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We apply some successful digital redesign techniques,
developed previously for the control of linear systems, fo
controlling the nonlinear chaotic Chua’s circuit. Chua’s circuit is
a simple autonomous physical device that exhibits very rich and
complex nonlinear dynamics of bifurcation and chaos, and is hence
very sensitive to digital controls. To apply advanced high-speed
computer technology to the implementation, we show how to
redesign a good digital controller, based on an existing successful
analog controller, for controlling the chaotic trajectories of Chua’s
circnit, from anywhere within the chaotic attractor to a predesired

unstable limit cycle of the circuit.
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. INTRODUCTION

In the areas of dynamics and control for nonlinear
systems, the research on controlling chaos has received
increasing attention in the last few years, as can be
seen from, for example, the surveys [1, 2, 12, 18].

There are many practical reasons for controlling or
ordering chaos. Most of the time, e.g. when chaotic
mechanical vibrations occur, chaos is expected to
be suppressed. Yet it has been discovered, very
recently, that chaos may actually be useful under
certain circumstances. In fact, there has been growing
interest in meaningful utilization of chaos (see also the
aforementioned surveys). Briefly, controlling chaos may
be understood as a process, which enhances chaos or
increases the amount of chaos when it is beneficial
or suppresses it when it is harmful. This process
manages the transition between chaos and order and,
sometimes, the transition from chaos to different
chaos, depending on the situation and purpose.

The methods used to control chaos may be
classified into two main categories: feedback and
nonfeedback methods. The common feedback methods
make use of some essential properties of chaotic
systems, e.g. their sensitivity to initial conditions, in
order to stabilize some orbits that already exist in
the systems. The initial breakthrough of a parameter
variation technique was suggested by Ott, Grebogi,
and Yorke [13]. They developed a general method for
the control of a chaotic system by stabilizing one of
its unstable periodic orbits embedded in its attractor
via small, time-dependent perturbations of a variable
system parameter. From a different perspective,

Chen and Dong [3-5] developed some new ideas and
formalized some successful techniques for controlling
discrete-time and continuous-time chaotic systems to
their unstable equilibria or limit cycles using modified
conventional engineering feedback controls, based
essentially on rigorous Lyapunov arguments.

Controlling chaos in continuous-time systems
can be implemented by analog circuits. However, in
order to take advantage of the modern high-speed
computers and microelectronics, it is more preferable
to use digital controllers instead of analog circuits,
particularly in aerospace systems and industries [7].
The process of converting an existing continuous-time
controller to an equivalent discrete-time controller is
called digital redesign. Digital redesign is generally very
technical, since there are some critical issues such as
the sensitive instability problem existing in the redesign
when the desired short sampling periods are used in
digitization, namely, if the sampling time is too short
then it can be very central processing unit (CPU)
time consuming and may cause instability in its digital
version of the control system [8, 9, 11]. Moreover,
fast-rate sampling devices can be very expensive
or even physically impossible. For these reasons,
digital redesign techniques have never been applied
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to nonlinear systems, particularly the numerically
extremely sensitive chaotic systems.

Digital redesign was first studied in detail by Kuo
[9]- He proposed a discrete-state matching method
and applied it to a simplified one-axis sky-lab satellite
system. Recently, Shieh and his colleagues have
thoroughly investigated this type of digital redesign and
various types of (sub)optimal digital redesign methods
[14, 16-20]. The digital redesign technology has thus
been greatly advanced.

In this work, we apply the successful digital
redesign techniques to the control of the chaotic
Chua’s circuit. Chua’s circuit is perhaps the simplest
autonomous physical device that exhibits very rich
and complex nonlinear dynamics such as bifurcations
and chaos, and hence has become a prototype of
experimental dynamics generator [6, 10]. More
specifically, we will show how to redesign a good
digital controller, based on an existing successful
analog controller, for controlling the chaotic
trajectories of Chua’s circuit, from anywhere within the
chaotic attractor to a predesired unstable limit cycle of
the circuit.

