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Abstract

The control of an array of Chua systems is
discussed. For the particular array coupling chosen,
it is shown that the control becomes more difficult as
the number of Chua lumps increases when
controlling from the boundary of the array.

Introduction

In the last twenty years, much progress has been
made toward understanding the behavior of
continuous-time chaotic systems. This is particularly
true in the last five years, where both the control of
chaotic systems and the utilization chaotic systems for
specific purposes has been demonstrated [1]. With
these successes, the last two years has seen increased
interest in arrays of interacting chaotic systems
(although much work has been done previously by
Kaneko [2]). Here the research has been considering
synchronization of the array [3,4], traveling wave
fronts [5,6,7], pattern formation [8], and the
generation of hyperchaos [9]. Clearly one of the
underlying themes of these studies has been an
attempt to gain insight into more complicated systems
such as turbulent flows, reactive media, combustion,
and plasma dynamics. This paper contains an initial
attempt at understanding the control of arrays of
chaotic systems. In this study, control will primarily
mean to drive the chaotic system to a fixed steady
state point.

To gain more insight, it is useful to choose a
chaotic system that is somewhat well understood.
Chua’s circuit is one such system which has also been
used in many of the studies on chaotic arrays, and
will be used here. At this point it is necessary to
choose the way the array of Chua circuits interact
with each other for this study. Many choices have
been made in the past including, diffusive coupling
through resistors in both one and two dimensions
[5,8], transmission line-like coupling [7], and one
directional convective coupling through any one of
the states [9] Many other choices are available. For
this study, one directional convective coupling
through the x-states of the Chua system with cubic
nonlinearity [10] is chosen, as it demonstrates many
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of the problems involved in controlling an array of
chaotic systems. Thus the equations for the j-th Chua
circuit, or j-th lump, of the array are

%j=“ﬁﬁ+%@j-b§D*%ﬁ-ﬁ4)

Yi =X yj+z

2j=—17ﬂyj+uj

Here, the u variable is a local control input which acts
on a particular lump directly as in [10}, and the input
to the lump from the previous lump enters through
the x equation via x(j-1). There will be no zeroth
lump and xq will be a boundary input to the array.
Clearly the flow of information along the array is in
one direction only, in that the lower lump numbered
outputs can effect the higher lump numbers but not
conversely. For this paper, & = 9 and ¢ = 0.25
exclusively. With u(j) = 0, the steady state, or
reference, value of xg is chosen to be ¥0.5, which
then forces one of the steady state values of the x(j)
to also be ¥0.5 for all j. Then corresponding steady
state values of y(j) = 0 and z(j) = - V0.5 for all j. Tt
should be noted that there are other steady state
values for each lump which could be stabilized in
what follows, but these will not be considered here as
they become very complicated. Note that the two
other steady states for x(1) are -0.1869 and-0.5052,

and that there are a total of 3} steady state points for
j-lumps. It is observed that these points become very
close together and may add to some of the sensitivity
problem to be discussed later.  For the given
parameters, the chosen steady state point described
above 1s unstable. Each Chua circuit is basically
chaotic (given the proper IC’s), but it is also being
driven by a chaotic Chua circuit from the left. Thus
the result is probably a hyperchaotic system similar to
[9], but this has not been verified. A phase portrait is
given in Figure 1.

The paper is organized as follows. Discussed first
is the use of local measurements and local control.
Then control only at the left boundary is used
throughout the remainder of the paper. The paper
progresses by presenting the design of controllers for
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increasing numbers of lumps along with the problem
encountered. Five Jumps are the maximum
considered in this study. Note that only the regulator
problem is solved here, and tracking 1is not
considered.

Local Measurment and Local Control

When local control through the u-variable can be
used, it is fairly easy to drive the system to a steady
state fixed point through the use of any of the
classical feedback strategies used in [10]. Here it is
necessary to measure a local output from a lump, say
x(3), and feed it back through a compensator into the
local input to the lump, u(j). If there are n-lumps,
then there must be n-compensators, one for each
lump. It is possible to control the system in this way,
as the input from the previous lump appears as a
disturbance to the present lump, see Figure 2. This is
a common control configuration, and the
disturbances are easily rejected with proper design of
the sensitivity function in the Nyquist plane [11].

