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Abstract

The methods of nonconstant feedback impulse control
of chaos are introduced. The approach is based on the
similarity of the return maps of dissipative continuous-
time systems with one dimensional maps. The methods
are illustrated for the Chua’s circuit, Rossler oscillator,
and phase-locked loop system.

1 Introduction

In this paper, we propose several procedures for con-
trolling chaotic dynamics of continuous-time systems
described by ordinary differential equations by impulse
variation of control parameter [1]. These control meth-
ods lie, basically, in suppressing chaos in the return
map generated by the trajectories of the continuous
system at the Poincaré section.

We consider control in chaotic continuous systems giv-
ing one-dimensional maps. We take a chaotic map

Tnyl = F(Zn) . (1)

We need to find for the continuous system the impulse
control e(t) = E(z(t),t) such that that the resulting
map

Tpy1 = F(In) + ugn (2)
Un+1 = G‘(a:,,,u,,) .
where u,, = u(E), should produce a regular trajectory.

Chua’s circuit, Rossler oscillator and phase-locked loo;ﬁ
(PLL) are used as examples on which chaotic oscilla-
tions are suppressed.
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2 Chaos suppression by constant impulses

2.1 Map shift

The simplest way to obtain a fixed point for the map
(1) producing chaos is to shift this map upwards or
downwards {2]) so that the local slope of the map func-
tion at the new fixed point z* should satisfy the sta-
bility condition I%ﬂlzo < 1. For the square function
F, the transition from chaos to a stable fixed point
may be accomplished by means of a constant shift:
ZTny1 = F(z,) + un for u, = u*. Using this approach
we will show how chaos in Chua’s circuit may be sup-
pressed by impulse forcing.

2.2 Controlling Chua’s circuit

Chua’s circuit is an electronic scheme consisting of one
nonlinear and four linear elements and is described by
three ordinary differential equations [3].

We consider one of the two symmetric spiral chaotic at-
tractors. The return map for this attractor has a square
form, which is typical for the return maps depicting the
evolution of chaos through a cascade of period-doubling
bifurcations. For suppression of chaotic oscillations in
Chua’s circuit by controlling, the map must be shifted
upwards by a certain value so that a stable cycle should
appear. This can be attained by adding as a control
term external impulse force e(t) to the first equation of
the system [4].

The procedure of suppressing chaos in Chua’s cir-
cuit reduces to feeding external impulse force of con-
stant magnitude Eo while the map is staying in the
e-neighborhood of the cross-section plane. Note that,
since external forcing is fed exclusively in the region
of linearity of the system considered, it is obvious
that the dependence u,(E) may be determined ana-
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lytically. Cycles of periods 4, 2 and 1 are observed
for Ep = 1.2,1.4,and2.1, respectively. Original chaotic
attractor and controlled period-2 cycle are shown in
Fig. 1.

Figure 1: Controlling chaos in Chua’s circuit to periodic
orbit with impulse feedback.

3 “Local” impulse control

The number of fed impulses and, consequently, the en-
ergy consumption on suppressing chaos may be dimin-
ished significantly by transforming the map F describ-
ing the chaotic behavior of the system not for all the
region of variation D of some variable, but only on a
certain interval I. We will show below that the magni-
tude of this interval ! may be not greater than 5-10 %
of the size of the region D. Hereinafter we will refer to
the this method of chaos suppression as to local impulse
control.

3.1 Local perturbation of the map
We first demonstrate suppression of chaos by local im-
pulse control on an example of a model point map:

Tnt1 = {

where the parameter b is responsible for control. In
the absence of forcing (b = 0), the map (3) produces
a chaotic trajectory. This piecewise linear map may
be investigated analytically. Periodic orbits of small
periods are found relatively easily. The stability of an
arbitrary periodic orbit ,,22,...,2 18 determined by
P = |flz)||f(z2)l...|f{zk)|. In our case, the con-
dition |f(z;)] = 0O is fulfilled for an arbitrary point
z; from the set 1, 3,...,2x belonging to the interval
[0, 8]. Consequently, any periodic trajectory produced
by the map (3) at b # 0 and having as one of the coor-
dinates, at least, a point belonging to the interval [0, b
is stable because P = 0 for it. We plotted a bifurcation
diagram characterizing the evolution of the trajectories
realized in the map (3) depending on the magnitude of
the parameter b. As b is increased, the chaotic motion
existing at b = 0 undergoes a cascade of bifurcations
which, eventually, lead to emergence of a stable fixed
point at b= 1/3.

