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Abstract— The signal recovered from the first
reported experimental secure communication sys-
tem via chaotic synchronization contains some in-
evitable noise which degrades the fidelity of the
original message. By cascading the output of the
receiver in the original system into an identical copy
of this receiver, it had be shown by computer ex-
periments that this noise can be significantly re-
duced. We discuss the heuristic laws governing
the errors of the recovered signal which are ob-
served in a new series of very careful computer
experiments. This discussion is done comparing
these laws to the results obtained using the linear
filtering theory. Some discrepancy appears. In or-
der to understand the origin of the discrepancy
we consider another simpler model based on the
Bonhdeffer-Van der Pol equation where no chaos
occurs. In this case both two heuristic laws are in
good agreement with the linear filtering theory.

[. SECURE COMMUNICATIONS Via CHAOTIC
SYNCHRONIZATION IN CHUA’S CIRCUIT

The first laboratory demonstration of a secure commu-
nication system which uses a chaotic signal for masking
purposes and which exploits the chactic synchronization
techniques to recover the signal was reported three years
ago {1]. The main particularity of the system used in this
demonstration is that the “ receiver ” actually contains
two subsystems of the “ chaotic ” transmitter (Chua’s cir-
cuit in this case). In both implementations - electronic
circuit realization or computer simulation - there is an
inevitable error introduced by the signal s(t).

In [2],{4] it is shown by computer experiments that by
connecting two identical receivers in cascade, a significant
amount of the noise can be reduced, thereby allowing the
recovery of a much higher quality signal. Two copies of
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Figure 1: Electronic circuit implementation of the two-
stage “ receiver ” consisting of two identical copies of the
circuit given in Fig. 2 (b) of [1].

the receiver are made and connected as shown in Fig. 1.
Although no two electronic circuits can be made perfectly
identical in practice, this ideal situation can now be ap-
proached with the help of the integrated circuit technology
demonstrated recently in [3]. By fabricating several iden-
tical Chua’s circuits on the same silicon chip, the resulting
circuits are almost “ clones ” of each other. This technique
has the additional security advantage in that even if some-
one else has discovered the parameters (o, 5) used in the
system, integrating it into another silicon chip invariably
introduces discrepancies due to the different processing
parameters from different silicon “ foundries ” .



A. NOISE REDUCTION VIA CASCADING
A.1. Single chaotic synchronization

The basic building block is a Chua’s circuit, the dynamics
of which is given by the Chua’s equation

= aly-z- f(z)),
y = .’E—y+2, (1)
z = by,
where
f@)=botza-blz+1]-]z=1] @

13

Here, z(t) is used as a noise-like “ masking ” signal. Let
s(t) be an information-bearing signal. The transmitted
signal is 7(t) = z(t) + s(t), where the power level of s(t)
is assumed to be significantly lower than that of z(t), in
order to have the signal effectively hidden. The receiver
consists of two subsystems. The first one is driven by the
transmitted signal r(t):

T‘(t) = Yy1+ 21, (3)

n

2.1 = *ﬂyl7
The second subsystem is driven by the signal y;(¢) and
5(t) is recovered as

2 = a(yi(t) -~ z2 ~ f(22)) (4)
s2(t) = r(t) ~z2(t) ~ s(2) (5)

Actually the dynamics of the experimental set up (see Fig.

1) is described by
{ T2 = a(y(t) -z — f(z2)), (6)

= =PByi(h).
However, as long as we do not need z(¢) to recover so(¢),

we will continue to use Eq. (5) instead of Eq. (6) in the
following improved system.

