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A Computer-Assisted Investigation
of a 2-D Array of Chua’s Circuits

Fatih Kavaslar and Ciineyt Giizelis

Abstract—This paper presents simulation results on a 2-D
array of coupled Chua’s circuits called a chaotic Cellular Neural
Network (CNN) in [1], but here will be called an f(z) — &
coupled chaotic CNN in order to distinguish it from other recently
proposed chaotic CNN architectures [2]-[4]. Each isolated cell
with unity self-feedback in the network is a Chua’s circuit and is
connected only to its nearest neighbors defined by a metric and
a neighboerhood size [1], [S]. The network is designed with a 2-D
torus like connection topology having cyclic boundary conditions
that play an important role in complete phase syncronization. It
is observed in our computer simulations that i) depending on the
choice of the intracell parameters and the connection weights,
the cells of the network appear to be operating in a double-scroll
Chua’s attractor, in spiral Chua’s attractors, in stable equilibria,
in a period-1, a period-2, a large limit-cycle, or in a large chaotic
regime, ii) complete phase synchronization in the network with
all cells operating in the double scroll regime can be obtained
by a suitable choice of the intracell parameters and the feedback
connection weights, iii) there is a set of the intracell parameters
and connection weights resulting in a chaotic regime such that
each cell depending on its constant external input falls into one of
the three attractors; namely, the double-scroll, P* spiral, or P~
spiral Chua’s attractor. As a new phenomenon, a close relation
between phase synchronization settling-time and input pattern is
observed that offers new potentials of Chua’s circuit arrays for
pattern recognition applications.

I. INTRODUCTION

ETWORKS OF coupled chaotic subsystems have been
Ninvestigated as a new paradigm for high-dimensional
chaos, for biological neural networks, as well as for infor-
mation and signal processing [6]-[8]. Among such networks,
arrays of Chua’s circuits [1]-[4] are gaining particular impor-
tance under the motivation of a great deal of investigations on
its dynamics and hardware implementations [9]-[12]. In recent
studies [2]-[4], synchronization and hyperchaos phenomena
have been observed in various arrays of Chua’s circuits. This
paper reports several qualitatively distinct dynamical regimes
and complete phase synchronization phenomena observed in
computer simulations of a 2-D array of f(z) — £ coupled
Chua’s circuits. This network of coupled Chua’s circuits is
indeed a 2-D version of the chaotic CNN reported in [1] and
constitutes a special case of the generalized CNN’s introduced
in [5]. It reduces to the CNN [13] upon a modification of
some intracell parameters and slopes of the segments in the
piecewise-linear output function.
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The key features of the CNN considered in this paper
are: i) the possibility of processing constant and also time-
varying 2-D signals fed via external inputs, ii) the possession
of a CNN-like connection topology with a space-invariant
connection weight pattern, and iii) the possession of an f(z)—
Z type of coupling that ensures the bounded-input bounded-
output stability of the whole network, which might have
inhibitory connections or excitatory connections.

The 2-D array of f(z) — & coupled Chua’s circuits con-
sidered in this paper differs from other known Chua’s circuit
arrays [2], [3], [14], [15] in the following respects: i) The
models in [2], [3], [14] are 1-D arrays of Chua’s circuits; but
the chaotic CNN considered in this paper is a 2-D array of
Chua’s circuits. ii) In the 2-D array of Chua’s circuits used
in [15], the individual cells are designed not to be operating
in the double-scroll regime even when they are isolated. In
contrast, each isolated cell in our chaotic CNN operates in
the double-scroll regime. iii) As a direct consequence of the
unbounded 3-segment piecewise-linear nonlinearity used in the
models of [2]-[4], [14], [15], only passive resistive couplings,
i.e., only excitatory connections' are allowed in these models.
The chaotic CNN can have inhibitory connections as well as
excitatory connections. iv) The 2-D array model in {4] uses
the canonical Chua’s circuits as the cells and uses both z — &
and z — z linear couplings. v) The coupling in our chaotic
CNN is nonlinear as opposed to other known Chua’s circuit
arrays [2]-[4], [14], [15]. The output f(x) of each cell in the
chaotic CNN is fed to the neighboring cells resulting in a
forcing term in the first equation of (1) describing each cell.
Therefore, the coupling in the CNN considered in this paper
is called an f(z) — & coupling.

