Sinusoidal Excitation on the Chua's Circuit
Simulation of Limit Cycles and Chaos

Erik Lindberg
Inst. of Circuit Theory and Telecommunication
343 Technical University of Denmark, DK-2800 Lyngby, Denmark

e-mail: TTTEL at VM.UNI-C.DK
fax: +45 4593 0355, telephone: +45 4593 1222 - 3650 direct

1. SUMMARY

Experiments with modelling and simulation of sinusoidal ex-
citation on the Chua's Circuit are presented. It is demonstrated
that the behaviour of the circuit is based on the interaction of two
different kinds of energy balance: (1) Chaotic behaviour based on
a balance between two unstable "states of charging” and (2)
Stable limit cycle behaviour based on the balance between the
energy lost in the regions with mainly positive losses and the
energy gained in the regions with mainly negative losses.
Convergence problems observed in connection with simulation
of the ideal piecewise-linear model are solved by means of a
smooth continuous model of the non-linear element based on
the ideal operational amplifier model instead of a polynomial
approximation. The movements of the eigenvalues as functions of
the nonlinear resistance are found. Stable limit cycles of periods
1,2, 3 and 5 are found by introducing losses.

2. INTRODUCTION

In April 1992 K. Murali and M. Lakshmanan published a paper
on a hardware experiment describing the effect of sinusoidal
excitation on the Chua's Circuit [ref 1]. The aim of this
contribution is to verify by means of simulation some of the
findings of K. Murali and M. Lakshmanan and present a simple
physical explanation of the behaviour of the circuit.

With reference to Fig.1 the circuit may be described as an ideal
harmonic oscillator (L2 in parallel with C2) which is driven by a
voltage source: F-sin(2n-f-time) in series with a coil L1. The coil
L1 is much greater than L2. The harmonic oscillator is loaded by
a frequency dependent load made from a resistor R in series with
a parallel RC-circuit (C1 in parallel with RNL) where RNL (The
Chua Diode) is an almost piecewise-linear negative resistance
realized by means of an operational amplifier, a pair of diodes,
seven resistors and DC supply voltages of +9V and -9V [1]. The
resonance frequencies of the harmonic oscillator is 1248.514093
Hz excluding L1 and 1346.139070 Hz including L1. In Fig1
RNL is modelled as a negative dynamic resistor Rd in parallel
with a Thevenin current source ITh.
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Fig.1, Chua's Circuit with external excitation. L1=80mH,
L2=13mH, C2=1.25pF, R=1310 Q, C1=0.017puF

3. THE NONLINEAR RESISTOR

For small values of the voltage of C1 the characteristic of RNL is
a 3-region piecewise-linear characteristic Fig.2(a). The positions
of the breakpoints of the 3-region characteristic is very sensitive
to variation in the saturation current Is of the two diodes. Under
the assumption that the operational amplifier is ideal by means of
simulation the nonlinear resistor is found to be approximately
picewise-linear as follows:

REGION I: IR>+0.94mA, VR<-1.13V

IR = a *VR + 3 where /e = -1954 Q and 8 =+0.36 mA

REGION 2:
+0.94mA >IR > -0.94mA, -1.13 V<VR<+1.13V
IR = & * VR + 3 where 1/ = -1200 Q and 3 =0 mA

REGION3: [R<-0.94mA, VR>+1.13V

IR = o * VR + 3 where 1/e¢ = -1954 Q and 3 = -0.36 mA

In order to obtain a continuous movement of the eigenvalues
and in order to avoid mixing of phenomenas due to the ideal 3-
region almost piecewise-linear charateristic with phenomenas
due to the internal parameters of the operational amplifier an
ideal operational amplifier model is used in the simulations and
the regions with positive slope is modelled by means of a
simple voltage controlled current source placed in parallel to
Cl.
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(a) 3-region (b) 5-region
Fig.2, Characteristic of the non-linear resistor RNL.
x-axis: voltage VR, y-axis: current IR
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Fig.2(b) shows the 5-region almost piecewise-linear characteristic
of RNL when the operational amplifier model is based on Ebers-
Moll models for the internal transistors.