11-2x,],
1— 2b,

b<z,<1
0<z, <b.

(3)

Chaos suppression proceeds as follows. Suppose that
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we choose a periodic orbit (and the corresponding value
of parameter b) which we want to obtain as a result of
control. Then, in the course of map iteration, as soon
as the current value of the 2,-coordinate gets into the
interval [0,b], u = —2(z,, — b) is subtracted from z,,1.
After that, we get to a stable orbit of given period
only in one iteration. Examples of impulse implemen-
tation of this method for continuous systems are given

in Sect. 2.2 for fixed u and in Sect. 3.3 for linear con-
troller.

3.2 Controlling Rdssler oscillator
The Réssler oscillator is modeled by a system of ordi-
nary differential equations

T = -y-2z,
y = z+ay, (4)
z = 04+ (z—85)z

As the parameter a is increased in the Rossler oscil-
lator, a chaotic attractor appears through a cascade
of period doubling bifurcations of periodic motions. A
spiral type chaotic attractor is realized in the system
at a = 0.15 and o = 0.18. The region of permissible
changes of the variable y is D, = [~13, —6]. We trans-
form the Poincaré map y,+1 = F(yn) for the Rossler
system shifting downwards its portion using impulse
force for the values of y,;41 near the left boundary of
the region D;,. This can be done by including as control
the external impulse force e(t) into the second equation
of the system.

An example of chaos suppression in the Rossler system
by feeding the external impulse force Ey = 1.5 while
the map is staying inside the region |z| < 0.5,y < —12
is given in Fig. 2(a). A periodic trajectory of period 5
is realized in the system.

Analogous results of chaos suppression we have ob-
tained considering the Poincaré map z,41 = F(z,)
at the section y = 0 for £ < 0. Qur numerical exper-
iments verified that for the map zp41 = F(zy), the
decrease in 7,41 near the left boundary of the region
of permissible changed of the variable D, leads to the
increase of the values of z,4, near the right boundary.
Knowing of this fact we performed a series of experi-
ments in which means by external impulse force fed in
the region |y} < 0.5, -5 < £ < 0 we suppressed chaos
and realized periodic motions. The results are shown

in Fig. 2(b).

4 Automatic impulse control

Numerical experiments on different systems revealed
that the magnitude of attractor perturbation (the shift
of the one-dimensional map corresponding to it in the
simplest case) is proportional to the magnitude of the
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Figure 2: Suppressing chaos in the Rossler oscillator by
impulse control applied locally for two different
localizations of the impulse control.

fed impulses, and the linear dependence holds in a
broad range of impulse magnitudes. Thig property en-
ables one to control the magnitudes of attractor per-
turbations, i.e., to control the state of the gystem in
phase space, whereas the linear dependence on impulse
amplitude provides & simple implementation of control
systems. If the obtained stable periodic solution is a so-
lution of an unperturbed system, then one can say that
the pericdic orbit 4s stabilized in the chaotic attractor.

4.1 Stabilization of a fixed point of a one-
dimensional map by adaptive impulse control
Consider a control system intended for stabilization of
2 fixed point z* of the map (1) in the form (2).

For construction of the control law we use the speed-
gradient algorithm from the theory of adaptive control
(5]-

By applying the speed-gradient algorithm to the
smooth one-dimensional map (1) and choosing a local
target functional in the form

Q(xn)x*) = (’.'Cn - x.)z 3

we obtain a control system of the form (2) with control
nonlinearity

G(zn,un) = —20(F(zn) = z°) + (1 = Ly,  (5)

where T is the parameter. Note that if z* is a fixed
point of the map (1), then G(z*,0) = 0 and (z*,0) is
the fixed point of the control system (2). The presence
of a zero second coordinate at the fixed point (z*,0)
means that, as the trajectory is approaching the control
target, the magnitude of the control signal tends to
zero, i.e., stabilization of the fixed point occurs by a

small signal.

The stability conditions of the fixed point {2*,0) are
defined by
g > (k-1)4,
8 > (1+ké-2(1+k),
B8 < kd+1-k,

where k = F'(z*),8 = HL(0,0) = G.(z*,0),§ =
H!(0,0) =1-G(z*,0) and G(zn, up) =ty — H(zn —

(6)
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z*,4,). The fixed point (z*,0) is rough inside the re-
gion {6), consequently, the stabilization effect is struc-
turally stable relative to small parameter variations,
which allows us to specify the values of all parameters
approximately.