The state equations describing each cell of the 2-D chaotic
CNN considered in this paper is defined by the following
dimensionless form:

Gig=a- |=8-zigtyg+ Y okt f(@iske)
kle{-1,0,1}
+ Z b, - ik, j+1() +1 ¢))
kle{-1,0,1}
Yij = Tij = Yij T Zij )
Zij = =B Yij 3

I'The conductance of a passive linear resistor is positive, hence the current
passing through this resistor contributes a positive value to the total input of a
post-synaptic cell if the output of the associated pre-synaptic cell is positive.
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Fig. 1. The characteristics of the 7-segment piecewise-linear function f(-).
The outermost zero-slope segments coincide with the horizontal axis.

where
£(2) = 5 (mo—ma) - (]2 +1{ — |z — 1)
n %-(ml —ma)- (Jz + B1| - |z — Eql)
+3m (o + Bal - o — B). @

Here, i € {0,1,2,...,M -1} and j € {0,1,2,...,N -1}
for an M x N network. In order to obtain cyclic boundary
conditions, the network is designed as a 2-D torus-like array.
As observed from our simulations, cyclic boundary conditions
prevent the disturbing effect of boundary conditions on the
complete phase synchronization. The external inputs u; ;(t)’s
might be time-varying. The constant threshold I is identical for
all cells. The ay,; and by coefficients define a space-invariant
feedback connection weight pattern and a space-invariant input
connection weight pattern, respectively. In the sequel, these
coefficients will be specified in the standard matrix forms A
and B called the feedback and input templates, respectively.

a-1,-1 G-10 0G-1,1
A= ap1 aypo ao;
L ai,—-1 ai,o a1,1 )
bo1,—1 b_10 b_1;
B=|bo-1 boo boa
| 01,1 bio b1

The output function f(-) defined in (4) is a piecewise-
linear function different from the original characteristic of the
Chua’s diode. As can be seen from Fig. 1, the function f(-)
is bounded and lies eventually on the z-axis. The reason for
choosing this bounded function is to ensure the bounded-input
bounded-output stability of the overall network for inhibitory
connections ‘as well as excitatory connections [1]. On the
other hand, such a choice of the output function results in
an eventually passive Chua’s diode for an isolated cell [1].
The outermost zero-slope segments and the negative-slope
segments have no effect on all attractors observed from a
three-segment characteristic if E; is chosen to be less than
three. These segments add a large limit-cycle and a large
chaotic attractor (see Section II.B) into the dynamical behavior

repertoire while ensuring a bounded-input bounded-output
stability.

The dimensionless equations in (1)—(4) can be obtained as a
two-dimensional special case from the equations defining an n-
dimensional chaotic CNN [1] by setting the time delays to zero
while choosing the neighborhood size equal to one and also
making the following changes of variables and parameters:

= tG . Trig o, — T2y L. B3iyj = &
T = Céyxz,J - E, ;{yz,] N y %4, = E. -G’ =y
— — = — My . —_m — —m
,3—_LL.Gu&*]-'*’—RNamo—F>m1—f;]“,m2—?27

E, = %, E, = % However, the notation ¢, E;’s, and m;’s
are used in this paper instead of 7, F;’s, and E;’s, respectively.

Throughout this paper, the slopes are chosen as mg = 17§,
my = %, mgy = —1; the breakpoints are located at £y = 20
and Fy = %31. For these slopes and breakpoints together with
6 = 2 and a,, = 1, an isolated cell of our chaotic CNN
when restricted to the region specified by |z; ;] < E; becomes
identical to the original Chua’s circuit. Here, an “isolated”
cell is defined as a cell that has no external input and has no
connection with other cells. Moreover, in this paper, the term
“uncoupled” cell will be used for a cell that has no connection
with other cells but has external inputs; and the term “free”
cell will be used for a cell that has no external input, and it is
not excited by any other cell, but its output is fed to some cells.

All experiments reported in the paper were done for I = 0,
a =9, § = 2. The dynamics of the network are investigated
for several choices of connection weights, external inputs,
and intracell parameter 3. In all of our simulations, the
Forward-Euler method with the step size of 0.001 was used
for integrating the differential equations (1)—(4).

Several attractors obtained from an uncoupled cell excited
by constant, sinusoidal sources and also by the output of a
free cell operating in the double-scroll regime are presented
in Section II. An experiment showing a coherent dynamical
behavior of all cells operating in the double-scroll regime
is also presented in Section II. Simulation results showing
a complete phase synchronization and its application to the
recognition of lines in images are described in Section IIIL.

II. DEPENDENCE OF DYNAMICS ON
CONNECTION WEIGHTS AND INPUTS

Our analysis in this section is twofold: one is the analysis of
the dynamics of an uncoupled cell as a function of the intracell
parameters and inputs; second is the analysis of the overall
network based on the connection weights and inputs. The
ultimate goal of our analysis is to design a network of identical
cells such that the dynamics of a single cell are controlled by
an intracell parameter, for instance 3, and the dynamics of the
overall network is controlled by the connection weights.

