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Snapshots of Dynamical Evolution of
Attractors from Chua’s Oscillator

Philippe Kévorkian

Abstract—Chua’s oscillator is the simplest circuit with the most
complex chaotic dynamics in the universe of all 21-parameter
family C of continuous odd-symmetric piecewise-linear vector-
fields. Consequently, an in-depth understanding of this circuit
suffices to explain the nonlinear dynamics of all chaetic circuits
and systems belonging to C. Our goal in this tutorial is to
present a sequence of snapshots that shows the detailed dynamical
evolution that led to the birth of distinct strange attractors
corresponding to several standard routes to chaos.

[. INTRODUCTION

Y ADDING a linear resistor Rg in series with the
Binductor in Chua’s circuit [1], we obtain an unfolded
circuit [2], [3] called Chua’s oscillator [4]-[6]. This circuit
is canonical in the sense that it contains the smallest number
(seven) of circuit parameters necessary to exhibit all possible
nonlinear dynamics and chaotic behaviors that can be obtained
from a 21-parameter family C [2] of continuous odd-symmetric
piecewise-linear vectorfields. The canonical property of this
circuit is proved in 2], [3]. More than 30 distinct strange
attractors exhibited by this circuit have been found to date.
Because of the canonical nature of Chua’s oscillator, it is
the circuit of choice for an in-depth study. In particular,
all standard routes to chaos are exhibited by this circuit
in different regions of the parameter space. Our goal in
this tutorial is to select each of these standard routes to
chaos and observe its dynamical evolution by showing a
sequence of snapshots of the associated trajectory. Because
of the piecewise-linear nature of Chua’s oscillator, its many
qualitatively distinct dynamical evolutions can be understood
by following the evolutions of the corresponding eigenvectors
and eigenspaces in the affine region Dy, Dy, and D_y,
respectively. Consequently, the location and position of the
eigenvectors and eigenspaces are given along with the at-
tractors in the snapshots. Because of space limitation, no
explanations, except for the figure captions, are given for these
snapshots, which in most cases are self-explanatory.

The Chua’s oscillator circuit shown in Fig. 1(a) is described
by the following system of third-order ordinary differential
equations

Ci1 = %(1}2 —v1) — f(m)
C?iJQ = %(’U] - 1)2) + Lg, (1)
L[3 = —U2 — R()‘I-,g
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Fig. 1. (a) Chua’s oscillator circuit. (b) Example of a piecewise-linear

characteristic for Chua’s diode.

where Cy, Ca, L, R, and R are real numbers, and
f(’UR) = Gyvgr + %(Ga — Gb)H'UR + Bp‘ - |UR - Bpl] )

denotes the three-segment odd-symmetric voltage-current
characteristic of the nonlinear resistor (known as Chua’s
diode [7]) .with slopes Ga, G, and breakpoints located at
vp = — By andvgp = B, respectively. By different choices of
G, and G, all combinations of odd-symmetric three-segment
characteristics are possible [7], one of which is shown in Fig.
1(b). By an appropriate change of variables, we can transform
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TABLE I
PARAMETERS FOR THE SNAPSHOTS

