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topology and as such can be minimized but cannot be avoided. It is
clear that the upper frequency of operation must be kept significantly
below the f7 of the op-amps used in order to allow sufficient high-
frequency harmonics to be present within the output waveform so as
not to degrade the performance excessively.

The second degradation mechanism identified is due to the fact
that the diode feedback path becomes open-circuit around the zero-
crossings, resulting in a missing segment in the output waveform for a
time interval ¢4. It has been confirmed that the input signal amplitude
is small during ¢4, and the op-amp operates in the linear region, with
t4 being inversely proportional to ¢/fr of the op-amp. From the
results obtained, though high SR appears not to be directly important
in providing high-speed precision rectification, it is generally the
case that high SR op-amps do have a high fr, and as such there
is indirect correlation between high slew-rate and high-frequency
PFWR performance.
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Chaos in a Fractional Order Chua’s System

Tom T. Hartley, Carl F. Lorenzo, and Helen Killory Qammer

Abstract—This brief studies the effects of fractional dynamics in chaotic
systems. In particular, Chua’s system is modified to include fractional
order elements. By varying the total system order incrementally from
2.6 to 3.7, it is demonstrated that systems of “order” less than three can
exhibit chaos as well as other nonlinear behavior. This effectively forces a
clarification of the definition of order which can no longer be considered
only by the total number of differentiations or by the highest power of
the Laplace variable.

I. INTRODUCTION

It is ‘well known that chaos cannot occur in continuous-time
systems of order less than three. This assertion is based on the
usual concepts of order, such as the number of states in a system,
the highest power of the Laplace variable s in the system, or the
total number of separate differentiations or integrations in a system.
Unfortunately, these concepts of order do not directly relate to
systems having fractional order components. The purpose of this
paper is to demonstrate that systems whose order is less than three,
as defined in the usual way, can still display chaotic behavior. The
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first section below provides a brief review of fractional calculus.
Useful approximations for these fractional operators follow in the
next section. Finally, an example is given which demonstrates that
systems whose order is less than three can display chaos. This is
shown both experimentally via simulations, and predicted analytically
using the describing function method.

II. REVIEW OF FRACTIONAL OPERATORS

The idea of fractional integrals and derivatives has been known
since the development of the regular calculus, with the first reference
probably being associated with Leibniz in 1695 [27]. Although not
well known to most engineers, the fractional calculus has been con-
sidered by prominent mathematicians [8] as well as the “engineers”
of the operational calculus [3], [13]. In fact many textbooks written
before 1960 usually have some small section on fractional calculus
[61, [91, [14], [26], [30], [32]. An outstanding historical survey can
be found in [27] who also give what is unquestionably the most
readable and complete mathematical presentation of the fractional
calculus. Other bound discussions of the area are given by [24], [25],
and [29]. Unfortunately, many of the results in the fractional calculus
are given in the language of functional analysis and are not readily
accessible to the general engineering community.

Many systems are known to display fractional order dynam-
ics. Probably the first physical system to be widely recognized as
demonstrating fractional behavior is the semi-infinite lossy (RC) line.
Looking into the line, the current is equal to the half-derivative of
the applied voltage, that is, the impedance is

L
VA

Although studied by many, [13] considered this system extensively
using the operational calculus. He states “there is a universe of
mathematics lying in between the complete differentiations and
integrations” and that “fractional (operators) push themselves forward
sometimes, and are just as real as the others.” Another equivalent
system is the diffusion of heat into a semi-infinite solid. Here the
temperature looking in from the boundary is equal to the half integral
of the heat rate there. Other systems that are known to display
fractional order dynamics are viscoelastic systems [1], [16]-[18],
[31]; colored noise [23]; electrode-electrolyte polarization [15], [36];
dielectric polarization [35]; boundary layer effects in ducts [34];
and electromagnetic waves [13]. As many of these systems depend
upon specific material and chemical properties, it is expected that a
wide range of fractional order behaviors are possible using different
materials.

Two commonly used definitions for the general fractional dif-
ferintegral are the Grunwald definition and the Riemann-Liouville
definition [27]. The Riemann-Liouville definition is given here;

a1 / £(7)
s~ T(=q) J, E=r)7

Vis) = I(s).

dr,qg < 0.