As this control approach requires as many sensors
and actuators as there are lumps, it is fairly expensive.
In the remainder of this study, it is assumed that only
one actuator will be used, and that it will act from the
boundary. Thus all of the u(j) inputs will be set to
Zero.

Control of One Lump From the Boundary

To control the one lump system from the
boundary, a steady state analysis must be performed.
The system equations are

X:oc(y+%(x—2x3))-c(x—x0)

y=X-y+z
5 —_ 100
Z 7 y

The steady state values chosen for the variables,
with xg= V0.5 are , Xgs =V0.5 =-zgg and yss=0.
The linearized small perturbation equations at this
steady state are then given by 8% =A 85+ B du with
output N =C S where & is a 3-vector of the
linearized states, Ou is the linearized scalar control
input, and &m is a small perturbation output. Notice
then that A, B, and C are all matrices of the
appropriate dimensions. For this system

20 ¢ o 0 }

A= 1 -1 1 . B=|o

and assuming that the x-variable is the system output,
C = [1 0 0]. This is then a single-input-single-
output-system whose transfer function can be found

via H(s)zC[sI—A}'lB, where s is the Laplace variable.
Itis

Ox(s)
dxq(s)

0.2500 s2 + 0.2500 s + 3.5714
3 +3.8214 52 + 8.1071 s + 40.3061

with zeros at s =-0.5000 £ j3.7464 and poles at s = -
4.1854, 0.1820 =+ j3.0979. The linearized system
then has two poles in the right half s-plane and the
steady state point is clearly unstable. A root locus
analysis indicates that this system can easily be
stabilized by using proportional control, dxg= - k 6 x
and is stable for any proportional gain k > 17.81;
k=100 is a good choice. To implement this linear
control law, the perturbed variables are fed back.
Thus, when implemented into the original equations,
this controller yields

x.—_a(y-(-%(x-2x3))-c(x-[m-k(x'mm
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The utility of this controller was verified via
simulation and it was somewhat robust with respect to
perturbations from the steady state point.

Control of 2 Lumps From the Boundary

Here the control of two coupled lumps from xg is
considered. The system equations are then

Xl =Oc(y1 +%(XI - ZX?))—C(XI -Xo)
Yi=X1-Yy1+7
21 =-100y,

7
X2=a(y2+%x2— ZX%))—C(XZ-X])
YQZXZ'YQ+Z2
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Again a small perturbation analysis must be
performed. As stated in the first section, however, the
chosen steady state is shared by each lump. In fact,
as a state space linearization would show, because the
coupling is only one directional, the small
perturbation transfer function from &xq to ij is
simply the transfer function from 3x( to 8x; raised to
the j-th power. We thus now have the small
perturbation transfer function for any number of
lumps, namely



0.2500 s? + 0.2500 s + 3.5714

Bxi(s) ;
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and we can concentrate on the control design. The
noles and zeros were given in the previous section,
and there are now j of each of them. The pole excess
is then j. When there are two lumps, the pole excess is
two and one would expect to be able to stabilize this
system using some large gain proportional control.
Root locus analysis indicates that this system will be
stable for proportional gain k>1230, while k=2000 1s
reasonably robust to perturbations.

Control of 3 Lumps From the Boundary

In this situation, the linearized transfer function
about the chosen steady state has a pole excess of
three, with six poles in the right-half s-plane. This is
indeed a difficult control problem. Initially, a second
order lead compensator is used. It is

OXo(S) _ 4 2445+ 65

0x3(s) s2 + 40s + 400
which is stable in the linearized model for
approximately  0.8e+06<k<1.9e+06. It was

implemented on the nonlinear model with k=1.1e+06
and very stable responses were obtained for small
(<0.001) initial perturbations, however, both
k=1.0e+06 and k=1.2e+06 gave small limit cycling
responses about steady state. Due to this sensitivity,
an optimal state feedback control law was designed
which used the feedback gain vector k=[9.3587,
298136, 39736, 27.6571, -61.2762, 80.1885, -172.8133, -

752.8481,-1135225]T.  This state feedback law uses
measured displacements from steady state for all of
the states in every lump. It thus acts whenever any of
the states start to vary from their equilibria. It should
also be noticed that the gains are larger for the states
of the third lump. This seems reasonable since they
are the farthest away from the control signal, which is
effectively diminished by a factor of (¢=0.25) for
every lump. It should also be noted that this type of
control is very expensive, as it requires sensors for all
the states.