Fig. a i) o4 a b k
2 through 4 9.8 16 0 —1.1428571 —0.71428571 1
5 8.8 16 0.5 —1.1428571 —0.71428571 1
6(a) 8.8 16 0 —1.1428571 —0.71428571 1
6(b) 9.05 16 0 —1.1428571 —0.71428571 1
7(a) 9.12 16 0 —1.1428571 —0.71428571 1
7(b) 9.162 16 0 —1.1428571 —0.71428571 1
8(a) 9.3 16 0 —1.1428571 —0.71428571 1
8(b) 9.8 16 0 —1.1428571 —0.71428571 |
9(a) —75.018755 59.988002  —5.9988002 —0.98 -24 1
9(b) ~75.018755 44.802867  —4.4802867 —0.98 —24 1
10(a) —~75.018755 43.994721  —4.3994721 —0.98 —2.4 1
10(b) —75.018755 34722222 —3.4722222 —0.98 —24 1
11(a) —75.018755 31746032 —3.1746032 —-0.98 -24 1
11(b) —75.018755 31.25 —-3.125 —0.98 -24 1
12(a) 100 1499.2504  —0.97601199 —0.856 —1.1 -1
12(b) 166.66667 14992504  —0.97601199 —0.856 —-1.1 -1
13(a) 196.07843 1499.2504  —0.97601199  —0.856 —1.1 -1
13(b) 200 1499.2504  —0.97601199  —0.856 -1l —1
14(2) 285.71429 1499.2504  —0.97601199  —0.856 -1.1 -1
14(b) 340.13605 1499.2504  —0.97601199  —0.856 -1l —1
15 11.5996022 15 0 —1.1428571 —0.71428571 1
16 10.3358877466415610077619 15 0 —1.1428571 —0.71428571 1
17 8.6 13.925 0 —1.1428571 071428571 1
18 8.6 13.924 0 —1.1428571  0.71428571 |
19 8.6 13.923 0 —1.1428571 0.71428571 1
20 8.6 13.833 0 —1.1428571 0.71428571 1
(1) and (2) into the following dimensionless Chua’s equations: There are three equilibrium points; namely, P* € D, (2 >
. 1), 0e Dy (-1 <z <1),and P~ € D_; (z < —1) where
i =kaly -2 - f(z)) ) ( ) (
y=k(z—y+z) (3) Teq 0
2= k(—By — v2) Pt=| 5% [,0=|0|,
8
~ B e 70
f@)=brta-bla+l--1] @ —eq
P =|-7&x 7
where Aryred M
22T
z U1 (%] . ( ) By
= —, =—, 2 =13 —
By B, By and
C, 3 R%*C, RRoCy b
= —‘7 p—t 5 p—t — a
C L L . Teq = T 2 (8)
¢ =RG.,b = RGy, k = sgn(RCy) and 7 = —— (5) Bty
|RC|

II. EXPLICIT EQUATIONS FOR PLOTTING
EIGENVECTORS AND EIGENPLANES

2.1. Equilibrium Points

The equilibrium points of the Chua’s oscillator dimension-
less equations are determined by solving the following system
of equations:

y—z—f(z)=0
r—y+z2=0
—By—vz=0

6)

2.2. Eigenvalues

In the inner region Dy, the state equation (3) reduces to

X = MoX ©
The Jacobian matrix associated with (9) is the constant matrix
—a(l—a) a O
My=k 1 -1 1 (10)
0 -3 —~
whose characteristic polynomial is given by:
M 4+k[l+y+a(l+a)]A?
Fhy+8+a(l+a)(l+v)—alA
(1D

tha[(l+a)(v+8)—]=0

i
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Fig. 2. (a) Trajectory after 300 points.
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Fig. 2. (b) Trajectory after 600 points.



KEVORKIAN: SNAPSHOTS OF DYNAMICAL EVOLUTION OF ATTRACTORS FROM CHUA’S OSCILLATOR

Stable Eigenvector
ET(P) at P*

Unstable Eigenspace

o E(P a Pt

Boundary Plane U,

Stable Eigenspace (x=1)

E<(0) at O

Unstable Eigenvector
E(0) at O

Boundary Plane U_;

(x:'l) \

Unstable Eigenspace
E<(P) at P~

Fig. 3. (a) Trajectory after 900 points.
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Fig. 3. (b) Trajectory after 2500 points.
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Fig. 4. (a) Trajectory after 5000 points.
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Fig. 4. (b) Trajectory after 15 000 points.
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Stable Eigenvector
ET(P) at P

Stable Eigenspace
E(P) at P*

Fig. 5.