A. Double-Scroll Chua’s Attractor as a Coherent Mode

We first investigate if the double-scroll regime can be a
coherent mode of operation for coupled cells each of which
is individually designed to be operating in a double-scroll
regime. Such a coherent dynamical behavior of all cells in
the double-scroll regime was observed in several experiments
with different choices of the feedback connection weights and
network sizes. One of these experiments was realized for an
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Fig. 2. The trajectory plots (Lissajous figures) for an 8 x 8 chaotic CNN operating in a coherent double-scroll mode. (a) z-y
trajectory plot for cell C(1,1) under uniform initial conditions. (b) z—y trajectory plot for cell C(3,3) under uniform initial
conditions. (c) x—z trajectory plot for the pair of cells C(1, 1) and C(3, 3) under uniform initial conditions. (d) x—y trajectory plot
for cell C(1, 1) under nonuniform initial conditions. (¢) z—y trajectory plot for cell and C(3, 3) under nonuniform initial conditions.
(f) z—z trajectory plot for the pair of cells C(1,1) and C(3,3) under nonuniform initial conditions.

8 x 8 network with 8 = 14.28. The templates used are as
follows:

[0.001 0.001 0.001
A;=10001 1 0.001
0.001 0.001 0.001
0 0 0
B;=1(0 0 0 ©)
0 0 0

A set of trajectory plots (Lissajous figures) obtained with the
initial conditions z; ;(0) = y; ;(0) = 2 ;(0) = 0.1 (identical
for all cells) is given in Fig. 2(a)—(f). As can be seen from
the z-y trajectory plots in Fig. 2(a) and (b), the double-scroll
regime of the isolated cells with the parameters § = 14.28
and a,, = 1 is not destroyed in a network of weakly-
coupled cells. For an identical choice of the initial conditions,
not only mode coherence but also the phase coherence was
observed. The phase synchronization observed for the pair of
cells C(1,1) and C(3,3) is illustrated by the z-z trajectory
plot in Fig. 2(c). For the above parameters, all cells operate
in the same mode and with the same phase. However, for the
considered 8 x 8 network, complete phase synchronization is
seen to be sensitive to initial conditions so that it may be
destroyed by choosing initial conditions which differ from

1.3
3 P, P” Stable Equilibri
o 12 Large Chaotic Attractor i 2ble Equilibria
’ Elliptic Limit Cycles around P+and P~
1.1
Large Limit™_ Double Scroll Chua's
1| Cyele Aftractor
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08 Period-n (n>1) Limit Cycles around Ptand P
07 Period-1 Limit Cycle around PYand P~
06 PP Stable Equilibrium
/
L ——
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8

Fig. 3. A rough 8 — a, o bifurcation diagram.

one cell to another. Fig. 2(d)—(f) shows the destruction of
the phase coherence between cells C(1,1) and C(3,3) and
the preservation of the mode coherency under nonuniform
initial conditions. A 3 x 3 network exhibiting complete phase
synchronization that is persistent to variations in the initial
conditions and external constant inputs will be reported in
Section III.
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Fig. 4. Typical z—y trajectory plots obtained for several choices of 3 and @o,0 in an isolated cell. (a) A trajectory converging
toward the Pt equilibrium. (b) An elliptic limit-cycle surrounding the P+ equilibrium. (¢) A double-scroll Chua’s attractor.
(d) A Pt spiral Chua’s attractor. (¢) A period-2 limit-cycle around the P~ equilibrium. (f) A period-1 limit-cycle around the
Pt equlibrium. (g) A trajectory converging toward a large limit-cycle. (h) The newly observed large chaotic attractor. (i) A
trajectory converging toward the P° equilibrium.

B. Attractors in an Isolated Cell A set of experiments is done for several choices of the
parameters 3 and a, ,. The other intracell parameters are as

Investigation of the coherent modes in the overall network N - .
given in Section I, and the templates are

requires the knowledge of the dynamics of an individual
cell. An isolated cell with unity self-feedback, i.e., Qo0 =1

becomes identical to a Chua’s circuit which has been already Ay = 8 ai)o 8 , By= 8 8 g (7
investigated extensively, thus, there is no need to consider the 0 0 0 0 0 0

unity self-feedback case here. However, an isolated cell with

a,,, # 1 differs from the original Chua’s circuit and needs to The bifurcation diagram in Fig. 3 roughly specifies the re-

be investigated further. gions of parameters for which an attractor exists. All attractors
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Fig. 5. The z—y trajectory plots for an uncoupled cell driven by a free cell operating in the double-scroll regime. The plots were
obtained for 15000 iteration steps starting from identical initial conditions x(0) = y(0) = z(0) = 0.1. (a) The self-input connection

weight b, o is 0.0475. (b) The self-input connection weight b, » is 0.075.

reported in this diagram have been observed for a set of initial
conditions chosen randomly in a bounded set enclosing the
origin. The large limit-cycle illustrated in Fig. 4(g) survives for
initial conditions chosen outside of this region while all other
attractors disappear. Some periodic windows in the double-
scroll parameter region were observed but not shown in the
diagram. A set of the observed attractors is displayed in Fig. 4.
All of the trajectories were obtained for 40000 iterations
starting from the initial conditions z;; = y;; = 2;; = 0.1
and plotted after discarding some initial transients.