Control of 5 Lumps From the Boundary

A five lump problem is now considered, skipping
over four lumps, which was also controlled using the
following strategy. It was initially planned to
consider an arbitrary number of lumps, but the
increasing sensitivity to initial conditions indicates
that the five lump problem is demonstrative of the
difficulty in controlling any higher number of lumps.
Fuethermoere, the control Gramians were found to
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become more singular as more lumps were added.
This implies that as more lumps added the control
becomes more difficult.

Also, based on the experience with the three lump
problem, state feedback 1s used exclusively from the
beginning. Note that the problem now has a pole
excess of five and has ten poles in the right half
plane. As in the three lump case, an optimal linear
regulator design is used to stabilize the five lump
system. This controller worked well, but the initial
state perturbations must be less than 0.0001, and the
controller drequired very large gains. These gains
are not listed as the controller was not very sensative
to the choice of Q and R in the linear requlator
design.

As discussed earlier, state feedback is a very
expensive control approach as it requires sensors on
every state, in this case 15 of them. A much cheaper
approach is to use observer feedback. Two observer
feedback designs were considered. One using the
error signals from all of the x-variables (5 in this
case), and the other using the error signal from the
last state, x(5), which is more similar to the input-
output controller from before. The observer was
implemented using the exact nonlinear system
equations with the following observer gains feeding
the error signal back to all the states:

all x-measurements

Lisxs =
44220 0.0783 0.0009 0.0000 -0.0000
1.6396 0.0158 -0.0001 -0.0000 -0.0000
-3.6970 -0.1273 -0.0024 -0.0000 -0.0000
0.0783 4.4246 0.0783 0.0009 ©.0000
-0.0126 1.6399 0.0159 -0.0001 -0.0000
0.0478 -3.6942 -0.1273 -0.0024 -0.0000
0.0009 0.0783 4.4246 0.0783 0.0009
-0.0000 -0.0126 1.6399 0.0159 -0.0001
-0.0005  0.0478 -3.6942 -0.1273 -0.0024
0.0000 0.0009 0.0783 44246 0.0783
0.0000 -0.0000 -0.0126 1.6399 0.0159
-0.0000 -0.0005 0.0478 -3.6942 -0.1273
-0.0000 0.0000 0.0009 0.0783 4.4254
-0.0000  0.0000 -0.0000 -0.0126 1.6401
0.0000 -0.0000 -0.0005 0.0478 -3.6954

x(5)-measurement

L15X1 = 106""04 &
0.00161687384192
0.00402886754185
0.00018101427868
0.01445351093760
0.02755833966399
0.02053391616153

-0.09854688167118
-0.58797411896576

0.04445504697133
-0.55507704374031



~0.57688432093263
-(.92300258856449
0.39584503104179
5.47499076757945
0.12783857953928

Interestingly enough, these observers were very
robust, and allowed perfect tracking of the true
system states, even in the uncontrolled system, and for
large perturbations (>0.1). In this sense, they forced
synchronization between the two 15-th order
potentially hyperchaotic systems. When used with the
controller, the initial state errors were the same size as
the initial perturbations of the states, but of the
opposite sign.

Conclusion

In this paper it has been demonstrated that an
array of Chua systems can be stabilized and forced to
regulate to one of the system fixed points. For this
particular system, the controllers were very sensitive
to initial perturbations from the desired unstable
steady state. This problem became more difficult as
more lumps were added. Observer feedback was also
implemented by using the nonlinear system equations
in the observer. It was found that this observer
configuration allowed state tracking even with no
controller in the loop, thereby perhaps providing a
general means of synchronizing chaotic systems.
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Figure 1. Uncontrolled 5-lump array, x(5) vs x(1).
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Figure 2. Typical feedback configuration.



