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ABSTRACT

In this paper we present a canonical piecewise-linear cir-
cuit capable of realizing every member of the Chua’s circuit
family. It contains only six 2-terminal elements: five of them
are linear resistors, capacitors and inductors and only one ele-
ment is a three-segment piecewise-linear resistor. It is canoni-
cal in the sense that: (1) It can exhibit all possible phenomena
associated with any three-region symmetric piecewise-linear
continuous vector fields; (2) It contains the minimum number
of circuit elements needed for such a circuit. Using this circuit,
we have found many new chaotic attractors which have not
been observed before. Among them, we report only special
example here: a non-fractal chaotic attractor.

1 Introduction

Among general piecewise-linear systems, the class of
three-region symmetric (with respect to the origin) piecewise-
linear continuous vector fields (henceforth denoted by L ) is of
particular interest and importance. It is proved in [1] and [2]
that the dynamical behavior of any vector field § in L is com-
pletely determined by its 6 eigenvalues.

Therefore, if we can build a piecewise-linear circuit whose
natural frequencies are equal to an arbitrarily prescribed set of
eigenvalues, we can derive all possible phenomena in L by
analyzing this one circuit alone. Such an attempt for the most
general class of Chua’s circuit, called the Chua’s circuit family,
has been mentioned in [3], but no such circuit has been
reported to date.

In this paper we present a canonical realization of the
Chua’s circuit family. It contains the minimum number of cir-
cuit elements needed to generate all possible phenomena in any
3-dimensional, 3-region, continuous and symmetric piecewise-
linear vector fields. In Section 2 we give this circuit and the
explicit formulas for calculating all parameters of this circuit
from a given set of 6 eigenvalues.

We have observed many qualitatively different chaotic
attractors from this circuit[4]. In Section 3 we report only one
interesting example: a non-fractal chaotic attractor. We also
introduce a special 2-dimensional surface called folded strip
on which a trajectory can travel perpetually and non-
periodically without intersecting itself. The geometric structure
of the folded strip explains the mechanism of the non-fractal
chaotic attractor.
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Fig.1(a) The canonical realization of the Chua’s circuit family.
(b) The v-i characteristic of the nonlinear resistor Gy.

2 The canonical piecewise-linear circuit

In this Section we present a universal piecewise-linear cir-
cuit for realizing any eigenvalue pattern associated with any
vector field in L.

Firstly we have to decide what is the minimum number of
elements such a circuit needs. Since our objective is a 3-
dimensional 3-region symmetric piecewise-linear continuous
vector field, the circuit under consideration is allowed to have
only one nonlinear resistor whose v-i characteristic is 3-
segment piecewise-linear and symmetric with respect to the ori-
gin. The circuit must have three dynamic elements (capacitors
and/or inductors) since the system is of third order. The rest
are all linear resistors. Let us investigate next how many linear
resistors are needed in general.

A linear autonomous R-C circuit has two circuit elements
and has only one natural frequency p = 1/RC . If we increase
C to aC and decrease R to R/c , the natural frequency of the
circuit will remain unchanged. Therefore, to produce a natural
frequency |, we can assign an arbitrary value to C or R (e.g.
let C = 1) and find the value for the other parameter.

This means that in a circuit having n parameters, the
"degree of freedom" is only n—1.

Consider the class of 3-dimensional, 3-region, and sym-
metric (with respect to the origin) piecewise-linear continuous
vector fields. The eigenvalues in the inner region D are
denoted by W, Hy, and 3. The eigenvalues in the two outer
regions D, and D_, are equal, since the vector field is sym-
metric with respect to the origin. We denote them by vy, v,,
and v5. Some of the s and the v's may be complex conjugate
numbers. In order to avoid complex numbers, let us define

P = Bitiatia, pa = Hyky + Hols + U3lly, p3 = KiHols
q1 =ViHVatvs, ga =ViVat+ VoV + V3V, g3 = VVpVs

Since we have six eigenvalues in our problem, we need at
least seven parameters. Therefore, besides three dynamic ele-
ments and one nonlinear resistor (with two slopes in different
regions counted as two circuit parameters), we need at least
two linear resistors to build a canonical circuit.

Of course, not every circuit containing that many elements
will qualify as a canonical circuit. Our canonical circuit is
shown in Fig.1(a).

The state equations of this circuit are:

dvy 1 .

7 - CI[—f(V1)+13]

dvy 1 .

7=C—2(—GV2+13) (D
diy

i = T(vl + V2+Ri3)

where
FO)=Gyy + 3G =G (v + 11 = [y 1)) @)

is the v-i characteristic of the nonlinear resistor shown in
Fig.1(b).

