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forward amplifier with resistive output-summing network is given.
The inverting amplifier, in particular, is considered in detail, and
its performance is compared with that of the amplifier without
feedforward error correction. It should be noted that the proposed
feedforward technique is also acceptable for wide-band amplifiers
with transformer input—output networks.
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Analysis of Chaotic Behavior in Lumped-Distributed
Circuits Applied to the Time-Delayed Chua’s Circuit

E. A. Hosny and M. I Sobhy

Abstract—A general method for the analysis of prechaotic and chaotic
behaviors in lumped-distributed circuits has been developed. The method
is applied to the time-delayed Chua’s circuit and the analysis predicts the
possibility of the existence of multilevel oscillations and chaotic behavior
of the circuit. The proposed procedure predicts the presence of multilevel
oscillations which may lead to a chaotic behavior of this circuit. A
bifurcation diagram, and phase plane are presented which verify the
proposed procedure.

I. ANALYSIS PROCEDURE OF LUMPED-DISTRIBUTED NETWORKS

The analysis procedure starts by establishing the state equations
describing the lumped-distributed network. Then the equilibrium
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points are determined. Finally the dynamics of the network can be
predicted by studying the local stability at the equilibrium points [1].
The time simulation can obtained by using the approach introduced
in [2].

A. State Space Representation of Lumped-Distributed Networks

The state variables of a general nonlinear lumped-distributed
network are represented by capacitor voltages (or charges) and the
inductor currents (or fluxes) and the reflected (or incident) voltage
waves at the transmission line ports. Either the incident or reflected
voltage waves can be chosen as the distributed state variables.

The state and output equations describing a general nonlinear
lumped-distributed network [3] are given by

ity = [ 200

+ B u(t) + BoFn(21, %2, u) (€Y)
o =ic c)]
+ D u(t) + D F,(z1, 2, ) )

where z; is the lumped state vector of order n,

2y 1is the first derivative of the lumped state
vector 1,

zo is the distributed state vector of order m,

F, is the vector of nonlinear functions,

u is the input vector,

y  is the output vector,

T; is the delay of the ith transmission line, and

Al, Az, A3, A4, B Bn, 01, Cz, D and D,, are
real matrices of compatible dimensions.

B. The Equilibrium Points and Their Stability Analysis

The conditions at the equilibrium points (D.C. solutions) are given
by

@1(t) =0
z2(t + 1) = w2(2). 3)

Applying conditions (3) into (1), the following matrix equation for
the equilibria can be obtained,

A1 Az I
= —Bu — 4
[A3 a 1,,,] [mz] Bu- B,Fu(a1,22,u) (4
where I, is a unit matrix of order m. '

The solution of (4) gives the coordinates of the equilibrium points,

zoi = [r10, w2q;)" i=1,2,...,1 )

where z1Q:,22¢: are the coordinates of the lumped and distributed
state vectors at the 7th equilibrium point, and ! is the number of the
equilibrium points.

These equilibrium points can be directly determined by finding
D.C. solution of the circuit. In this case all the inductors are
short-circuited, capacitors are open-circuited, and input and out-
put terminals of each transmission line are connected together.
The number of the equilibrium points depends on the parameters
of the network and the characteristics of the nonlinear functions
Fo(x1,22,u).

For circuits containing a single nonlinear element, the system
stability criteria of the linear system and the graph of the nonlinear
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element can be combined in the i-v plane of the nonlinearity. Thus
the existence of equilibria, their positions, stability can be obtained.
In this case one can identify two types of oscillations (—a, 8) and
multilevel oscillations [2].

The dynamics of the network in the vicinity of the equilibrium
points are studied by linearizing the system of state (1) at each
equilibrium point. The stability of the equilibrium points can be
determined by examining the Jacobian matrix. The Jacobian matrix
of (1) at each equilibrium point is given by,

A Aq| .
J(zqi) = \:Aai' Au] t=
where Aj;, As;, As;, and Ay; are, in general functions of state
variables z1¢; and z2q;.
From (6) the characteristic equation is given by,
sIn — Ay —As;
Det[ —A3i EST"Im _ A‘“] =0
where s is the complex frequency, and
I, is a unit matrix of order n.

For a lumped network of order n, the characteristic equation is
a polynomial of degree n in the complex frequency s, and the
number of roots is n in the s-plane. For a distributed network, with
commensurate delays, of order m, the characteristic equation is a
polynomial of degree m in z = e*T, and the number of roots
is m in the z-plane. Since the value of z is unchanged for all
s =o+j(w+2nk/T),k = 1,2,..., the number of roots are infinite
in the s-plane and hence the stability analysis is best performed in
the z-plane, where the number of roots is finite and the stable region
lies inside the unit circle.

