u(t)|| are sufficiently small, cf.
Lemma 1. The proof of this fact is similar to that of Lemma At ot ot ot
1 and is omitted here. et'=diage'r,e'?, ..., e'm),

><J'OteA(t*")VB{f[U(T)]_f[a(T)]}dT’ (32)

whereB=(0 0.... 1) and

I1Il. BRUNOWSKY CANONICAL FORM By taking the max nornf-||.. (see e.g.[14]), we obtain

In some cases, the local convergence result of the Lemma
1 could be extended to global convergence result, provided le(®)].<|V Y|V ..e|e(0)|..
that the chaotic system given lg#) has a special form. As-
sume that the system is in the for@) with N t N
HV L [ @0 AL erlldr, @9
01 0 - 0 0
00 1 -0 0 o
where we now assumed thé) is satisfied with the max
. ' norm. Note that since iR" all norms are equivalent, this
A= . ,ogw=| "|f), only affects the Lipschitz constaht>0. Also, in (33), we
used the matrix norm induced by the max norm. By multi-

0 1 plying both sides of(33) by e !, using the Bellman-
1 Gronwall Lemma, see e.d.14], we obtain

0 0

C=(10 - 0), (29 le® <V Ve Vo). (34

wheref:R"—R is a differentiable function and that satis- . . 1
fies the Lipschitz property given bip). The form given by ~NOW simple calculation shows thg¥/||..= G() for some
(29) is called the Brunowsky canonical form, and is fre- fational functionG(.), provided thaty and [\, are suffi-
quently used in the control of nonlinear systefil2,14. ciently large. Obviously oncey>1 is chosen sufficiently
Since the pair €,A) is observable ang is Lipschitz, the ~'arge, then for any:>0 andL >0, one can choosk, so that
observer given by7) could be used for local convergence of )‘1+LH\11 o= —a Hence, (10 _Is  satisfied ~with
error, provided that9) is satisfied. However, it was shown in M=V ""ll<[|Vl.. anda given by the inequality stated above.
[12] that for anyL>0, one can find a feedback matri, _ Note that some chaotic systems are already in the form
such that(10) is satisfied when the system is in Brunowsky 91Ven by (4) and (29 [17,18; hence, the theory presented
canonical form. Obviously this result still works if the sys- 2P0Ve can be directly applied for such systems. Some sys-
tem can be transformed into Brunowsky canonical form bytems may _be transformed into Ft‘]'s fcarr_n by a coordinate
means of a diffeomorphic coordinate transformation. The delfansformationz=T(u), where T:R"—R" is a diffeomor-
tails can be found ifiL2]. Here we give a procedure to select ph|sm._ The details of finding s_uch a transformation may b_e
the desiredK, different than the one considered[it2]. found m[le. Here we e”_‘phas'?e that for some systems this

For the design of the observer, chooage<0O and tran;formaﬂqn maynxbr? linear, |.eT,(u)=.Tu for some in-
No=M1As=7\1, - - - Ay=7" A4, where y>1. Consider yertlble matrix T e R™7, hence the reqwre_d _trans_formgtlon
the following Vandermonde matrix: is quite simple. Now assume that the matixgiven in(4) is

in the following form:

)\’1‘—1 )\'11‘2 e 1
)\2 )\721 —_—
_ : a; 0 O 0
V= . . (30 5 a4, 0 0
)\271 )\272 e 1 A= . ) (35
It can easily be shown that the feedback matrix * * a1
K=(k; k, ... k,)" can be appropriately chosen so that * * *
A.=A-KC=V1AvV, (31)

is satisfied, whereA=diag (\;,\,, . .. A,). Now consider where the entries given by the asterisk are arbitrary, and
the error equation given b§8), whose solution can be writ- «;#0 fori=1,2,...,n—1. We also assume that has the
ten as follows: form given in (29). Under these conditions there exists a
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linear and invertible transformatiche R"*" such that after
the transformatiore=Tu, in the transformed variables the
system is given in the forrd) and(29). We note that in this

case the required transformation has the form: q
0
1 0 0 o - 0
L
* g 0 o --- 0
T: * * a0, 0 e 0 , (36)
* % * * ajay g FIG. 1. Chua oscillator.