A.2. Cascade chaotic synchronization

In order to improve the previous method to recover a sig-
nal nearer to s(¢) than sy(t), we couple two receivers in
cascade in the following way. The second receiver consists
also of two subsystems. The first one is driven by the
signal z2(¢) which is assumed to be more synchronized o
z(t) than the transmitted signal r(¢):

i3 = 2(t) —ys+ 2 7z
{32{3_ 2(t) ~ys + 23 %
3 =
The second subsystem of the second receiver is then driven
by the signal y3(t) from Eq. (7) and s(¢) is recovered as
a(ys(t) — x4 — f(z4)) (8)
r(t) — za(t) & s(t) (9)

2.4 =
sa(t) =
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B. NUMERICAL EXPERIMENTS
B.1. Single tone signal

Four parameters (a,b,a,8) completely characterized
Chua’s equation, which is known to exhibit an immensely
rich variety of behaviors . We have performed our nu-
merical results with the parameter values (a = -1/7, b =
2/7, a = 9.7633, f = 15.5709) for which vhe signal z(t) is
chaotic [2],[4]. In this subsection we assume that the in-
put (information-bearing) signal s(t) is a single tone (sine
wave) of amplitude k belonging to therange 0 < & < 10.0:

s(t) = ksin (wt) (10)

Let us define the errors
lles(k, w, )2 = [[s2(t) — s(t)llz = [lz2(t) —z()]z  (11)
llec(k,w, t)lla = [[sa(t) — s(E)ll2 = llza(t) — z(e)]l2  (12)

and

les(b,0, 0l _ o :
G| e
Hec(k,w,t)”g - w \
ol - k) (1

where LT e
5Ol 2 gim [ [ o]

denotes the quadratic norm of f(t).

Our numerical computations are done using the most
common fourth-order Runge-Kutta algorithm. All com-
putations are performed with 17 decimal-digit numbers.
In order to obtain reliable numerical results, the step size
of the Runge-Kutta algorithm is chosen to be equal to
1075, Three sets of different initial values are chosen for
the transmitter and both the receivers. The errors are
averaged on a very long period of time (the first 3 x 107
steps are ignored (transient regime), the averaging uses
the steps 3 x 107+ 1 to 19 x 107).

RESULTS: We first found that for the values 1 < w < 15.
both E,(k,w) and E.(k,w) are independent of k, increas-
ing with w from 1 to 6, decreasing after. Instead for the
values 15 < w < 409,600 a power regression analysis
leads us to both the heuristic laws 1 and 2 which are ob-
tained with a correlation coefficient better than 0.999, 999
( 0.999, 999,996 if we use only the data corresponding to
400 < w < 102, 400).

Heuristic law 1.
Ey(k,w) = 81.46 /> (13
Heuristic law 2.

E (k,w) = 1329.17/w® (16>



ANALYSIS: The analysis of these heuristic laws leads us
to consider that the receivers are working as filters cutting
down the high frequencies added to the signal z(¢). The
heuristic law 1 is in concordance with the linear filtering
theory even if Chua ’s circuit is not linear, however there
is a discrepancy between the heuristic law 2 and the lin-
ear filtering theory, because this theory points out that

E.(k,w) should be of the form —-C—; instead of % We sus-

pect that the double precision ucged in the comu;))utations is
not enough precise to obtain such a result. In part II, we
consider another model based on the Bonhdeffer-Van der
Pol equation (where no chaos occurs) in order to compare
the corresponding heuristic laws with the linear filtering
theory.

B.2. Multi-tone signal

We have performed the same numerical experiments with
various multi-tone signals instead of the single tone signal.

s(t) = ksin(wt) + ksin(nwt) + ksin(mwt) (17)

In a first approximatiocn whatever are the values of n and
m we find that both the errors E;(k,w) and E.(k,w) re-
lated to the multi-tone signal are equal to 60 % of the
corresponding single-tone signal errors.

B.3. Discrepancies between the parameters

We have also tested the possible discrepancies between
the parameter values of the transmitter and both the re-
ceivers. For this, a is replaced with a x (1 + 8,) in Egs.
(4), (6) (8), while kept the same in Eq. (1) and g is re-
placed with 8 x (14 65) in Egs. (3), (6) (7), while kept the
same in Eq. (1). A power regression analysis is pointed
out from the preliminary observations (where §, takes 15
values between 0.0001 to 0.08 and 6z takes 12 values be-
tween 0.001 to 0.08 ) with correlation coefficients better
than 0.99: The results are independent with respect to w.