The material presented is organized as follows.
First, a brief introduction to Chua’s circuit is given.
Then, an existing continuous-time feedback control
approach for controlling the chaotic Chua’s circuit is
described. In order to apply a digital microprocessor
as the controller in implementation, an appropriate
digitization of the continuous-time controller is
suggested. The digitally controlled Chua’s circuit is
then studied. The behavior of the digitally controlled
Chua’s circuit with different sampling periods is
compared by computer simulations. Finally, a good
digital redesign method for improving the critical
contro! performance of a long sampling-period digital
controller for the circuit is introduced and simulated.

We should note that in the current literature,
various digital redesign techniques have only been
applied to linear systems. Our study carried out in
this investigation shows that it can also be applied to
some nonlinear, even chaotic, physical systems like
Chua’s circuit. Our simulation shows that the digitally
redesigned controller can provide a satisfactory
approximation to the continuous-time controller, and
execute the desired control in driving the chaotic
trajectory of the circuit to approach its target orbit,
an unstable limit cycle of the circuit in this study, with
a relatively long sampling time used in the digitization
for which standard digital controllers completely fail to
work.

. CHAOTIC CHUA'S CIRCUIT

Chua’s circuit is a simple electronic circuit that
exhibits a wide variety of nonlinear dynamical
phenomena such as bifurcations and chaos. Because
of its simplicity and universality, Chua’s circuit has
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Fig. 1. Diagram of Chua’s circuit.

attracted much interest and has become a standard
primer on investigations of chaos [10]. The circuit is
universal because almost every chaotic and bifurcation
phenomenon that has been reported in the literature
(e.g., the period-doubling route to chaos, intermittency
route to chaos, Hopf-like bifurcations, torus-breakdown
route to chaos, chaos in the sense of Shil'nikov’s
Theorem, etc.) have also been observed from Chua’s
circuit. It is simple because it contains only one simple
nonlinear element (a nonlinear resistor) and four
linear elements (two capacitors, one inductor, and
a linear resistor). Actual implementation of Chua’s
circuit can also be found from [10].

Chua’s circuit, as shown in Fig. 1, can be described
by the following set of dynamical equations:

Cive1 = R(vea — ve1) — g(ver)
Cyvp = R(Vd — ch) +iy (1)
Lip=-vg

where iy is the current through the inductor L,v.; and
v, are the voltages across C; and Cy, respectively, and

g(vea) = g(Ver, mo, m1)

= movq + (mg — mo)(lvd + 1] - |Vc1 - 1l)

o)
with my < 0 and my <0 being some appropriately
constants. Note that, in Fig. 1, N, denotes the
nonlinear resistor described by g(-).

For convenience, and as common practice, we first
reformulate the circuit equation (1) to the following
dynamically equivalent, but dimensionless, state-space
system:

X1 = p(—x1+x2—~ f(x1))
Xy =X1—X2+ X3 3)
X3 = —qx;

where p = C;/C; >0 and q¢ = C/LR? > 0 are the
main bifurcation parameters of the circuit, and

the nonlinear term represented by the following
three-segment piecewise-linear function (see Fig. 2):

f(x1) = myxy +0.5(my — mp)(|x1 + 1|~ [x1 — 1)

m{,xl + m'1 —my x3>1.0
= mix lx1] < 1.0 @
myx1 —mi+my  x3 <-1.0.
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Fig. 2. Graph of three-segment piecewise-linear function.
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Fig. 3. Chaotic trajectory of Chua’s circuit, projected onto xi-x;
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Fig. 4. Chaotic trajectory of Chua’s circuit, projected onto x3-x;
plane

With p =9, g9 = 14%—, my = —% and mj = —%, the
chaotic trajectories of the circuit are shown in Figs.
3-5, where the initial point (—0.1,—0.1,—0.1) was used
for the strange attractor [6].
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Fig. 5. Chaotic trajectory of Chua’s circuit, projected onto x3-x;
plane

Since f(x1) is a three-segment piecewise-linear
function, we consider each segment of the function
separately and rewrite the circuit equation as a system
of three state-space systems in our design to be
discussed below. Chua’s circuit is thus described by
the following three linear state-space systems (which
are continuously connected together):