Here ¢ can have noninteger values, and thus the name fractional
differintegral. Notice that the definition is based on integration, and
more importantly is a convolution integral for ¢ < 0. When ¢ > 0
then the usual integer nth derivative is taken of the fractional (g—n)th
integral;

aiy _ & s
dte ~ dt» | dta—n

],q > Oandn an integer > q.
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This appears so vastly different from the usual intuitive definition
of derivative and integral that the reader must abandon the familiar
concepts of slope and area and attempt to get some new insight (which
still remains elusive).

Fortunately, the basic engineering tool for analyzing linear systems,
the Laplace transform, is still applicable and works as one would
expect;

dfH) _ N R 10)
L{dﬂ}_ﬂqu»—Z?[iﬁjﬁrkﬂ,

for all g,

where 7 is an integer such that n — 1 < ¢ < n. Upon considering
the initial conditions to be zero, this formula reduces to the more
expected and comforting form

e T

III. APPROXIMATION OF FRACTIONAL OPERATORS

The standard definitions of the fractional differintegral do not allow
direct implementation of the operator in time-domain simulations of
complicated systems with fractional elements. Thus, in order to effec-
tively analyze such systems, it is necessary to develop approximations
to the fractional operators using the standard integer order operators.
In the work that follows, the approximations are effected in the
Laplace s-variable. The resulting approximations provide sufficient
accuracy for time domain hardware implementations.

Some work has been done in this area already, but it has not
been highly organized. [27] and [28] give several discrete-time
approximations based on numerical quadrature. In continuous-time,
engineers have used network theory approximations [4], [5], [10], and
[33]. More recently [7}], [15], and [27] have developed other network
theory approximations. Even more recently, a discrete-time fractional
calculus has been developed similar to the theory of linear multistep
methods for numerical integration {19]-[22].

The approximation approach taken here is that of [7]. Basically the
idea is to approximate the system behavior in the frequency domain.
This is done for a given ¢, by creating an approximation with Bode
magnitude response roll off of 20 times ¢ dB/decade, and which will
consequently have a phase shift of approximately 90 times g degrees
over the required frequency band. This approximation is created by
choosing an initial breakpoint (the low frequency accuracy limit of
the approximation), the allowable error in dB’s, and the number of
s-plane poles in the approximation. The high frequency limit of the
usable bandwidth can be varied by changing the allowable error
and the number of poles. Thus an approximation of any desired
accuracy over any frequency band can be achieved. Table I gives
approximations for 1/s? with ¢ = 0.1-0.9 in steps of 0.1. These were
obtained by trial and error and are reasonably good from 0.01 rad/s
to 100 rad/s. These approximations are used in the study that follows.

IV. A FRACTIONAL CHUA’S SYSTEM

Chua’s system is well known and has been extensively studied. The
particular form to be considered here was presented by [11] and used
further for the study of [12]. This system is different from the usual
Chua system in that the piecewise-linear nonlinearity is replaced by an
appropriate cubic nonlinearity which yields very similar behavior. It is
studied here in two different, but equivalent, system representations.

TABLE 1
LiST OF INTEGER ORDER APPROXIMATIONS TO FRACTIONAL OPERATORS. EACH
HAS AN ERROR OF APPROXIMATELY 2 dB FROM w = 10~2 10 10? rad/s.

1. 2204s% + 5004s3 + 5038s? + 234,55 + 0.4840
s0-1  s5 + 350854 + 574253 + 424752 + 147.7s + 0.2099

1 . _60.95s% + 816953 + 582.852 + 23245 + 0.04934

s0-2 5+ 134.0s% + 956.5s3 + 383.552 + 8.953s + 0.01821
1 . 2376s% +2249s3 + 129.152 + 4.733s + 0.01052
503 §5 + 64.51s% + 252.25% + 63.61s2 + 1.104s + 0.002267

1 . __25.00s% + 558.5s3 + 664.25% + 44.15s + 0.1562
504 s5 4 125.65% + 840.6s3 + 317.2s2 + 7.428s + 0.02343

1 15.97s% + 593.2s3 + 1080s2 + 13545 + |
s3 + 134354 + 107253 + 543.4s2 + 20.10s + 0.1259

1. .579s4 + 255.683 + 2 + 35935 + 0.1
s0.6 85 + 042254 + 472953 + 134.852 + 2.639s + 0.009882

1 o __5.406s* + 177.6s3 + 209.652 + 9.197s + 0.01450
s0-7  s5 + 88.12s% + 279.253 + 33.30s2 + 1.927s + 0.0002276

1 5523553 + s2 + 5306s + 254.9

508 54 + 658.1s3 + 5700s2 + 658.2s + 1
1 176652 + 3827s + 4914
$09 53 + 36.15s2 + 7.789s + 0.01000

One representation is the usual state space form

. +x—21‘3
r=aly 7
J=a—y+z

_ 100y
== By

The other representation is a decoupled nonlinear feedback ar-
rangement of Fig. 1, which is equivalent to the above state space
representation when ¢ = 1. In each case 3 is defined to be 100/7 and
« is allowed to vary. The state space configuration is used to verify
chaos by computing Lyapunov exponents. The feedback configuration
of Fig. 1 is used to perform a more thorough bifurcation study.