The eigenvalues of Mg are the roots of (11) and are given
explicitly by using the following Cardan’s formulas:
Let

2 de a3
—e— =f- 2% 12
p=e- ¢=f-5+25 (12)
where
d=k[1+~v+ ol +a),
=y+0+a(l+a)(l+7v)—a,
f=kal[(l+a)(v+p8) -] (13)
Let
2 3 2 3
q q P q q P
A=—= — —® B=_-=— = —,
2 + 4 + 27" 2 4 + 27"
A =4p3 +274° (14)

If A > 0, we have one real eigenvalue and two complex-
conjugate eigenvalues. In this case, roots of (11) are given
by

M= VA+VE- S

3A :]B d 3A_SB
o VASB 4 3-0

SA 3B d 3A_3
)\3:_¥_3_j\/§¥. (15)

If A < 0, we have three real eigenvalues. In this case, roots
of (11) are given by

AL =24/ —cos — — -

—p o d
3 3 3

Boundary Plane U,
(x=1)

Stable Eigenspace

E(0) at O

R

Unstable Eigenvector

Fr(0) at O

Stable equilibrium point P*t.

5 b 1
Ay =2 ?l’cos(§+120°)ff3
Ay = 2] Leos| = +240°) - = (16)
3 3
V27q

where cos @ = 5 T and ® is taken in the first or second
quadrant, depending on whether ¢ is negative or positive,
respectively.

For the outer regions, we simply replace a with b.

2.3. Eigenspaces

Each real eigenvector X ,,,, corresponding to a real eigen-
value Ag, is determined up to a multiplicative constant by:

MyXy, = ArX, a7
and a solution of (17) is:
(43
a(l+u)+%
X\, = 1 (18)

4
-~
The eigenspace, henceforth called the eigenplane correspond-
ing to the complex-conjugate eigenvalues Acx = u & ju, is
determined as a linear combination of the two real vectors U
and V such that:
—ul

Mo —ul vl 0
ol wl =My ) |V |

where Xc+ = U + jV is the complex eigenvector corre-
sponding to the complex-conjugate eigenvalues Ac+. This
system can be solved either analytically or numerically. For the
outer region D1 we simply replace o with b. We can find the
eigenvectors and the associated eigenplane of the region D_;
by using the odd symmetry of the vectorfield defined by (3).

(19
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Fig. 6. (a) Period-1 limit cycle (o = 8.8).
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Fig. 6. (b) Period-2 limit cycle (@ = 9.05).
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Uustable Eigenvector
ET(0) at O

Stable Eigenspace
E(0O) a1 O

Bouudary Plane U,
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Fig. 7. (a) Period-4 limit cycle (o = 9.12).
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1
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Fig. 7. (b) Period-8 limit cycle (o« = 9.162). The trajectories squeezed within a narow band around each loop are transients converging toward the limit cycle.
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Fig. 8. (a) Spiral Chua’s attractor (c = 9.3).
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Fig. 8. (b) Double-scroll Chua’s attractor (& = 9.8).
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Fig. 9. (a) 4 = 59.988002.

Unstahl
E(P) at P

Boundary Plane U

(x=1)

Unstable Eigenvector

ET(0) at O

Unstable Eigenspace

E9(O) at O

Boundary Plane 1_,
. ? (x=-1)

i ! 1 UnstableEigenspace
Stable Eigenvector E(P) at -

E(P) at £~

Fig. 9. (b) 3 = 44.802867.
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Fig. 10. (a) 3 = 43.994721.
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Fig. 10. (b) 3 = 34.722222.
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Fig. 11. (b) 3 = 31.25.
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Unstable Eigenspace
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Fig. 12. (a) o = 100.
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Fig. 12. (b) a = 166.66667.
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Fig. 13. (a) o = 196.07843.
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Fig. 13. (b) o = 200.
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Fig. 14. (a) o = 285.71429.
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Fig. 14. (b) & = 340.13605.