X = Ax + Bu, o)
with the linear segments contained in the B matrix,

1.2857 9.0 0.0

=] 10 -1.0  10|«x
0.0 -—-14.2857 0.0
1.0 0.0
+ 100 10|, lx1] <1 ©)
00 00
—2.5714 9.0 0.0
X = 1.0 -1.0 10{«x
0.0 —14.2857 0.0
-3.8571 0.0
+ 0.0 1.0 u, x < -1 )
0.0 0.0
—2.5714 9.0 0.0
X = 1.0 -1.0 10|(«x
0.0 —14.2857 0.0
3.8571 0.0
+| 00 10/u x>1. ®
00 00

Simulation results of this system of three state-space
equations are the same as, at least visually no different
from, that shown in Figs. 3-5.
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Fig. 7. Trajectory of Chua’s circuit, projected onto the x1-x
plane, after feedback control is applied.

1. ANALOG CONTROLLER FOR CHUA'S CIRCUIT

A successful analog feedback controller for
controlling the chaotic trajectory of Chua’s circuit to
its unstable limit cycle was designed by Chen and Dong
in [5]. Applying this feedback controller to the circuit,
the closed-loop control configuration of the system is
shown in Fig. 6. The feedback control that we use is a
typical negative state-feedback controller of the form

U1 x1—X
U | =—-K | xp—%o
us X3— X3
kyy O 0 X1—X1
=10 kp 0|07 ©)
0 0 kil |lxs—%3

where (¥1,%7,X3) represents the unstable limit cycle

of the circuit, which can be well approximated for the
purpose of numerical analysis. For simplicity, we let
k11 = 0 and k33 = 0, which turns out to be sufficient
and works very well. The feedback control after design
can be chosen to have kyp = 2.0 [5].

The trajectory of the circuit, after the feedback
control is applied, is shown in Figs. 7-9, where the
initial point is (—0.1,—0.1,—0.1) and the designed
feedback control is quite effective in directing the
trajectory away from the double scroll attractor
(see Figs. 3-5) and then driving it to approach the
(approximate) unstable limit cycle.
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Fig. 8. Trajectory of Chua’s circuit, projected onto the x3-x;
plane, after feedback control is applied.
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Fig. 9. Trajectory of Chua’s circuit, projected onto the x3-x;
plane, after feedback control is applied.

Now, consider each segment of the piecewise-

linear function separately. The feedback-controlled
Chua’s circuit can be described by the following
system:

% = Ax + Bu, (10)

where

u=-K(x-7%). (11)

This system contains three continuously connected
linear equations:

1.2857 9.0 0.0

i=]| 10 ~10 10|z
00 —14.2857 00
1.0 00
+[00 10{u, |ul<1 (12)
00 00
1491



where

22 e L)

-2.5714 9.0 0.0
X = 1.0 ~1.0 10| x
(13)
0.0 —14.2857 0.0
-3.8571 0.0
+ 0.0 1.0 u, xn<-1
0.0 0.0
where
0 00 1 0111
R A
02 0 0 21 1%
—-2.5714 9.0 0.0
X = 1.0 -1.0 1.0 x
(14
0.0 -14.2857 0.0
3.8571 0.0
+ 0.0 1.0 u, x1>1
00 0.0
where

[O 0 0] [1 0] [ 1 ]
U=-— x+ .
020 0 2]L1x
Simulation results of this system of three

state-space equations are the same as, at least visually
no different from, that shown in Figs. 7-9.

IV. DIGITIZATION OF CHUA'S CIRCUIT

In digital control of continuous-time systems,
we need to convert the continuous-time state-space
equations to discrete-time state-space equations.
Such a conversion can be done by introducing
samplers and holding devices into the continuous-time
system.

To briefly introduce this notion, consider the
following linear continuous-time state-space system:

Xc(2) = Ax.(t) + Bu.(1), x.(0)=x0 (15)

where x.(¢) and u.(z) are an n x 1 state vector and
an m x 1 input vector, respectively, and 4 and B are
constant matrices of appropriate dimensions.