To study the effect of fractional derivatives on the dynamics of
this system, the state space configuration is considered first. Here,
the vector derivative is replaced by a vector fractional derivative as
follows;

dir _ +x—21'3
ata Y 7
dy _
W—z—y-{—z

@ _ 100y _
a7 T
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(s + s+ 100/7) i
s s+ s+ (100/7 - @)

HQLX -

Fig. 1. The feedback configuration for Chua’s system which allows easy
change of order; ¢ = 1 is the nominal Chua system.

Simulations were then performed using ¢ = 0.8, 0.9, 1.0, and 1.1.
The approximations from Table I are used for the simulations of
the appropriate qth integrals. When ¢ is less than 1, then the
approximations are used directly. It should further be noted that
approximations used in the simulations for 1/s?, when ¢ > 1, are
obtained by using 1/s times the approximation for 1/s7~* from Table
I

The results from this state space study verified that chaos could
indeed occur in a system of mathematical order less than 3. This
was determined by computing the Lyapunov exponents for each of
the simulations with ¢ = 0.9, 1.0, and 1.1, using the method of [2].
These results are given in Table II where the largest several exponents
are given as a function of system order. In each case, the second
exponent was near zero. The 2.7 order system approximation had
an additional six negative exponents which were not listed. Also the
3.3 order system approximation was so large as to prohibit a timely
calculation of any exponents but the first. Since the order of this
system was greater than three anyway, these calculations were not
pursued. In all cases, the one positive exponent clearly indicates that
the system is behaving chaotically. The numerical simulations further
indicated that the lower limit of the vector fractional derivative ¢ for
this system to remain capable of generating chaos is between 0.8 and
0.9. The lowest value obtained for mathematical order to yield chaos
was 2.7 using the ¢ = 0.9 fractional vector derivative. No upper limit
was obtained. Phase plane plots for these systems are given in Fig. 2.

The feedback configuration of Fig. 1 is now considered. To change
the total system mathematical order, the separated 1/s in Fig. 1 is
allowed to change powers, that is

1 1

s s

A variety of simulations were performed on the resulting systems
as discussed below. Here, the approximations from Table I are used
to represent the fractional integral where again the approximations for
1/57, when ¢ > 1, are obtained by using 1/s times the approximation
for 1/s971.

Bifurcation diagrams for several of these systems are given in
Fig. 3. Here, a particular value of ¢ was chosen, and the param-
eter o was varied to obtain the particular bifurcation plot. These
diagrams were generated by simulation using Euler’s method and a
simulation timestep of 0.001. These were verified by further reducing
the timestep by an order of magnitude with little change in the
overall bifurcation structure. To obtain these diagrams, the values
of the output z-variable are plotted whenever its slope changes
sign. Although it is felt that the bifurcation diagrams are reasonably
correct and are sufficiently accurate for this particular study, more
correct diagrams could possibly be obtained by using more accurate
approximations of the fractional derivative than those given in Table
I or a more accurate simulation. Observation of the bifurcation

)

Fig. 2. Phase plane projections for the state space configuration of Chua’s
system: (a) total mathematical system order is 3.0, = versus z, @ = 9.5;
(b) total mathematical system order is 2.7, x versus z, a = 12.75; (c) total
mathematical system order is 3.3, x versus z, o = 7.0.

diagrams indicates behavior similar to that from the state space
study. For the feedback configuration, decreasing the power of s,
shifts the bifurcation diagram to the right as a function of «, and
conversely. The limits on the system mathematical order to have
a chaotic response as measured from the bifurcation diagrams are
approximately 2.5 < n < 3.8. The overall behavior from the
simulation studies is summarized in Fig. 4.
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TABLE II
LARGEST LYAPUNOV EXPONENTS FOUND IN THE STATE SPACE
CONFIGURATION FOR ¢ = 0.9, 1.0, AND 1.1 WHICH GIVES A TOTAL
SYSTEM MATHEMATICAL ORDER OF 2.7, 3.0, AND 3.3, RESPECTIVELY
Mathematical Order of System o - Used Largest
System Order Approximation Exponent, Ay Ay A3