4. THE EIGENVALUES

Fig.3 shows the movement of the eigenvalues of the circuit as
functions of the nonlinear resistance RNL. During the transitions
between regions 1 and 3 (RNL = -1954 Q) and region 2 (RNL
= ~1200 Q) all the eigenvalues are in the left half plane when
-1340.43 Q <RNL < -1310 Q. Note that the value 1310 Q is
the value of the resistor R in Fig.1.
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Fig.3(a), Imaginary part of complex pole pair as function of RNL
resistor Rd
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Fig.3(b), Real part of complex pole pair as function of RNL
resistor Rd
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Fig.3(c), Real pole as function of RNL resistor Rd
5. A CIRCUIT THEORETIC DISCUSSION

As expected [3] in regions 1 and 3 we have a complex pair of
poles in the right half plane (RHP) and a simple pole in the left
half plane (LHP). In region 2 we have a simple pole in RHP and
a complex pair of poles in LHP. The autonomous piecewise-linear
circuit is unstable because of the poles in RHP. If we start up in
origo (region 2) an exponential rise of the voltage across C1 is to
be expected due to the simple pole in RHP. When region 1 is
entered the complex pair of poles switches to RHP and an
exponentially rising sine oscillation of about 1286 Hz is to be
expected [2].

When the amplitude of the oscillations grows we enter region 2
again and we observe a growing nonlinear oscillation around a
DC level of about ~1.13 V corresponding to the breakpoint of the
piecewise-linear characteristic. Energy is supplied from the
Thevenin source (B = +0.36 mA). When sufficient energy is
supplied from the Thevenin source the posibility of switching to
region 3 occur. Here the Thevenin source changes its direction (
= -0.36 mA) and the charging of the capacitor C1 goes in the
opposite direction with oscillations around a DC level of +1.13 V
corresponding to the other breakpoint.

As a conclusion we might expect the posibility of stable
oscillations with energy balance between the two unstable "DC
levels of oscillations". The simulation of this behavior is presented
in Fig.4(a) (ideal op. amp.) and Fig.4(b) (piecewise-linear voltage
controlled current source). The piecewise-linear model enters
region 3 at about 6ms where the continous model enters regjon 1
at about 10ms. .
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(a) continous model (b) piecewise-linear model
Fig.4, Current i(rr10) = IRNL as funtions of time



6. NUMERICAL COMMENTS

Problems with no convergence were observed in connection with
simulation of the ideal piecewise-linear model (immediate switch
of the eigenvalues may give rise to a jump in the voltage across
C1 7). The number of integration steps in Fig.4 is 1500 for the
continuous model and 1748 for the piecewise-linear model. - As
expected the piecewise-linear model uses a 2'nd order method the
most. The integration method used is a modified Gear method.
The relative tolerance of the integration is 1e-6. In the simulations
presented in Fig.4(a) and Fig.4(b) the maximum integration step
is 1ms and the initial integration step is 35¢-9 seconds. If the
maximum integration step is 35ms and the initial integration step
is 50e-9 seconds the results become very different due to the
sensitivity of the solution with respect to initial conditions. The
piecewise-linear model Fig.4(b) is much more sensitive than the
continuous model Fig.4(a). The minimum integration step allowed
is le-20 seconds.

7. THE NONLINEAR LOAD OF THE HARMONIC
OSCILLATOR

Fig.5(a) shows the nonlinear load characteristic of the harmonic
oscillator when the resistor R is varied assuming the values 800,
1100, 1310 and 1650 Q. The ideal op.amp. model is used.
Fig.5(b) is the same as Fig.5(a) but with use of the piecewise-
linear model. Note that the hysteresis loops become slightly larger
in Fig.5(b) than in Fig.5(a). If you zoom around origo you will
find that the apparently continuous curves for R=1100 Q and
R=800 Q also are hysteresis loops due to the still existing
"switching" Thevenin source.
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(a) continuous model (b) piecewise-linear model
Fig.5, Nonlinear load, x-axis: v(6) = VC2, y-axis: -i(re) = IR

8. SEARCH FOR LIMIT CYCLES

A large number of simulations have been made both without and
with a series resistance RL2 in connection with the coil L2 of the
harmonic oscillator. With RL2 =0 Q only period-1 limit cycles
have been found. Two small ones corresponding to oscillation
around one of the breakpoints and a large one corresponding to
oscillations between the regions with positive slope of RNL.
Fig.6(a) shows the voltage VC2 as a function of the voltage VC1
and Fig.6(b) shows VC2 as a function of time when a voltage VS
with F =200mV and f= 1286 Hz is applied.