Thus, weak control with feedback may be used to stabi-
lize the unstable fixed points of one-dimensional maps
of the form (1), including those possessing chaotic dy-

namics, independent of the form of the function F(z).

The only information one needs to have about the
map are the coordinate of the fixed point z* and the
value of the derivative k = F*(z*). The parameters
B = H.(0,0) and § = H_(0,0) of the control law must
satisfy the conditions (6) that guarantee local stability
of the fixed point (z*,0). The function H(z, — z*, %)
of the form

. Ty — Z° é —0.2)u
H(zp=2*,u,) = A : — )10 ( )18 +0.2u,,,
1+ (2=3) 0 1+(3)

O
effects local stabilization of the fixed point (z*,0) of the
map (2) and provides a decrease of the control signal
[tzn] at large deviations |z, — z*| and |u,|.

4.2 Comntrolling chaos in a PLL system

Let us employ the control algorithm described above for
the problem of impulse stabilization of periodic solu-
tion in a continuous mode! of a nonautonomous phase-
locked loop system :

T=y, g=7y—sinz - (A—-7cosz)y+ usinwt, (8)

where t is the time, 2z, y designate the phase variables,
and 7, A, T, 4, w are the parameters. The system has
an asymptotically stable chaotic attractor without ro-
tation along the z-coordinate: |z(t)] < . We control
the system (8) by periodic rectangular impulses e(t)
adding them to the right-hand side of the second equa-
tion of the system (8). Such a perturbation leads to
the shift of the map (1) by u(E). One can see that the
shift of the map is proportional to the magnitude of the
impulses: u(E) ~ E. By controlling the magnitude of
impulses by means of coordinate feedback according to
the law

Epyy = Ep — éG’(zn —z*,eEy,), (9)
we obtain the control scheme (2) for the continuous sys-
tem (8). In particular, for some fixed parameter values,
we have z* =~ 0.23, k = F'(z*) ~ -1.7, e ~ 0.1. By
choosing the control nonlinearity in the form (7) and
the parameters 4, 8 from the region (6): § = -0.1, § =
2, we are able to stabilize the saddle periodic solution of
the system (8), that corresponds to the unstable fixed
point z* ~ 0.23 (see Fig. 3).

4.3 Linear controller -
When the fixed point of the map (1) is stabilized by the
procedure described above, the duration of the transi-
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Figure 3: Stabilizing periodic orbit in the model of PLL
system using adaptive impulse control.

tion from the initial state on the attractor to the con-
trol target (the neighborhood of the fixed point) de-
pends on the eigenvalues of the matrix of linearized
map. We consider as an example the impulse imple-
mentation of linear controller, within the continuous
gystem (8), driving the orbit of linear map to the fixed
" point in one iteration. Let us linearize the map (1) in
the neighborhood of the fixed point z*:

ZTpt1 = k(zp —2*) + 2%, (10)

where k = F'(z*). Let at some iteration k = M the
map z s be in the neighborhood of z*. Then, with (10)
taken into account, there exists the value of the control
signal ups at which zp is transformed into z* in one
iteration:

upy = —k(zpm —z%).

For the continuous system (8) with additive impulse
control, stabilization of periodic solution is attained in
the second equation at the impulse magnitude

1 1
E, = Jun = —-E-Is:(:z:ﬂ —z*) (11)

In contrast to the linear case (10}, the control target
in the continuous nonlinear system (8) is usually not
attained in one step, and the control impulses of (11)
are fed in each iteration with the number n > M until
the control target is achieved. Nevertheless, the lin-
ear controller (10) may have a rather effective speed in
application to the continuous system (8) with impulse
control.

5 Conclusion

The methods of controlling chaotic oscillations in con-
tinuous dynamic system described above enable one to
pass to periodic oscillations. This is attained by a spe-
cial control in the form of edditive impulse forcing that
may be realized by three different methods: control by
means of the impulses of constant duration and ampli-
tude that are independent of (i} or dependent on the
current state of the system (ii), and control by the im-

‘pulses whose amplitude, duration and the conditions of

feeding obey a definite known law of control (ii).

Similarly, the impulse control of chaos may be realized
for variation of the system parameters [6).
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