The feedback controller depends on the state vector
xc(t) and the m x 1 reference vector r(t), through the
relation

u.(t) = Ecr(t) — Kexc(t), (16)

1492
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Fig. 10. Continuous-time control system.

where E, and K, are an m x m input matrix and an
m x n feedback matrix, respectively.

The block diagram of this continuous-time system
is shown in Fig. 10.

To discretize the continuous-time system, a
sampler and a zero-order hold are used. The common
industrial practice assumes that the control input
u(t) is sampled and fed to the zero-order hold, with
a sufficiently small sampling period, so that all the
components of u.(t) are constant over the interval
between any two consecutive sampling instants.
Thus, the sampled and held u.(z), defined as f,(z),
is described by

24(t) = u (kT),

where T > 0 is the sampling period, k = 0,1,2,... .
The solution of (15) is

for kT<t<kT+T (17)

x:(t) = e x.(0) + eV / t e~ 4" Bu(t)dr. (18)
0

Letting ¢ = kT and t = (k + 1)T, respectively, we
obtain
kT
xo(kT) = e¥Tx,(0) + e¥T / e~ Bu.(r)dr
0
(19)
and

x[(k + 1)T) = e+ DTy (0) + eAK+DT

(k+D)T
x/ e~ 4" Bu,(r)dr. (20)
0

From (19) and (20), we have
xe[(k +)T] = e x (kT) + eA*+ DT

(k+1)T
x / e " Bu.(r)dr.
kT

Since, in (17), uc(t) = 84(kT) for kT <t < kT +T, we
can substitute

4y

u.(1) = #t4(kT) = constant
in (21) and define x.(kT) as £4(kT), to obtain its
solution as follows:
T
Ra[(k + DT] = e T 24(kT) + / e dABiy(kT).
0
(22)

If, furthermore, we define

G=eT 23)
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Fig. 11. Digital control system.
and
T
H= / e d,\> B (24)
0
then (22) becomes
2al(k + DT = GRy(kT)+ Hiig(KT). (25)

So far, we have derived the discrete-time state
equation that takes values only at ¢ = kT, for k =
0,1,2,... . We have also obtained the discrete-time
feedback controller as

Q4(kT) = —K.24(kT)+ E.r(kT) (26)
so that the state-space equations of the digitally
controlled system becomes

2a() = A24(t) + Baa(kT) 27
where kT <t < (k + 1)T, and

fg(kT) = —K 24(kT) + E.r(KT). (28)

Here, it is important to note that the matrices 4
and B are identical to those in system (15).

This digitally controlled system, which is
corresponding to the continuous-time system (27), is
shown in Fig. 11.

With the above digitization preliminaries, we
now return to the feedback-controlled Chua’s circuit
(12)—(14).

In discretizing the state-space system (12)—(14),
using (23)—(24) to obtain the corresponding (25) for
the circuit, we have

24[(k + DT] = GRa(kT) + Hitg(kT)

T
= e 2 4(kT) + ( / e aA) By (kT)
0

(29)
where
[1.2857 9.0 0.0
A= 1.0 -1.0 1.0 and
L 00 —14.2857 0.0
1.0 0.0
B=(00 10
100 00

for |x1(kT)| < 1.0.
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Similarly, we can obtain the other two digitized
equations with the following:

[—2.5714 9.0 0.0
A= 1.0 -1.0 1.0 and
0.0 —-14.2857 0.0
[—3.8571 0.0
B= 0.0 1.0
L 00 0.0
for x1(kT) < —1.0, and
[-2.5714 9.0 0.0
A= 1.0 ~10 1.0 and
0.0 —-14.2857 0.0
[3.8571 0.0
B=| 00 10
| 0.0 00

for x (kT) > 1.0.
The initial condition is the same:

240)=[-01 -01 -01] 30)

and the reference input, on the other hand, is
kT) = 31
0= er) (1)

which is the discrete version of the given unstable limit
cycle of the circuit.