Observation 1.

Eq(k,w) = 64 x |[6]]"7 (18)
Observation 2.

Es(k,w) =123 x |6a)*°® (19)
Observation 3.

Eo(k,w) = 216 x ||64]|1%8 (20)
Observation 4.

E.(k,w) = 354 x ||85]|*:%® (21)

These observations have to be detailed carefully in order to
understand better the mathematical theory hidden behind
the chaotic synchronization.
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II. SECURE COMMUNICATIONS ViA PERIODIC
SYNCHRONIZATION IN BONHOEFFER-VAN DER POL
EQUATION:

A. THE SIMPLER MODEL

In order to compare the corresponding heuristic laws with
the linear filtering theory, we consider another simpler
model based on the Bonhdeffer-Van der Pol equation
where no chaos occurs. Of course the purpose here is
not the implementation of a secure communication system
because the information-bearing signal cannot be masked
by a periodic signal, but only the analysis of this system
as a “ non-linear " filter. The basic building block is a
Bonhdeffer-Van der Pol equation

: = lges-Z
J.: A A (22;
i = Seta+by

As in Part I, the transmitted signal is r(t) = z(t) + s(t}-

The first receiver consists of two subsystems. The first
one is driven by the transmitted signal r(¢):
yi=-r(t) +a~by, (23;

The second subsystem is driven by the signal y;(t) and
s(t) is recovered as

Ty = %(yx-kzz—?)- (24}
sa(t) = r(t) ~ z2(t) = s(t) (25"

The second receiver consists also of two subsystems. The
first one is driven by the signal z2(t) which is assumed to
be more synchronized to z(t) than the transmitted signal
r(t):

Y3 = —z2 +a — bys, (26}

The second subsystem is driven by the signal y;(t) and
s(t) is recovered as

by =
sq{t) =

B. NUMERICAL EXPERIMENTS

Using the same notations previously defined in Part I, we
found the following heuristic laws :

1 3
z(ys + 14— ?

),
T(t) — z4(t) = s(t) (28

Heuristic law 3.

Ey(k,w) = 5.99 x k/.* (26*

w0

Heuristic law 4.

Eo(k,w) = 1635.99 x k;/u* (30



III. CONCLUSION:

Even if the Bonhdeffer-Van der Pol equation is definitely
non linear both heuristic laws 3 and 4 are in accordance
with the linear filtering theory. This seems to be an un-
expected result. We have to perform multi-precision com-
putation in the case of Chua’s circuit system in order to
understand whether the discrepancy between law 2 and
the linear filtering theory comes from numerical errors
or from the innermost structure of this system. Finally
a sequence of receivers can be added to both Chua and
Bonhdeffer-Van der Pol systems.

For example in the last system

y.S = —Zg4t+a-— by51 (31)

. 1 z3

Tg = ;(ys + 1z — -5')7 (32)
se(t) = r(t) —ze(t) (33)

y7 = —Ts +a— b‘y7, (34)

. 1 z3 N

g = 2(97 +zg - *B—)a (35)
ss(t) = r(t)—za(t) (36)

With the corresponding errors

llece(ksw,t)ll2 = [ise(t) — s(t)ll2 (37)
lecce(k,w, )2 = lss(t) — s(t)ll2 (38)
and
w ”ecc(ky ’»’v’rt)HE
Eeelk,) 150l 39
w _ “eccc k,;d, t)”'Z
Rt Py P o

If linear filtering theory can be applied to these additional
receivers, E..(k,w) and E...(k,w) should be of the form

— and — however, still now, in the computations with
w W

. C
double precision we have found that they are equal to -
only. Multi-precision computations have to be done in this
case also.
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