It is interesting to note that the P+, P~, and P° stable
equilibria, the P+ and P~ Chua’s spiral attractors, the period-
n limit-cycles, the double-scroll Chua’s attractor, and the large
limit-cycle (see Fig. 4(a)—(g) and (i)) observed in an isolated
cell with a,, # 1 are also included in the dynamics of the
original Chua’s circuit. On the other hand, an isolated ceil
with unity self-feedback possesses all dynamics of the Chua’s
circuit since they are identical. Furthermore, these dynamics
can be produced by an isolated cell not only for unity self-
feedback but also for a wide range of self-feedback weights.
A new attractor not observed in the original Chua’s circuit is
the large chaotic attractor shown in Fig. 4(h). This attractor is
inherently due to the negative-slope segments.

In the light of our study on the 8 — a,, bifurcation of
the dynamics, one could search for coherent modes in a
network of coupled cells all operating in one of the attractors
mentioned above. The coherent double-scroll Chua’s attractor
mode described in Section II.A and the coherent large limit-
cycle mode were observed in simulations of several types of
couplings. Our investigation of coherent modes was basically
ad hoc. However, a necessary condition for mode and phase
coherency will be given in Section IIL

C. Excitation by Free Cells

The dynamics of an uncoupled cell driven by a free cell
operating in a double-scroll regime are of particular interest
not only from the point of view of the network dynamics under
excitation but also from the coherent double-scroll mode under
no excitations. In a coherent double-scroll mode, each cell

15 ——rrrrry
b Large Limit Cycle
© 1l 8 4 Other
Attractors
05} ]
OF Double Scroll Chua's Attractor 1
-05 ]
Other
Attractors
At
Large Limit Cycle
15 P e 1
10° 10 10 10

Fig. 6. A rough f, — b, o bifurcation diagram.

C(i,j) is excited by a signal g; ;(t) that is a weighted sum
of the f(z;;(t)) waveforms associated with the neighboring
cells that are all operating in a double-scroll regime. Therefore,
an analysis of the cells excited by a free cell provides some
insight into the coherent dynamics.

In an experiment done for the following templates and 3 =
14.28, it was observed that small input connection weights do
not destroy the double-scroll regime as seen in Fig. 5(a). On
the other hand, large input connection weights force the cells to
be operated in the large limit-cycle as illustrated by Fig. 5(b).

00 0 0 0 0
A;=10 1 0|, Bs=1{0 b, O]. (8)
00 0 0 0 0
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Fig. 7. The z—y trajectory plots for an uncoupled cell driven by a sinusoidal oscillator with unit amplitude. The plots were obtained
for 40000 iteration steps starting from identical initial conditions z(0) = y(0) = z(0) = 0.1. (@) fo = 1 and b, » = 0.6.
) fo =1and boo = 0.1. (¢) fo = 1 and by = 0.9. (d) fo = 10 and b, , = 0.3.

For the above templates, an empirical result for an uncou-
pled cell to remain in a double-scroll regime when driven by
a free cell operating in a double-scroll regime was estimated
to be |b, »| < 0.0475. On the other hand, the absolute sum of
the feedback connection weights excluding the self-feedback
being less than 0.0475 can be estimated as a necessary
condition for a zero-input network to be in the coherent double
scroll mode. Because, in a network of coupled but zero-input
cells, the contribution g; ;(¢) of the neighboring cells to a
cell may be considered as the output of a free cell. Note
that the sum 0.008 of the mentioned feedback weights in the
experiment of Section ILA is less than 0.0475, which confirms
our empirical result.

D. Excitation by Sinusoidal Oscillators

The dynamics of a single cell under sinusoidal excitations
are worth investigating for several reasons. First, monitoring
the dynamics helps us to understand the effects of interac-
tions between cells. Second, some unknown coherent periodic
modes can be discovered during the process. Third, one may
obtain useful information about the use of the whole network
for processing periodic signals fed via external inputs.

Several experiments have been performed for the templates
in (8) and the attractors observed for several choices of
the sinusoidal oscillator frequency f, and the input template
coefficient b, , are summarized in the f, — b, , bifurcation
diagram of Fig. 6. Here, § has been chosen as 14.28, and
the input sinusoidal signal has unity amplitude. Four of the
observed attractors are displayed in Fig. 7(a)—(d).