As discussed above, the digitized state-feedback
controller is

04(kT) = —Kc24(kT) + Ecr (KT). 32)
Referring to (27)—(28), the digitally controlled
closed-loop system of the circuit becomes
1.2857 9 0
£a() = 1 -1 11 24()
0 —14.2857 0
10
+ 10 1| 84(kT) (33)
00
for |x1(¢)| < 1.0, where
0 0 10
04(kT) =~ [O ) O] R4(kT) + [O 2] r(kT);
—2.5714 9 0
Xa(t) = 1 -1 1| 24
0 0 —14.2857 O o @4
-3.8571 0
+ 0 1| 0q(kT)
0 0
1493



for x1(¢) < —1.0, where

N [0 01 . 10
2y(kT) = — 0 2 0] 2q(kT) + [0 2] r(kTY;
and
[—2.5714 9 0
id(t) = 1 -1 1} %a(0)
0 -14.2857 0
3857 O
+ 0 1| a4(kT) (35)
0 O
for x1(z) > 1.0, where
0a(kT) = — [0 0 0] 2a(kT) + [1 0] r(kT).
02 0 0 2

Using these resulting formulas, we can examine
the dynamical behavior of the chaotic Chua’s circuit
under the digital controller with different sampling
periods, which is common practice in industry, and
then compare them with the behavior of the original
continuous-time circuit under the control of the analog
feedback controller. This is further discussed in the
next section.

V. COMPUTER SIMULATIONS |: BEFORE REDESIGN

In this section, we examine the dynamical behavior
of the chaotic Chua’s circuit under the control of the
digital controller redesigned above, with different
sampling periods, and compare them with the behavior
of the original continuous-time circuit under the
control of the analog feedback controller developed
by Chen and Dong in [5].

Recall that the continuous-time feedback controller
designed in [5] works very well for the control purpose.
To implement it by a digital computer, however, there
is a tradeoff problem between the sampling period and
the numerical stability sensitivity in digital control
[8, 9, 11]. Let us first use a small sampling period
T = 0.05 s. Our computer simulations have shown that
in this case the trajectories of the digitally controlled
chaotic circuit match very closely with those of the
continuously controlled circuits, and the results are
similar to that shown in Figs. 7-9. Note, however,
under laboratory conditions, it is sometimes not so
easy to implement a digital control system using such
a short sampling period. Generally, the performance
of the digital controller is improved with decreasing
sampling periods, but it makes the implementation of
the digital systems difficult, or impossible, and may
cause the well-known sensitive instability problem
in digitization [8, 9, 11]. Besides, a high sampling
rate requires high speed analog-to-digital (A/D)
and digital-to-analog (ID/A) converters and a more
advanced computer.
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Fig. 12. Digitally controlled trajectory of Chua’s circuit, projected
onto the xy-x; plane, with the sampling period T = 0.4 s.
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Fig. 13. Digitally controlled trajectory of Chua’s circuit, projected
onto the x3-x; plane, with the sampling period T =04 s.

To further examine the sampling effects in the
control of the very sensitive chaotic Chua’s circuit,
we now suppose that short sampling periods are
inconvenient under a certain circumstance, and discuss
the behavior of digitally controlled Chua’s circuit for a
relative long sampling period.

In so doing, we let T = 0.4 s, say. Figs. 12-14 show
the trajectories of this digitally controlled circuit. It
is clear that the trajectory of this digitally controlled
system does not approach the target orbit, the unstable
limit cycle of the circuit, in any way. As a matter of
fact, the trajectory has eventually lost control and
then diverges. This shows that the performance of the
digitally control system becomes worse when sampling
period is getting longer, as expected.

For relatively long sampling periods, how can we
resolve this problem, and to redesign our successful
analog feedback controller to keep the chaotic
trajectory of the circuit on, or nearby, the target orbit?
An answer is given in Section VL
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Fig. 14. Digitally controlled trajectory of Chua’s circuit, projected
onto the x3-x, plane, with the sampling period 7' = 0.4 s.

VL. DIGITAL REDESIGN FOR CONTROLLING
CHUA'S CIRCUIT

To replace an already-designed analog controller
by a digital one, it is desirable not to carry out a
completely new design using digital control theories
(sometimes, this is not even possible), but rather,
to apply a convenient digital redesign technique that
utilizes the original, well-designed analog controller.

