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ABSTRACT

A statistical approach for chaos
identification in time series is de-
scribed and applied to numerical
data generated form Chua’s circuit.
This method compares the short-
term predictability for a given time

series to an ensemble of random
data which has the same Fourier
spectrum as the original time se-

ries. The forecasting error is com-
puted as a statistic for perform-
ing statistical hypothesis testing.
The forcasting technique is mod-
ified by introducing a Moving pre-
dictor, The results show that this

will give more accurate predictions,
hence, better capability of distin-
guishing chaos from random noise
1n time series.

I. INTRODUCTION

Distinguishing deterministic chaos from
random process in time series is not
straightforward. Both, chaos and ran-
dom data, can have similar broadband
spectra [1]. In our work in this paper
we modify and digitally implement a sta-
tistical approach, originally proposed in
[2], capable of distinguishing chaos from
random process in a natural time series.
The method relies on the fact that chaos,
unlike random data, suggests possibili-
ties for short-term prediction. This new
technique compares the predictability of
the given data to an ensemble of random
control data (surrogate data) which has
the same average power spectral density

'n takes on the values 1,2,3...

as the original time series. A nonpara-
metric statistic is explored that permits
a hypothesis testing approach. The pre-
diction algorithm 1s modified by using
a moving predictor rather than a fixed
one such that more accurate predictions
could be made as the results demon-
strate.

The algorithm is applied to numerical
data generated by a well-known chaotic
system, the Henon-map, and to experi-
rgental data which arise in Chua’s circuit

II. THE ALGORITHM

The statistical hypothesis testing used in
this technique involves two elements: a
null hypothesis that the original time se-
ries is generated from a random process,
and a discriminating statistic which is
computed as the median absolute error
(MAE) of the prediction errors.

The first step to calculate the statistic
is to do time-delay embedding [4], that
is, to embed the time series in a state
space with a state vector, X(n), having
coordinates:

zi(n) = z(n)
za(n) = z(n-—1)

(1)
zq(n) = az(n—(d-1))

with d chosen such that d > D, where D
is an assumed attractor dimension, and
N; N be-
ing the number of points in the time se-
ries.
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The next step is to split the data
points in the time series into a fitting set
Ny and a testing set N, with N; = Ny =
N/2 [2]. For each point in the testing set
we try to predict z(n + 1) by searching
the fitting set Ny for k nearest neigh-
boring states, z;(m)...zx(m), m < n,
such that the Fuclidean Norm between
X(n) and each of the k neighboring

states is minimum. Next we fit a linear
polynomial to k pairs {(z1(m),z1(m +

1)) (zx(m), zx(m + 1))}
gn+1)=aT-X(n)+b (2)

where a and b are the fitting coefficients,
and X(n) is the present state. The pre-
diction error equals the difference be-
tween the actual value, z(n+1), and the
predicted one.

Repeating the above procedure for all
the points in the testing set N; we end
up with a file containing N/2 prediction
errors, from which the median absolute
error (MAE) of the N/2 errors is com-
puted.

A. Generating the surrogate data

The surrogate data set is constructed
based on the null hypothesis that the
given time series comes from a Gaussian
random process. A nonlinear transfor-
mation, called the histogram transform
[2], is included to detect chaos even if the
raw data is non-gaussian.

To perform the transform, N Gaus-
sian random numbers are generated and
their time order is shuffled such that it
hajcs the same shape as the original data
se

Now the surrogate time series is gen-
erated so that is has the same Fourier
spectrum as the transformed time series.
The FFT of the transformed time series
is computed as

N-1

Z :c(n).en’r"k/N (3)

n=0

X(k) =

The phase is randomized by multiply-
ing the complex amplitude at each fre-
quency by €', where ¢ is a uniform ran-
dom variable € [0,27]. For the inverse
FFT to be real, the phases must be sym-

metrical. The inverse FFT is then cal-
culated, which will result in a Gaussian
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surrogate time series, and finally the re-
sultant time series is histogram trans-
formed back to have the same amplitude
distribution as the original time series.

B. Testing the hypothesis

In the language of hypothesis testing,
the significance is calculated according
to [2]
|@p — ps|
Mo

Os

where Qp is the statistic (MAE) com-
puted for the original time series, ug and
og are the mean and standard deviation
of the distribution of Qg,, respectively;
Qs being the statistic for the :th sur-
rogate data. The level of significance or
the p-value is given by [2]

p = erfe(x/\/(2)) (5)

If this value is less than 0.01 then the
null hypothesis is rejected and chaos is
detected.

III. SIMULATIONS

We applied the algorithm to the Henon
map, which is a choatic system with
fractal dimension 1.3. Figs. 1 and 2

show the attractor and the time domain
trajectory of the Henon map, respec-

tively. With zero added noise, the level
of significance is 0, that is, the proba-
bility of rejecting a true null “hypothesis
(that the input time series is random)
equals 0, therefore chaos is detected as
expected Fig. 3 shows the p-value, for
both the moving & fixed predictors, ver-

sus o which is the level of added noise
according to the following relation:

Xnewz(l“o)*Xold+0'*r (6)

where r is a random variable uniformly
distributed on [—1,1]. Note that with
the fixed predictor, the threshold at 0.01
was reached soon after the noise level of
0.4; using the new modification, how-
ever, allows the same threshold to be
reached at 0.7 of noise level. This result
helps to illustrate the improvement the
new algorithm possesses over the fixed



predictor technique. We also applied the
algorithm to the canonical Chua’s cir-
cuit [3]. Figs. 4 and 5 show the state
space and time domain trajectories. Us-
ing the new method we were able to de-
tect chaos from the time series with a
p-value of 5.334 x 107°. This, again,
demonstrates the enhanced capability of
the proposed technique over the fized
predictor approach.

IV. CONCLUSIONS

In this paper, the problem of determin-
ing whether the erratic fluctuations ob-
served in a given time series are, in
fact, generate§ from a random process or
from the underlying chaotic dynamics.

The method used relies on the nonlinear
prediction as a discriminating property

and is capable of distinguishing between

random colored noise and deterministic
chaos [5]. As the simulations demon-

strated, the introduction of the moving
predictor to the prediction algorithm im-
proves the robustness of the overall ap-
proach for chaos detection against the
noise level.
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Fig.3: p-value vs. noise level for both methods.
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Fig.4: Time trajectory for Chua’s circuit. Fig.5: State-space trajectory for Chua’s circuit.
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