E. Excitation by Constant Inputs

This part of the experiments is devoted to the analysis of
uncoupled cells under constant stimuli. Here, the 3 used is
14.28, and the templates are as follows:

00 0 000
A,=[0 1 o], Bs=|0 1 0]. )
00 0 000

For the above choice of the parameters, a cell under no
stimulus is operating in the double-scroll regime as shown
in Fig. 8(b). It is also observed that positive (resp. negative)
inputs drive the cells into a P+ (resp., P™) spiral Chua’s
attractor. Such a stimuli-dependent switching from the double-
scroll Chua’s attractor to the spiral Chua’s attractors can be
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Fig. 8. A 3 x 3 network of uncoupled cells driven by constant inputs. Positive inputs drive the cells into a Pt spiral while
negative inputs into a P~ spiral. (a) Image fed to the network as external input. Black corresponds to the input level of —0.125.
The other gray levels correspond to—0.025, 0.000, 0.075, and 0.125. (b) The z-y trajectory plot for the cell C(1,1). (c) The
z—y trajectory plot for the cell C(2,1). (d) The z—y trajectory plot for the cell C(2,2}. (e) The z—y trajectory plot for the cell

C(1,0). (f) The z—y trajectory plot for the cell C'(0,0).

useful for classification purposes. Moreover, a network of
uncoupled cells can also be used for encoding three-level
images such that each level is associated with one of the
three chaotic states; namely, double-scroll, Pt and P~ spirals.
Fig. 8(a) shows a 3-level gray scale image applied to a 3
x 3 network with the above parameters. The z—y trajectory
plots for some cells are illustrated in Fig. 8(b)—(f). Note that
the upper-left pixel and the mid-left pixel correspond to the
cells C(0,0) and C(0,1), respectively; and the other pixels
correspond to the remaining cells in the same arrangement.

III. PHASE SYNCHRONIZATION

Phase synchronization has been widely investigated in sev-
eral arrays of coupled chaotic or periodic oscillators as a
phenomenon that may play a role in biological information
processing and might be useful for information processing
in engineering applications. Complete, partial, and turbulent
phase synchronizations have been observed in some arrays
and coding of distinct objects as clusters of synchronized
subsystems has been proposed as a possible application.

In our experiments, phase synchronizations were observed
in the coherent double-scroll mode and in the coherent large
limit-cycle mode. We present below simulation results only
for a 3 x 3 network exhibiting a persistent complete phase

synchronization in the coherent double scroll mode. The 3
used is 14.28, and the templates are as follows:

0.04 0.04 0.04
0.04 0.68 0.04
0.04 0.04 0.04

Ay = Bs

0 0 0
, 0 0 0. (10
0 00
The 2-level 3 x 3 image in Fig. 9(a) was applied to the
network as a set of initial conditions common for all z, y,
and 2 states variables, i.e., z; ;(0) = ¥;,;(0) = 2;;(0) for all
i, j. Four different snap shots showing the evolution of the
z-2 trajectory plot belonging to the cells C(0,0) and C(1,1)
are illustrated in Fig. 9(b)—(¢). As also observed in many other
simulations, nonuniform choices of the initial conditions across
the network do not annihilate the complete phase synchroniza-
tion but cause some transition periods before synchronization
is achieved. The complete phase synchronization observed is
also persistent to variations of the initial conditions from one
state variable to another in the same cell.

A. A Necessary Condition for Phase Coherency

The complete phase synchronization in the double-scroll
mode reported above has also been observed for many 3
x 3 networks with the same parameters and the feedback
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Fig. 9. Complete phase synchronization obtained by the As — Bstemplates. (a) The 3 x 3 image represents the initial conditions.
Black and white correspond to the zero and 0.1 levels, respectively. (b) First snap shot showing the x; 1—zo o trajectory plot for
the period that covers 30 000 iterations before the cells are coupled. (c) Second snap shot showing the 1,10 0 trajectory plot for
the period that covers 30000 iterations after the cells are coupled. (d) Third snap shot showing the r1,1-%0,0 trajectory plot for
the period that covers 30000 iterations beginning at 30000th iteration after the cells are coupled. (¢) Fourth snap shot showing the
Z1,1-%0,0 trajectory plot for the period that covers 30000 iterations beginning at 60 000th iteration after the cells are coupled.

connection weights satisfying the condition W = 1. Here, Indeed, phase coherency in the double-scroll mode has
W is defined as appeared for W’s chosen from the set D. Here, D denotes the
set of a, , values such that an isolated cell with a self-feedback