(a) VC2 as function of VC1  (b) VC2 as function of time
Fig.6, external amplitude F=200mV

The sensitivity is enormous, e.g. F = 227.789500mV gives one
and F =227.789506mV gives the other of the two different small
limit cycles after about 60ms of chaos. Fig.7 shows the same as
Fig.6 but for F = 228mV. It takes about 80ms of chaos (Fig.7(c))
before transition to the large limit cycle occur. Fig.7(d) shows a
zoom of Fig.7(a).
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(a) VC2 as function of VC1  (b) VC2 as function of time
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(c) VC2 as function of time (d) zoom of Fig.7(a)
Fig.7, external amplitude F=228mV

Without a loss resistance RL2 it is apparently impossible to obtain
the bifurcation diagram in the F-f plane found by K. Murali and
M. Lakshmanan shown in Fig.3 of their paper [1]. The boundary
between the area with the two small limit cycles and the area with
the large limit cycle searched for in [2] seems not to be a line in
the sense of Euclid but a narrow band - a "coast line" - where it is
impossible to distinguish between chaos due to the accuracy of the
calculations and chaos due to the nature of the system. Un-
fortunately K. Murali and M. Lakshmanan give no information
about the loss resistors of L2 and LL1.

By chance aresistor RL2 = 1 Q was introduced as a first attempt
to study the influence of losses. For some reason a proper limit
cycle (derivative of signal as function of signal, IC1 as function of
VCl) was asked for. Fig.8 shows the result, a beautiful period-5
"twin heart" limit cycle.
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(a) transition to limit cycle
Fig.8, The current of the capacitor C1 as function of the voltage
of C1

(b) period-5 limit cycle



The amplitude of the external signal is F=150mV, the angular
frequency is 2-m-f = 8.0822898994674e+3 1ps corresponding to
the imaginary part of the complex pair of poles in regions 1 and
3 [2]. The simulation limit used is 15000 integration steps. Chaos
is observed between Oms and 40ms and the period-5 limit cycle
is observed between 40ms and 268.8ms. In the physical
realisation of the circuit it is necessary to introduce a resistance of
1 Q in series with C1 for measurement of the current of C1. The
result of the simulation in this case is chaos between Oms and
235ms and a period-5 limit cycle with starting bifurcation
between 235ms and 293.5ms. If the angular frequency is changed
1o 8.0822800000000e+3 rps chaos is observed between Oms and
90ms and a period-5 limit cycle without starting bifurcation
between 90ms and 274.9ms with 15000 integration steps as
simulation limit.
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(a) large period-1 limit cycle (b) small period-1 limit cycle
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(e) period-3 limit cycle
Fig.9, The current IC1 of capacitor C1, i(rrc1), as function of the
voltage VCI of capacitor C1, v(11)

Fig.9 shows examples of period-1, period-2 and period-3 limit
cycles. With reference to Fig7(a) of K. Murali and M.
Lakshmanan [1] a period-4 limit cycle should be found for an
excitation of F = 516.9¢-3 volts at the frequency f= 820 Hz. RL2
is chosen as 80 Q and the result in this case is a period-3 limit
cycle, Fig.10.
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Fig.10, VC2 as function of VCI,
RL2=80 Q,RRC1 =0 Q,F=516.19mV,f=820Hz

9. Conclusion

Simulation of the Murali-Lakshmanan experiment with sinusoidal
excitation of the Chua's Circuit has been performed. The
behaviour of the Chua's Circuit is explained as a very sensitive
balance of energy related to two unstable "states of capacitor
charging". With lossless coils the border between small and large
period-1 limit cycles appears to be a "coast line" where it is
impossible to distinguish between chaos due to the accuracy of the
calculations and chaos due to the nature of the system. When
losses are introduced in the coils this "coast line" broadens into a
"bifurcation sea" with islands of high period limit cycles verifying
the bifurcation diagram of K. Murali and M. Lakshmanan. Search
for period-4 limit cycles is going on.
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