Kuo was the first one who considered in detail such
a digital redesign methodology [9]. A discrete-state
matching method was proposed in [9] to solve the
static digital redesign problem for linear systems and
then successfully applied it to a simplified one-axis
sky-lab satellite system. Kuo’s redesign method involves
selection of a weighting matrix, and so the result of the
state-matching depends heavily on the specific selection
of the weighting matrix. To improve this method, Shich
and his colleagues have recently investigated, quite
thoroughly, this type of digital redesign and various
types of (sub)optimal digital redesign methods [14,
16-20]. The digital redesign technology has thus been
greatly advanced.

In this section, we apply Shieh’s approach to a
redesign of the constant-feedback controller for the
control of Chua’s circuit, as mentioned above. An
equivalent digital control system will first be obtained
for the circuit, where a digital control system is said to
be equivalent to a continuous-time control system if
the responses of the two systems, which may be under
the control of two different types of controllers, are
closely matched for the same input and the same initjal

conditions.
To introduce Shieh’s digital redesign method, let

us consider a linear, time-invariant, controllable,
continuous-time system described by
(36)

Xe(t) = Axc(2) + Bu.(), x.(0) = xg

XU ET AL.: DIGITAL REDESIGN FOR CONTROLLING THE CHAOTIC CHUAS CIRCUIT

where x.(f) and u.(¢) are an n x 1 state vector and an
m x 1 control input vector, respectively, and 4 and B
are constant matrices of appropriate dimensions.

Let the state-feedback controller be

Ue(t) = —Koxo(¢) + Eor(2) €))

where K, is an m x n feedback again matrix, E,

an m x m forward gain matrix, and r(z) an m x 1
reference input. The resulting closed-loop controlled
system is then given by

Xo(t) = (A— BK:)x.(t) + BE.r(z), x:(0) = xg.

(38)

Next, we let the state-space system of a
continuous-time system, which contains the same
system matrix 4 and input matrix B but has a different
control input, be represented by
(39)

x4(t) = Axy(t) + Bug(t),  x4(0) = xo

where ug(t) is an m x 1 piecewise-constant function:

ug(t) =u.(kT) for kT <t<kT+T (40)

and T > 0 is the sampling period.

Applying a sampler and a zero-order hold to system
(39), the solution of the resulting system is obtained
as

¢
xq(t) = e Dy (kT) + / =N Bdru,(kT)
kT

for kT<t<kT+T. (41)

For t = kT +T, the equivalent discrete-time model
of the continuous-time system (39) can be written

as
x4(kT +T) = Gx4(kT) + Hua(kT),

(42)
xd(()) = X0
where
G = exp(AT)
and
T
H= / e*Bd\ =[G -1,)A"'B
0
o 1 i-1
=Y <(ATY~'BT.
i!
i=1
We then let the discrete-time state-feedback
controller of system (39) be
ud(kT) =—~Kyxy(kT) + E, r(kT) (43)

where K, is an m x n digital feedback gain matrix,
E; an m x m digital forward gain matrix, and r(kT)
the m x 1 discrete-time reference input. The resulting
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Fig. 15. Configuration of redesigned digital system.

closed-loop control system becomes
x4(t) = Axy(t) — BKyx4(kT) + BE v (kT),
xa(0) = xo

for kT <t < kT +T.

Now, the digital redesign problem is reduced
to finding the digital constant state-feedback gain
matrix K, and forward gain matrix £, in (43) from
the available continuous state-feedback gain K. and
forward gain E, given in (37), which was obtained
from the original design of the analog feedback
controller, so that the output trajectories of the digital
system (44) closely match that of the analog system
(38), for x.(0) = x4(0) and for the same reference
input.