W= Z Qk,l- (aIn weight chosen from D operates in the double-scroll regime. It

k.t€{-1,0,1} can be shown by simple analysis that the condition of W € D
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Fig. 10. Fast synchronization depending on the external inputs. The templates are Ag — Bg. (a) 3 X 3 image containing a diagonal
line with slope m = —1 represents the external inputs. Black and white correspond to the zero and 0.1 levels, respectively. (b) A

snap shot showing the x1 1-o,0 trajectory plot for the period that covers 30000 iterations before the cells are coupled. (¢) A
snap shot showing the 11—z o trajectory plot for the period that covers 30000 iterations after the cells are coupled. (d) A snap
shot showing the x; |—zg o trajectory plot for the period that covers 30000 iterations beginning at 30000th iteration after the
cells are coupled. (e) A snap shot showing the x1.1-7g. o trajectory plot for the period that covers 30000 iterations beginning
at 60000th iteration after the cells are coupled.

is, indeed, a necessary condition for a network with zero-input  and z; ;(¢t) = z(t) for all ¢ as required for complete phase
to be phase coherent in the coherent double-scroll mode. To  synchronization under uniform initial conditions. Now, the
do so, let us assume that z;;(t) = x(t), ¥ ;j(t) = y(t), dynamics of the overall network are described by the following
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Fig. 10. (Continued.) (f) A snap shot showing the = g~z2 1 trajectory plot for the period that covers 30000 iterations before the
cells are coupled. (g) A snap shot showing the 1 0—22,1 trajectory plot for the period that covers 30000 iterations after the cells
are coupled. (h) A snap shot showing the 1 o—2,1 trajectory plot for the period that covers 30 000 iterations beginning at 30 000th
iteration after the cells are coupled. (i) A snap shot showing the x, o—z2,1 trajectory plot for the period that covers 30 000 iterations
beginning at 60000th iteration after the cells are coupled. (j) A snap shot showing the z1,0-x1,1 trajectory plot for the period
that covers 30000 iterations before the cells are coupled. (k) A snap shot showing the z1 0-z1,1 trajectory plot for the period that
covers 30000 iterations beginning at 60000th iteration after the cells are coupled.

three differential equations only: 2=-08y. (14)

As can easily be seen, the equations in (12)—(14) define an
t=a-|-b-z+y+ Z art | - f(#)| (12)  isolated cell. Here, W specifies the self-feedback connection
k,le{-1,0,1} weight a, , of an isolated cell, hence the condition of WeD

y=z-y+2z (13) yields the double-scroll regime. This proves the necessity.
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Fig. 11. Slow synchronization depending on the external inputs. The templates are Ag — Bg. (a) 3 X 3 image containing a
line with slope m = +1 represents the external inputs. Black and white correspond to the zero and 0.1 levels, respectively.

(b) First snap shot showing the &1 1-xo 0 trajectory plot for the period that covers 30000 iterations before the cells are coupled.
(c) Second snap shot showing the z1,1-20,0 trajectory plot for the period that covers 30000 iterations after the cells are coupled.
(d) Third snap shot showing the 21 1-z0 o trajectory plot for the period that covers 30 000 iterations beginning at 30 000th iteration
after the cells are coupled. (e) Fourth snap shot showing the x| .1—Ig,0 trajectory plot for the period that covers 30000 iterations
beginning at 60000th iteration after the cells are coupled.

Similar conditions on W for other coherent modes can be  B. Recognition of Lines via Phase Synchronization

obtained in a same way by considering the 3 —a,_, bifurcation In the simulations done for the above 3 x 3 network,
diagram. it was also observed that i) the complete and partial phase
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Fig. 12. Fast synchronization depending on the external inputs. The templates are A7 — B7. (2) 3 X 3 image containing a line
with slope ™ = +1 represents the external inputs. Black and white correspond to the zero and 0.1 levels, respectively. (b) First
snap shot showing the x1,1—x2,0 trajectory plot for the period that covers 30000 iterations before the cells are coupled. (c) Second
snap shot showing the 1,120 trajectory plot for the period that covers 30000 iterations after the cells are coupled. (d) Third
snap shot showing the z1,1—22 0 trajectory plot for the period that covers 30000 iterations beginning at 30 000th iteration after
the cells are coupled. (¢) Fourth snap shot showing the x1,1-z2,0 trajectory plot for the period that covers 30000 iterations

beginning at 60000th iteration after the cells are coupled.

syncronizations in the coherent double scroll mode can survive
even under time-invariant inputs, ii) phase synchronization
settling-time depends on the inputs presented, and iii) in a
partial synchronization regime, the organization of clusters of
synchronized cells can be determined by suitable choices of
the feedback templates.