In the case of lumped-distributed network with commensurate
delays T', the characteristic (7) can be written in the form,

P(s,e’T) = ZPnk(s)ekST
k=0

1,2,...,1 ©)

)

®)

where P, (s) is a polynomial of degree n in s.

In the case of a lumped-distributed network with noncommen-
surate delays, the characteristic equation is a polynomial in the
form P(s,e*T!,e*T2,...,e*T™). In both cases (commensurate and
noncommensurate) the number of roots is independent of the order
of the network (m + n) and in general can be infinite.

The study of the stability of the linearized system of (1) is one of
the major problems in the sense that the determinant is a bivariate
polynomial in the variables s and e*T*,i = 1,...,m. The system
stability is governed by Pontrijagin theorem [4], which states that the
necessary and sufficient conditions for a bivariate polynomial to be
stable is that all zeros of the polynomial have negative real parts in the
s-plane. The conditions for stability can be obtained only analytically
in very simple cases. Therefore a numerical procedure using Newton-
Raphson approach has been incorporated with the analysis program
[2] to find the zeros of (7).

II. TIME-DELAYED CHUA’S CIRCUIT

The time-delayed Chua’s circule shown in Fig. 2(a) is obtained
from Chua’s circuit by replacing the parallel LC resonator by a
lossless short-circuited transmission line. The dynamics of this circuit
is only described for the special case Cy = 0 [5].

Since the output port is short-circuited, vo(¢) = 0, the following
relations are obtained, '

vE () = —vg (1)
vilt) = v () — v (t+T)
i£(t) = = - (7 () + 07 (¢ +T))

)]
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Fig. 1. A lossless transmission line.
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Fig. 2. (a) Time-delayed Chua’s circuit. (b) v-i characteristics of the non-
linear resistor Npg.

where v} (t) and v; (¢) represent the incident and the
reflected voltages at the input port
of the transmission line,
respectively, .
is twice the delay of the
transmission line, and

20 is the charecteristic impedance of

the transmission line.
From (9) and applying Kirchhoff’s voltage and current laws, the

state equation can be obtained in the form,

T=2/v

z1(t) _ [1/C1(R+ 20) 2/C1(R+ 20)
22t +T)| ~ |—2z/(R+20) (20— R)/(20+ R)
z1(t) -1/C1 ],
x [m(t)]+[ 0 »zn(t) (10)
where x; (t)is the voltage across the capacitor C:,
@2(t)is the reflected voltage at input port of
the transmission line v; (¢), and
in is a piecewise-linear function in Fig. 2(b).
The current i, (t) is given by,
1 .
in = MaUn + §(m° — m1)[|vn — Bpa|+ |vn — Bpul]
1
+ 5 (m1 = ma)llva = Bpz| + |vn — Bpa]
an

" where v, = z1(t) is the voltage across the nonlinear resistor.
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Fig. 3. (a) R-bifurcation diagram of time-delayed Chua’s circuit. (b) Absolute stability criteria in the (i-v)plane of the nonlinear characteristics of the Chua’s
diode (R = 1.85 K). (c) Phase plane of time-delayed Chua’s circuit for R = 1.7 KQ. (Chaotic attractor.)

The system (10) possesses one equilibrium point at the origin if
mo > —1/R, otherwise it will possess three equilibrium points. The
coordinates of the equilibrium points (z1q, 2¢) are:

TQo = (0,0), Q1 = (—kR, k), and Q-1 = (kR,—k)

where
k= Bpi(mo —m1)/(1+miR) for Bp < v, < By,
—Bpy < vn < —Bp1
or
k = (Bpi(mo — m1) + Bp2) /(1 +miR) for wvn > By,
Vn < —DBpo ’

The Jacobian matrix of the linearized system at each equilibrium
point is given by,

_ [Di/Ci(R+ 20)

7: 2/Ci(R+ Zo)
'~z /(R + 20)

(20 — R)/(20 + R)} i=0,1,2

(12)
where

Do =1+ mo(20+ R)
Dy =1+mi(20+ R)

—Bp1 <vn < B,
B, <va < Bpo,
—sz < vp < —Bpl
Un < B‘pz7
un < —DBp2

Do =1+ ’mz(Zo + R)
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The corresponding characteristic equation is given by

s — D;/Ci(R+ 20) —2/C1(R+ %) :
Det[ z0/(R+ z0) e’ — (20 — R) /(20 + R)] =0
(13)

The time-delayed Chua’s circuit is simulated for the following set
of parameters: mo = —11/20 mS, m; = —9/22 mS, m2 = 10 mS,
Byi =1V, By =8V, 20 = 42/99K2, and T = 0.1 ms. The value
of the resistor R is taken as a bifurcation parameter 1.58 < R < 1.85
K. The R-bifurcation diagram is shown in Fig. 3(a) which shows
that the time-delayed Chua’s circuit exhibits period doubling route to
chaos. This route contains different dynamic modes of behavior of the
circuit. In this paper only two modes of operation are investigated.
All other modes can be analyzed by the same procedure.