In the D region (i.e. |v;| <1 ), the state equation (1)
become linear:

dv, -—G,, 1 ]

| | ° T

vy < | ! VI
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| dr { L L L

where Mg is a constant matrix. The characteristic equation of
M, is:
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On the other hand, since W;, iy and py are the eigenvalues of
this system, we have

-G —M) 6 —H)=s>—pist+pys —p3=0 (5
Comparing (4) with (5), we obtain
G. G . R
===
¢, e, T pP1 (6)
GG, G,R GR 1 1
t———t -ttt =p> @)
cCc, LCc, LCc, LC; LC
G + G, + GG,R
IC.C, =-p3 ®)

Similarly, from the equation in the D4, regions (ie. |v;> 1)
we obtain

Go G R
—_— =+ — =—
oot q, [©))]
GG G,R

b + b ._G_R_.*..L _1_ =q, (10)
C,C,y LC, LC, LC, LC,
G + G, + GG,R

icC, =—q;3 an

Among the seven parameters we can assign an arbitrary value
to any one of them. Let us take C; as a constant. After some
constructive algebraic manipulation[4], we obtain the solution
of (6) to (11) as:

P2~ 42

G,=|-p + C (12)
a P P-4y 1
P2~ 42
G,=|-g,+— | C (13)
b 1 P-4, 1
L = 1 (14)
P2—42 P2—42 P3— 43
2+ ( -p1( ) - Cy
P1— 491 P1— 4 P17 41
R=—L P2_‘12+k 15)
P11~
Cp= L (16)
L P3_43+k(k+172—112)
P14 P~ 41
G = kC, an
where k in (15) to (17) is defined as
. LC G,(p3—4q3) as)
= - Pyt ——
72T e -9

Equations (12) to (18) are explicit formulas for uniquely calcu-
lating all parameters in our canonical circuit from any given set
of eigenvalues.

3. Example of non-fractal chaotic attractor

For this particular example in Section 3, the parameter
values are:

€C,=10, C,=-156, G = - 6.42,

G, =413, G, = 0906, L =042, R =-0.555 (19)

By plotting the trajectory of Eq.(1) with parameter values
(19), we get an attractor as shown in Fig.2. The software we
use is INSITE[5][6].
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We have calculated its Lyapunov exponents. The results
listed below are almost independent from initial conditions used
for the algorithm.

{,=0.0345, I, =-0.0000751, [3=-0.755 (20)

Therefore, the Lyapunov exponents indicate that this attractor is
chaotic.

As seen from Fig.2, the attractor looks like a strip. To
explore its geometrical structure, we plotted its Poincare cross-
sections at different positions. We found that the cross-sections
consist of continuous curves. Therefore our conclusion is that
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Fig.2 Trajectories of the system (1) with parameter values given
in (19). (a) Projection on v, - v, plane. (b) Projection on
vy ~ iy plane. (c) Projection on v, - i; plane. The trajec-
tory travels clockwisely in (a) and (b), counert-clockwisely
in (c).



this attractor is located on a 2-dimensional surface and has no
fractal structure.

It is well known that the most complicated attractors exist-
ing in any 2-dimensional autonomous systems can only be limit
cycles. In other words, any attractors on a 2-dimensional plane
can only be either equilibrium points or limit cycles, because
the trajectory can never intersect itself on a plane, except at
equilibrium points.

Now a problem arises: how to explain the attractor we
discovered? The answer is: there is no contradiction, because
the attractor is located on a 2-dimensional surface, not on a
plane.

Here we introduce a 2-dimensional surface with special
geometrical structure and prove that a trajectory on it can be
chaotic.

Let us start with a long strip of paper(with no thickness),
as shown in Fig.3(a). Imagine we band it around and paste the
line AC to the line GH. We then get a flar closed-strip. When
a trajectory travels along the closed-strip, the only possible
attractors are limit cycles. Next imagine we twist the plain
strip in Fig.3(a) by 180 degrees and paste the line AC up side
down to the line HG (i.e. paste the point A to the point H and
paste the point C to the point G). We then get a Mobius strip.
Although the Mobius strip seems more complicated then the
flat closed-strip, still, the only possible attractors on it are limit
cycles.

Now let us imagine to fold the long strip in Fig.3(a) along
the line BE and paste the rectangular ADEB to the rectangular
CFEB. The result is a spoon-like shape called folded junction,
as shown in Fig.3(b). Then imagine to stretch the whole strip
continuously (as if it is a rubber band) and band it around.
Finally, paste the line AB to the line GH, as shown in Fig.3(c).
We call the resulted shape a folded strip. It is a 2-dimensional
surface. The crucial part ot if is around the line DE. At this
junction, two surfaces tangential to each other merge into one.
Everywhere else of the folded strip is locally homeomorphic to
a 2-dimensional plane.
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Fig.3(a) A flat strip; (b) A folded junction; (c) A folded strip.

By using a unimodal one-dimensional map we have
proved that trajectories on a folded strip can be chaotic[7].