The relations between the organization of phase clusters
and the type of feedback templates, and between phase syn-
chronization settling-time and patterns fed via external inputs,
provide new potentials for pattern recognition. A simple line
detection application of the above observed phenomena is
presented below.
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Fig. 13. Fast synchronization of the horizontal neighboring cells for the templates As — Bs. (a) 3 X 3 image composed of
horizontal lines represents the external inputs. Black, white, and the third gray tone correspond to the zero, 0.10, and 0.05 levels,
respectively. (b) A snap shot showing the Tg,0—21,0° trajectory plot for the period that covers 30000 iterations after the cells are
coupled. (¢) A snap shot showing the zo,0—z1,0 trajectory plot for the period that covers 30000 iterations beginning at 30 000th
iteration after the cells are coupled. (d) A snap shot showing the ¢ 0—21,0 trajectory plot for the period that covers 30 000 iterations
beginning at 60 000th iteration after the cells are coupled. (e} A snap shot showing the xg 01,0 trajectory plot for the period that
covers 30000 iterations beginning at 90000th iteration after the cells are coupled.

In our experiment, the image in Fig. 10(a) is fed via the Different snap shots showing the evolution of an z-z

external inputs to a 3 X 3 network having the templates trajectory plot associated with two cells along the diagonal

0.13 0 0 0O 0 o0 (with slope m = —1) are given in Fig. 10(b)—(e). Each snap

Ag=|0 074 0 |, Bg=|0 005 0}. (15 shot covers a period of time requiring 30000 iterations. The
0 0 013 0 0 0

first snap shot shows the period before the cells are coupled.
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Fig. 13. (Continued.) (f) A snap shot showing the o 1—21,1trajectory plot for the period that covers 30000 iterations after the
cells are coupled. (g) A snap shot showing the zo,1—z1,1 trajectory plot for the period that covers 30000 iterations beginning at
30000 after the cells are coupled. (h) A snap shot showing the xo,1~1,1 trajectory plot for the period that covers 30 000 iterations
beginning at 60 000th iteration after the cells are coupled. (i) A snap shot showing the zo 1—1,1 trajectory plot for the period that
covers 30000 iterations beginning at 90 000th iteration after the cells are coupled. (j) A snap shot showing the zo,0~Z0,1 trajectory
plot for the period that covers 30000 iterations after the cells are coupled. (k) A snap shot showing the zo,0~%o,1 trajectory plot
for the period that covers 30000 iterations beginning at 60 000th iteration after the cells are coupled.

After that instant, 60 000 iterations were sufficient for the cells
C(0,0) and C(1,1) to become synchronized. As shown in
Fig. 10(f)—(i), not only cells along the diagonal (with slope
m = —1) but also cells along any line with slope m = —1

become synchronized after 60 000 iterations. Any pair of cells
that are not lower-right or upper-left neighbors of each other
have never been observed to synchronize (see Fig. 10(j) and
(k)). The reason is that such cells are uncoupled for the
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template Ag. The same experiment was repeated for the image
in Fig. 11(a). As can be seen from Fig. 11(b)-(e), 90000
iterations (30000 per snap shot) were not sufficient even for
the cells along the diagonal (with slope m = —1) to become
synchronized. The results obtained in other experiments done
for different input images show that the phase synchronization
settling-time becomes minimum for the lines with slope m =
—1. Such a fast stimuli-dependent synchronization indicates
the existence of a line (with slope m = —1) over the pixels
corresponding to the synchronized cells.

This application has been extended to recognize other
patterns in the images. It was observed that the following
A7 —B7 and Ag — Bg templates can be used for recognizing
lines with slope m = +1 and horizontal lines, respectively:

[0 0 0.13] 0 0 0
A;,=| 0 074 0|, B;=1|0 005 0].(16)
013 0 0 | 0 0 O]
) 0 0 7 [0 0 0}
Ag =020 060 020, Bg= 1|0 0.10 0j. (7
| 0 0 0 0 0 o0

For the A7 — By templates, cells along the diagonal with
slope m = +1 become synchronized quite rapidly if the input
image has a diagonal line with slope m = +1 (see Fig. 12).
As illustrated by Figs. 13(b)-(i), horizontal neighboring cells
become synchronized very rapidly (for the Ag— Bg templates)
for the input image of Fig. 13(a) that is composed of three
horizontal lines. An observation not included in the figures
is that the synchronization is also achieved among cells along
any line of the input image. In Fig. 13(j) and (k), it can be seen
that no synchronization is obtained between cells belonging to
different lines.

IV. CONCLUSION

The results obtained by computer simulations on the 2-D
array of f(z)— & coupled Chua’s circuits give insight into the
dynamics of the array. Our empirical analysis of mode and
phase coherency and bifurcations as related to the connection
weights and inputs can be used for further research on high-
dimensional chaos and signal processing by chaotic arrays. It
can also provide a basis for theoretical studies on the complex
dynamics of 2-D arrays of Chua’s circuits.

ACKNOWLEDGMENT

The authors would like to thank L. O. Chua for his valuable
comments.