wherex,;=i3, X,=v,, X3=v, G=1/R. The nonlinear resis-
hence is always invertible. tor Ng is given by the characteristidg=f(vg) where the
Example 2 (revisited Consider the Rssler system given nonlinear functionf:R—R is a three segment piecewise lin-
by (22). Note thatA given by (23) is in the form given by ear function given as, (note that vr=Xy),
(35). By choosing the transformation f(X3) =GyX3+0.5(G;—G,)(|X3+ E|—|x3— E|) and G,<0,
G,<0, E>0 are some constants, for details see, ¢21).
Equations (37) are in the form given by(4), where
Z1=Xq, g(u)=— (00 1)T(1/C,)f(x3). Note thatg is also in the form
given by (29 and satisfies (5) globally; in fact
L=(1/C;)max|G,|,|G,|}. Since matrixA for system(37)
Z,=ax;+X,, has the form given in35), then by a linear transformation
z=Tu, (37) can be transformed into the form given t4)
and (29). Herey=x; should be chosen as output. Singe
Za= (22— 1)X;+a%,—Xs, satisfieq5) globally, by using the technique given above, the
synchronization can be achieved globally, {(#)) holds for
the Rsler system can be transformed into the form giver@ny initial errore(0).
by (4) and(29), where

IV. SIMULATION RESULTS

f(z)=—cz+(ca—1)z,+(a—c)zz—azZ—az In the first simulation example, we considered the Lorenz
system given by(13) and the observer given b{7). For
+(a?—1)zy2,—az 23+ 2,23—b. Lorenz system, we chose the parametersas0, r =28 and

b=8/3. For the observer given ky), we used14). For the
feedback matrix, we choskK=(—11/3 253/9 0" and the
Since the functiorf given above is differentiable, it follows output is chosen ag=x,, i.e., C=(1 0 0. Note that with
that the Lipschitz conditior{5) is satisfied in any compact this choice, A—KC is a stable matrix. Initial conditions are
region. Since the Rssler system exhibits chaotic behavior chosen as x;(0)=5, x,(0)=—4, x30)=5, X;(0)=-3,
for certain values of the parametersh, andc, these chaotic  X,(0)=4, X3(0)=—2, and the resulting simulation results are
solutions are bounded by a compact region, and in this regiven in Fig. 2. Note that although this observer may guar-
gion (5) is satisfied for som&>0. An estimate oL. can be antee only local synchronization, in all our simulations we
found by using|Df(2)||, see Lemma 1. Hence by using the observed convergence. In this particular example we have
technique presented above, an observer for which the syfje(0)|=13.3, which is not particularly small.
chronization error satisfigd0) can be designed. In the second simulation example, we considered the
Example 3 (Chua’'s oscillatoj We consider the well- Ragssler system given b§22) and the observer given iy).
known Chua oscillator which is given in Fig. 1. This circuit For Rassler system, we chose the parametersaa$.2,
is well studied and is known to exhibit many forms of cha-b=0.2, andc=5. For the observer given b§7), we used
otic behavior, se¢19,20, and the references therein. The (23). For the feedback matrix, we choge=(31/5 2 —6)"
state equations for this circuit are given as and the output is chosen gsx;, i.e.,C=(1 0 0. Note that
with this choice A—KC is a stable matrix. Initial conditions
. Ry 1 are chosen ax;(0)=5, x,(0)=—5, x3(0)=—4, X,(0)=—5,
=T KT Xe X,(0)=5, X5(0)=4, and the resulting simulation results are
given in Fig. 3. Note that although this observer also guar-
. 1 G G antees only local synchronization, as in the Lorenz system, in
xzzc— X1— c. Xo+ C. Xa (37 all our simulations we observed convergence. In this particu-
2 2 2 lar example we havée(0)||=16.2, which is not particularly
small.
In the third simulation, we considered Chua’s oscillator
given in Fig. 1. In the simulations we chos®=0, which