In Shieh’s approach, e.g., the one described in [16],
the digitally redesigned state-feedback gain matrix K,
and the forward gain matrix £, are found to be

Ky = (In + K.H)1K,G

(44)

“5)

and

Ey= (I, + K.H")E, (46)

respectively, where
G® = exp(Avt)

and
T
H® = / exp(AvT)Bdr = (G® - I,)4"'B
0

in which 1, is the m X m identity matrix. Here,

the choice of the tuning parameter v in (45)-(46)
depends upon the specific sampling period T > 0 and
the desired closeness of the trajectory x;(z) of the
redesigned digital system (44) to the one, x.(¢), of the
original continuous-time system (38). The following
performance index is suggested in [16], as a design
criterion for the selection of the tuning parameter v:

n

=% (/Of brei(t) — xd,-(t)ldt)

i=1

where {7 is the finite terminal time of interest.

The overall redesigned digital system is shown in
Fig. 15.

Next, to redesign the analog controller for Chua’s
circuit, with a relatively long sampling period, T =
0.4 s, for which the original digital controller did not
work at all (see Figs. 11-13), we apply Shieh’s formulas
(45)-(46).
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When the sampling period is T = 0.4 s, the digitally
controlled Chua’s circuit is described by the following
system of three equations:

1.2857 9 0

i@ =1 1 1 1| x0)
0 142857 0
10
+(0 1| ugkT) (47
00
for |x1(t)] < 1.0, where
0
ua(kT) = - [0.4639 0.6735 0.3560} *a(kT)
0
+[ ]r(kT)
0 12878
25714 9 0
o= 1 -1 1|x “%)
0  —142857 0
—3.8571 0
+] 0o 1|uxn
0 0
for x1(t) < —1.0, where
0
"d(kT)z_[o.zoss 04378 0.3402] *a(kT)
+[ ! ]r(kT)
02015 13194
and
25714 9 0
xa(t) = 1 -1 1] xq(2)
0 —142857 0
38571 0
+] 0 1|wakT) 49)
0 0
for x1(¢) > 1.0, where
0
ua(kT) == [0.2058 0.4378 0.3402] *a(kT)

1
+ [ ] r(kT).
~02015 13194

The initial condition used is x4(0) =
[-0.1,—0.1,—0.1]7, and the reference input is

r(kT) = [Yz(kT)] ‘
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Fig. 16. Trajectory of Chua’s circuit under digitally redesigned
controller, projected onto xy-x; plane, with sampling period
T=04s

Using the redesign formulas (45)—(46), we choose
v = 0.9. The feedback and forward gain matrices, K4
and E;, are obtained, respectively, as follows:

C 0 0 0
Ka = ,
04639 06735 03560
[0
“" o 12878
0 0 0
Kp= ;
02058 04378 03402
e[ 1 0
“ 7 lo2015 13194
0 0 0
Kp= ,
02058 04378 03402
e 1 0
“7 | —02015 13194)°

ViIi. COMPUTER SIMULATIONS 1I: AFTER
REDESIGN

The simulations of the redesigned digitally
controlled Chua’s circuit, described by (47)—(49), are
shown in Figs. 15-19.

It can be seen that the digitally redesigned
controller directs the trajectories away from the
chaotic attractor and drives them to approach the
desired unstable limit cycle. The performance of the
redesigned digitally controlled Chua’s circuit is much
better than that of the original digitally controlled
circuit—it was not working at ali!. '

08
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Fig. 17. Trajectory of Chua’s circuit under digitally redesigned

controller, projected onto x3-x, plane, with sampling period
T=04s.
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Fig. 18. Trajectory of Chua’s circuit under digitally redesigned
controller, projected onto x3-x; plane, with sampling period
T=04s.

VIII.  CONCLUSIONS

An approach to controlling the chaotic Chua’s
circuit via digital redesign of an existing analog
controller, using a relatively long sampling period, has
been formulated, analyzed, and simulated in this paper.
The digitally controlled Chua’s circuit with different
sampling periods have been compared. It has been
shown that when the sampling period is relatively long,
the trajectory of the digitally controlled Chua’s circuit
cannot approach the target orbit (an unstable limit
cycle) of the original continuous-time controlled circuit
and, as a result, the chaos control fails. To improve
this critical digital control situation, the digital redesign
technique proposed in this paper yields an equivalent
digital controller for the same circuit, but can succeed
the chaos control with a satisfactory performance. It
is our hope that this digital redesign method can also
be applied to other continuous-time nonlinear chaotic
dynamical systems.
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