A. Fixed-Point Operation Mode

If the bifurcation parameter R = 1.85 K, the system (10)
possesses three equilibrium points zgo = (0,0) and zgi(zg-1) =
(£3.86137,0.44274). The absolute stability criteria in the i-v plane
of the nonlinear characteristic can be determined by finding zeros of
(13) for m < 0 (for m > 0 the circuit is passive and stable). In
this case , as shown in the Fig. 3(b), the only unstable region lies
between the two.lines :

in=0 and i, = —(1/R)vn.

The local stability at each equilibrium point is investigated by finding
the zeros of (13) at each equilibrium point. The simulation results
indicate that each equilibrium point has one real root -y, and an infinite
number of complex conjugate poles, ¢ & jw. Although the number
of complex poles are infinite, o remains finite. In this example it can
be analytically proven that ¢ = In|(R — z0)/(R — z0)| as w tends
to infinity. The equilibrium point zq, is unstable, since it has one
positive real pole v & 4.75555, whereas the other equilibria 2 and
Tq-1 are stable (sink points). Therefore the solution is a fixed point
at g1 or zg—1 depending on the initial conditions [2]. It should
be noted for lumped-distributed system the initial states should be
defined in the interval =T, < t < 0, where Tihax is the longest
delay of the system. For R = 1.85 K2, the R-bifurcation diagram
of Fig. 3(a) shows that the mode of operation is a fixed-point, as
predicted.

B. Chaotic Mode of Operation (Chaotic Attractor)

The previous steps were repeated for the bifurcation parameter
R = 1.7 KQ, the system (10) still has three equilibrium points. In
this case the three equilibrium points are unstable, hence multilevel
oscillatory (or chaotic ) response is expected [1]. The phase plane of
the reflected voltage at the input port of the transmission line versus
the voltage across C; is shown in Fig. 3(c) which displays a chaotic
attractor.

III. CONCLUSION

A time domain procedure for the analysis of different modes of
behavior of lumped-distributed networks is presented. The analysis
procedure and numerical techniques presented in this paper are
general with no restriction on the topology of the network. Therefore,
the same approach can be applied to study different modes of behavior
of any lumped-distributed oscillator.

Time-delayed Chua’s circuit is analyzed in the general case (Cy #
0) by using the developed procedure. The simulation results show that
time-delayed Chua’s circuit exhibits period-doubling route to chaos.
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High Input Impedance Insensitive Second-Order
Filters Implemented from Current Conveyors

Alain Fabre, Fadi Dayoub, Laurence Duruisseau, and Moez Kamoun

Abstract—Two high input impedance second-order filters with active
and passive sensitivities inferior or equal to the unit are described.
Both of them use two second generation current conveyors, with positive
current transfer (CCIIt) and four passive components. The first circuit
achieves a low-pass or high-pass transfer according to the kind of passive
components used. The second circuit achieves a band-pass transfer.
SPICE simulation results using translinear current conveyors are given
and discussed. They confirm the validity of the analysis and they point out
the high performances of these filters. Experimental results obtained with
the AD844 AN transimpedance operational amplifier show the advantage
of these implementations compared to conventional ones.

1. INTRODUCTION

Second-order active filters with infinite input impedance are of
great interest because several cells of that kind can be directly
connected in cascade to implement higher order filters with no need
to interpose active separating stages. As a matter of fact, infinite
input impedance cells assure a total uncoupling between the different
elementary stages. This will entail an easier determination of the
passive component values of each of the elementary cells and an
easier perfectionning of the global cicuit. Other than that, theoretical
and experimental frequency responses of the filters will generally be
closer.

Second generation current conveyor (CCII), [1], whose frequency
response remains unchanged up to some hundred of megahertz
when they are implemented as application specific integrated circuits
(A.SIC.’s) using prediffused complementary bipolar arrays [2], are
very adapted to the design of that kind of filters. Indeed, they exhibit a
high impedance input node: the Y port. Numerous realisations of high
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