. G G 1
X3:C_1 X2~ N X3~ C, f(x3),
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FIG. 3. Drive and observer states for thésRler system. For
FIG. 2. Drive and observer states for the Lorenz system. Fof=1, 2, 3,x;, andx; denote the drive and the observer states, re-
i=1, 2, 3,x;, andx; denote the drive and the observer states, re-spectively.
spectively.
] ] o K=(121 —2800/11—4512/11" and the output is chosen as
does not affect the chaotic behavior, but simplifies Eg4), y=x,,i.e.,C=(1 0 0. Note that with this choiceA—KC is
[20]. F_or actual values of the parameters to observe chaotlg{ stable matrix. Note that here we used the procedure given
behavior, se§19,20. For these actual values, the parameters, gac 1 in particular, we chose,=—10, A\,=—30
in (34) may be too large, especially the Lipschitz constant in)\gz_90 in the Vandermonde matrix given |®'0) andK is
ij(a)tgr]r?\)i/n%e I?h(teh?)brsgrg\l/irm%o\c/)v\g(r:(r:]o(r?gstﬁiss pégﬁéiws '\:‘\/edetermined by (31). Initial conditions are chosen as
first scaledgthe time and useg-(G/C,)t as the new in)é,e- X(0=01, %(0=01, xs0=0.1, x(0)=2, *(0)=2,
dent variabl d al led th 2/5 < lov 1/G. Af X3(0)=2, and the resulting simulation results are given in
pendent variable and also scaled the varialey 1/G. Af- iy "4 Note that in this case, according to the theory pre-

ter these changes34) now becomes sented in Sec. IlI, global convergence is guaranteed. We also
note that in Fig. 4 the horizontal axis denote the scaled time
7. Sincer=(G/C,)t, and in the Chua’s oscillator the capaci-
tors are normally chosen in nanofarad range, [€£20;
Fig. 4 shows that convergence is achieved in nanoseconds
range.

In the last simulation we again considered thesster
system given by(22) and the observer given b{r). This
time we assumed that the measurement is corrupted by a
where a=(C,/C;) and B8=(C,/LG?). Following [21], we  noise, i.e., in7) we assumed that=x,(t)+ n(t). The noise
choose the parameters@s=—0.8,G,=—0.5,2=8, B=11, n(t), which is generated by computer, is uniformly distrib-
E=1, andG=0.7. As is shown if21], with these param- uted and zero mean noise and its magnitude is bounded by
eters, the equations given above exhibit a double scroll typ&0 ™%, i.e.,ny, =101 in (28). The system parameters, initial
chaotic behavior, sg@0]. For the feedback matrix, we chose conditions, and the feedback galh are selected as in the

X1=— BX3,

X=X~ X+ X3,

. o
Xz3=aXo—aXz— 6 f(X3),
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FIG. 5. Drive and observer states for thesRler system in the

FIG. 4. Drive and observer states for the Chua oscillator. FoPresence of noise. For=1, 2, 3,x;, andx; denote the drive and the
i=1, 2, 3,x;, andX; denote the drive and the observer states, re-Observer states, respectively.
spectively.

second simulation given above. The simulation results argystem could be chosen as an obserji®ze(7)], provided
given in Fig. 5. As can be seen from Fig. 5, the effect of thethat the output corresponding to the selected drive signal
noise in the synchronization is considerably small. satisfies some conditior(se., observability or detectability,
see Theorem 1, Remark.3These conditions are not very
restrictive and are satisfied by most of the chaotic systems,
(see Lemma 2, Remark.2ZThen we stated a general result on
Most of the synchronized chaotic systems proposed in théhe local synchronization of the drive system and the ob-
literature consist of two parts: a drive system which generserver(see Lemma )L We showed that the proposed scheme
ates the chaotic signals, and a response system. Some signialgobust with respect to measurement noise under certain
called drive signals are generated by the drive system and am®nditions. We also stated a global convergence result, pro-
used in the response system to synchronize the common sigided that the system could be transformed into a special
nals of both systems. In most of the cases, once the driveorm. We also showed that some of the existing schemes for
system is given, the determination of the response systemihe synchronization of chaos are related to the observer
and the drive signals are not systematic and one scheme prbased synchronization proposed in this paper. We also pre-
posed for a particular drive system could not be easily gensented some numerical simulation results for the Lorenz,
eralized to an arbitrary chaotic drive system. Rossler systems, and Chua’s oscillator, which are known to
In this paper we considered the observer based synchr@xhibit many forms of chaotic behavior.
nization of chaotic systems. Observers are widely used in We note that the form of the observer given in this paper
systems and control theory to estimate the states of a giveis not the only possible form. There are many observer de-
system; hence they may naturally be used in the synchronsign techniques and some of them may give better results in
zation of chaotic systems. In this approach, once the chaotithe synchronization of chaotic systems. This point requires
drive system is given in a forrfsee(4)], then the response further research and the results will be presented elsewhere.

V. CONCLUSIONS
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