If we look at a sequence of consecutive Poincare cross-
sections of the attractor, we can find the folded junction struc-
ture. Here we give four consecutive Poincare cross-sections.
Figure 4 shows the Poincare cross-sections at v, = 0.9, 0.6, 0.3
and 0, respectively. Each Poincare cross-section has two
branches. Here we plot only one branch associated with the
folded junction structure.

The trajectory travels clockwisely on the v; —v, and
vy — i3 projections and counter-clockwisely on the v, — i pro-
jection. In Fig.4(a)(i.e. v, =0.9), the cross-section has just
started to fold. In Fig.4(b)(ie. v, = 0.6), the cross-section is
folded further to form an acute angle. In Fig.4(c)(i.e. vy, =0.3),
the cross-section is almost completely folded. If we look at it
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Fig.4 A sequence of successive Poincare cross-sections showing
the folded junction structure of the attractor.



carefully, we can still find it is "open" at the upper-right corner
of the picture and therefore there is still a small angle. Finally,
in Fig.4(d)(i.e. v = 0), it has been completely folded. No matter
how we zoom it, it is still a line and not an angle. Therefore,
this attractor really has the structure of a folded-strip. This
explains the mechanism of the non-fractal chaotic attractor
quite well.

The fractal dimension is thought as a characterizing
feature of chaotic attractors. There are many definitions for
different dimensions. In practice, the so-called Lyapunov
dimension is widely used because it is related to Lyapunov
exponents by a simple formula. Let [;2 --- >/, be the
Lyapunov exponents of an attractor of a continuous-time
dynamical system. Let j be the largest integer such that
Iy+ + -+ +1; 20. The Lyapunov dimension d; is defined as

L+ o+
d=j+ @1
|lj+1l
In case of 3-dimensional vector space,
Lyapunov exponents [, [; and /3 satisfy

when the three

1,21,20>1; (22)
the formula for calculating Lyapunov dimension d; is
i+,
dp =24 — (23)
[ 131

Yorke and others classified different definitions of dimen-
sion into two large categories: metric dimensions and frequency
dependent dimensions. All metric dimensions tend to yield the
same value, which is called the fractal dimension and denoted
by d. Similarly, all probabilistic dimensions tend to yield the
same value, which is called the dimension of the natural meas-
ure and denoted by d,. Typically, d,, < dr. Formula (21) was
originally given by Yorke and Kaplan and they conjectured that
Lyapunov dimension d; equates to the dimension of the natural
measure d,, and is a lower bound on the fractal dimension dp
((81(9D-

_ According to (23), the Lyapunov dimension of this attrac-
tor is
0.0345

0.755

) The capacity dimension, which is one of the metric dimen-
sions, can be calculated by

N
d =1 —_——
ca = ' Tn(le)

where € is the diameter of a small volume element(sphere,
cube, etc.) and N (€) is the minimum number of such volume
elements needed to cover an attractor. Since our attractor is
located on a 2-dimensional surface, its capacity dimension
d.g, is at most 2. From Fig.4 we can see the attractor’s cross-

d =2+ = 2.0457 (24)

(25)

log 2C(cpi)

58.00

log2 (epi/epi g)

Fig.5 The correlation dimension of the attractor.
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sections are continuous curves, which indicate dmp = 2 for this
attractor.

We can also calculate the correlation dimension for this
attractor. The correlation dimension d,,, is defined by

N(e)
d,, =limIn ﬁ‘,P,-z /Ine

£ i=1
where € and N (€) have the same meaning as in Eq.(25) and P;
is the relative frequency with which a typical trajectory enters
the ith volume element. From its definition we know that d,,
belongs to the frequency dependent dimensions. To numeri-
cally calculate d,,,, one can use the correlation integral C (€)

defined by

(26)

C(e) = lim —1—{ the number of pairs of points (x;, x;) (e4))]
Now= N2

such that | |x; —lel <e}

where N is the total number of points of a trajectory. It can be
shown that ([6])

N()
Ce = ﬁ‘,Pﬁ
i=1

Using data number N = 50000, the result of calculation is
shown in Fig.5. The horizontal axes is log,(e/€g), where € is a
small constant in the program. The vertical axes is log,C (€).
In practice, the log,C (€) - log(€/gg) curve is nearly a straight
line in a portion of the curve and the slope of this line is the
correlation dimension([6]). For the straight line shown in
Fig.5, we have d,,, = 1.98.

The relationship between d,,, and d,, is

door S degp
and the equality takes place only when the trajectory visits each
point on its attractor at a uniform probability (i.e. the trajectory
is ergodic). Hence d,,, =1.98 =2 is a very good numerical
result. It means the attractor is nearly ergodic on the 2-
dimensional surface, as can be seen from Fig.2.

Therefore, both theoretical analysis and numerical calcula-
tion show that this attractor has d,,, <d_,, <2. However, it
has a positive Lyapunov exponent and hence its Lyapunov
dimension d; > 2.” So the attractor we obtained seems to be a
counter-example to Kaplan-Yorke conjecture.
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