REFERENCES

[1] C. Giizelig, “Chaotic cellular neural networks made of Chua’s circuits,”
in Chua’s Circuit: A Paradigm for Chaos, R. N. Madan, Ed., World
Scientific Series on Nonlinear Science, series B, vol. 1. Singapore:
World Scientific, 1993, pp. 952-961,.

[2] V.N. Belykh, N. N. Verichev, L;j. Kocarev, and L. O. Chua, “On chaotic
synchronization in a linear array of Chua’s circuits,” in Chua’s Circuit:
A Paradigm for Chaos, R. N. Madan, Ed., World Scientific Series on
Nonlinear Science, series B, vol. 1.  Singapore: World Scientific, 1993,
pp. 325-335.

{31 A. M. Dabrowski, W. R. Dabrowski, and M. J. Ogorzalek, “Dynamic
phenomena in chain interconnections of Chua’s circuits,” IEEE Trans.
Circuits Syst., vol. 40, pp. 868-871, Nov. 1993.

[4] M. J. Ogorzalek, A. M. Dabrowski, and W. R. Dabrowski, “Hyperchaos,
clustering and cooperative phenomena in CNN arrays composed of
chaotic circuits,” in Proc. Third IEEE Int. Workshop on Cellular Neural
Networks and Their Applicat., CNNA *94, Rome, 1994, pp. 315-320.

[5] C. Giizelig and L. O. Chua, “Stability analysis of generalized cellular
neural networks,” Int. J. Circuit Theory Applicat., pp. 1-33, 1993.

[6] K. Kaneko, “Clustering, coding, switching, hierarchial ordering and
control in a network of chaotic elements,” Physica D, vol. 41, pp.
137-172, 1990.

[7]1 W.J. Freeman, “Tutorial on neurobiology: from single neurons to brain
chaos,” Int. J. Bifurc. and Chaos, vol. 2, no. 3, pp. 451482, 1992.

[8] B. Baird, M. W. Hirsch, and F. Eeckman, “A neural network associative
memory for handwritten character recognition using multiple Chua
attractors,” IEEE Trans. Circuits Syst. Il, vol. 40, pp. 667-674, 1993.

[9] L. O. Chua, “The genesis of Chua’s circuit,” Arch. Elekt. Ubertragung.,
vol. 46, pp. 250-257, 1992.

[10] K. Murali and M. Lakshmanan, “Effects of sinusoidal excitation on the
Chua’s circuit,” IEEE Trans. Circuits Syst., vol. 39, pp. 267-270, 1992.

[11} J. M. Cruz and L. O. Chua, “A CMOS IC nonlinear resistor for Chua’s
circuit,” JEEE Trans. Circuits Syst., vol. 39, pp. 985-995, 1992.

[12] M. P. Kennedy, “Robust op amp implementation of Chua’s circuit,”
Frequenz, vol. 46, pp. 66-80, 1992.

{13) L. O. Chua and L. Yang, “Cellular neural networks: Theory and
applications,” /EEE Trans. Circuits Syst., vol. 35, pp. 1257-1272, 1988.

[14] V. Perez-Munuzuri, V. Perez-Villar, and L. O. Chua, “Traveling wave
front and its failure in a one dimensional array of Chua’s circuits,”
in Chua’s Circuit: A Paradigm for Chaos, R. N. Madan, Ed., Worid
Scientific Series on Nonlinear Science, series B, vol. 1. Singapore:
World Scientific, 1993, pp. 336-350.

, “Autowaves for image processing on a two dimensional CNN ar-

ray of excitable nonlinear Chua’s circuits: Flat and wrinkled labyrinths,”

IEEE Trans. Circuits Syst., vol. 40, pp. 174-181, Mar. 1993.

(15]

Fatih Kavaslar received the B.S. and M.S. degrees
in electrical engineering from Istanbul Technical
University, Turkey in 1991 and 1995, respectively.
He is currently a Ph.D. student in electrical engi-
neering at Istanbul Technical University.

In 1992, he joined Siemens Company, Istanbul,
as a member of the Power Electronics Division.
He won the 1989 Turkish championship in fin
sailing. His research interests are in digital signal
processing, neural networks, and computer vision.

Ciineyt Giizelis received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Istanbul Tech-
nical University, Turkey in 1981, 1984, and 1988,
respectively.

He worked at Istanbul Technical University as a
Teaching Assistant between 1982 and 1989. From
April 1989 to April 1991, he was a visiting Re-
searcher and Lecturer with the Department of Elec-
trical Engineering and Computer Sciences, Univer-
sity of California at Berkeley. He joined Istanbul
Technical University in 1991 where he now is an
Associate Professor in the Faculty of Electrical-Electronics Engineering. His
research interests are in nonlinear circuits and systems, neural networks, and
signal processing.