KEVORKIAN: SNAPSHOTS OF DYNAMICAL EVOLUTION OF ATTRACTORS FROM CHUA’S OSCILLATOR

Stable Eigenvector

ET(P) at P* \

Unstable Eigenspace
Ee(P) at P*
Boundary Plane U,

, (X:I)

Stable Eigenspace
Ef(0) at O

[Fig. 15. Homoclinic orbit.
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Fig. 16. Heteroclinic orbit.
III. SNAPSHOTS The following dimensionless system

In this section, we present seven sequences of snapshots, & =ka(y — f(z))
each one illustrating an important evolution route to chaos. y=k(z-y+2)
2 =k(-py—2)

The snapshots in each sequence are identified by consecutive
figure numbers whose associated parameters are collected in where

Table 1. f@)=bz+3(a—b)lz+ 1| — |z — 1]
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Fig. 17. Just before the collision (3 = 13.925).
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Fig. 18. Just before the collision (3 = 13.924).

has been used to obtain the snapshots shown in Figs. 2-20. 3.2. Snapshots of Period-Doubling Route to Chaos
For the parameter values given in the second row (Fig.
3.1. Snapshots Showing the Time Evolution of 5) of Table I, the equilibrium point Pt is a stable fo-

the Double-Scroll Chua’s Attractor cus. Fig. 5 shows a typical trajectory starting from a point

Figs. 2-4 show the time evolution of the double-scroll in the basin of attraction of P* and converging toward

Chua’s attractor. Pt
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Fig. 19. Just before the collision (4 = 13.923).
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Fig. 20. Just after the collision (3 = 13.833).

By tuning a and/or 3, Pt becomes unstable on crossing
the “Hopf bifurcation curve” and gives rise to a limit cycle
henceforth referred to as a period-1 limit cycle. Figs. 6-8 show
the evoluiton of the trajectories from the period-1 limit cycle
to the double-scroll Chua’s attractor.

3.3. Snapshots of Intermittency Route to Chaos

Figs. 9-11 show the evolution of the trajectories along
the intermittency route to chaos. Observe that although the

bifurcation scenario shown in Figs. 9-11 involves tuning two
parameters (3 and «), the intermittency route to chaos is
nevertheless a co-dimension-one bifurcation in the sense that
the corresponding route in the parameter Space is a 1-D curve.
Indeed, in the original (unnormalized) Chua’s oscillator with
which Figs. 9-11 are associated [2], only the inductance L is
tuned. However, in the corresponding dimensionless circuit,
both parameters 3 and o depend on L, and hence, both
parameters must be tuned as shown in Table I in order to
obtain the corresponding intermittency route depicted in [2].
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3.4. Snapshots of Torus Breakdown Route to Chaos

Figs. 12-14 show the torus breakdown to chaos.

3.5. Snapshot of a Homoclinic Orbit

Fig. 15 shows a homoclinic orbit.

3.6. Snapshot of a Heteroclinic Orbit

Fig. 16 shows a heteroclinic orbit.

3.7. Snapshots Showing Collision Between
Two Spiral Chua’s Attractors

Figs 17-20 show a collision between two spiral Chua’s
attractors.

REFERENCES

[1] L.O. Chua, “The genesis of Chua’s circuit,” Archiv fiir Elektronik und
Ubertragungstechnik, vol. 46, pp. 250-257, 1992.

2] , “Global unfolding of Chua’s circuit,” IEICE Trans. Funda-

mentals Electron. Commun. Comput. Sci., vol. E76-A, pp. 704-734,

1993.

[3] , “A simple ODE with more than 20 strange attractors,” Proc.
World Cong. Nonlinear Analysts (Tampa, FL), Aug. 19-26, 1992.

[4] R.N. Madan (Guest Ed.), J. Circuits Syst. Comput.: Special issue on
Chua’s circuit: A paradigm for chaos, vol. 3, Mar. 1993, pt. L.

[5]

. J. Circuits, Syst. Comput.: Special issue on Chua’s circuit: A
[6

paradigm for chaos, vol. 3, June 1993, pt. II,.

P. Deregel, “Chua’s oscillator: A zoe of attractors,” J. Circuits, Syst.

Comput., vol. 3, June 1993.

[7]1 M.P. Kennedy, “Robust op amp realization of Chua’s circuit,” Frequenz,
vol. 46, pp. 66-80, 1992.

Philippe Kévorkian received the master’s degree
in physics (with distinction) from the University
of Paris in 199]. He received the engineering
diploma from I’Ecole Nationale Supérieure de
I’Aéronautique et de I’Espace, France, in 1993,
He is currently studying for a Diplome d’Etudes
Approfondies in applied mathematics.