Fig. 3. Bifurcation diagram for the feedback configuration of Chua’s system, -0.57
max and min of x versus a: (a) fractional integral of order 0.7, total
mathematical system order 2.7; (b) fractional integral of order 0.8, total
mathematical system order 2.8; (c) fractional integral of order 0.9, total Ak
mathematical system order 2.9; (d) fractional integral of order 1.0, total
mathematical system order 3.0; and (e) fractional integral of order 1.3, total
mathematical system order 3.3.

572 74 76 78 8 82 84 85 88 9

An advantage to the feedback configuration is that it allows easy ©
system analysis using describing functions, as discussed in [12]. Fig. 3. (Continued.)
Here the idea is that the frequency response of the linear block in
the feedback configuration is plotted in the Nyquist plane, along nonlinearity, as in Fig. 5. The fractional order integral in the loop
with minus one over the appropriate describing function of the is handled directly by taking the frequency response on the primary
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Bifurcation diagram as measured from simulation

i : - -’
Y

16~ W 4

14- LR \\ \ o - Hopf to limit cycle f
) -o- - limit cycle saddie-node T
12- K x - period doubling 1

] * - double scroli
< 10- + - extinction 1
8- 4
6 -
saddle-node & sub-critical Hopf merge at 2.75

4 H H

24 26 28 3 32 34 3.6 38 4

System mathematical order

Fig. 4. Bifurcation diagram in the o versus mathematical system order plane
based on simulation studies of the fractional Chua system.

Nyquist plot of linear part and describing function, alpha=9.5
20

| o - Hopf bifurcation
15 x - period doubling 1
* - double scroll

imag(GGw))
=]

<-increasing order of integral, .6:.2:1.8

real(G(w))

Fig. 5. Nyquist plane plot showing the frequency response of the linear part
of Fig. 1 (set of curved lines) for various ¢ and o = 9.5; and the describing
function of the nonlinearity (solid line on real-axis from -3.5 to -20 shown).

Riemann sheet, and essentially poses no complication or confusion
in application of the describing function approach. In other words,
the fact that fractional powers of s are present does not require any
frequency domain approximation as in the time-domain simulation,
rather the fractional powers of s can be used as is, in computing the
frequency response of the linear block. In [12] it is shown that the
important points from the nonlinearity of this system in the Nyquist
plane are:

1) Re[H(jw)] > —3.5, Im[H(jw)] = 0, indicates two stable
points at x = :i:\/ﬁ;

2) Re[H(jw)] < -3.5, Im[H(jw)] = 0, indicates a Hopf
bifurcation of the stable points of (a) into a limit cycle;

3) Re[H(jw)] < =7, Im[H(jw)] = O, indicates that period
doubling of the limit cycle of (b) occurs (this progresses into
spiral chaos);

4) Re[H(jw)] < —14, Im[H (jw)] = 0, indicates merging of the
spiral chaos into the double scroll behavior.

Extinction of the double scroll (meaning its disappearance) is
not directly predicted using the describing function approach, but a
reasonable approximate value is re{H (jw)] < —23, Im[H (jw)] = 0.
A diagram indicating the usage of the describing function is given
in Fig. 5.

diagram as predicted by describing

o - Hopf to limit cycle
-0- - limit cycle saddle-node
ix - period doubling
* - double scroll

Alpha

saddie-node & sub-critical Hopf merge at 2.85

1%.4 2?6 2.8 3 32 34 36 38 4

System mathematical order

Fig. 6. Bifurcation diagram in the o versus mathematical system order plane
based on describing function analysis of the fractional Chua system.

Using these results, and varying the power of the integrator in
the loop allowed a theoretical prediction of the simulation results
of Fig. 4. These theoretical results are given in Fig. 6. It should be
noted that the qualitative features are very well predicted using the
describing function approach, and that the quantitative results are
reasonably close. Furthermore, for mathematical system order less
than approximately 2.85, the describing function approach predicted
the appearance of a stable and unstable limit cycle as « increased (via
an apparent saddle-node bifurcation). These limit cycles coexist with
each of the stable fixed points. Eventually, as « increased further, the
unstable cycles merged with the stable fixed points via a subcritical
Hopf bifurcation, leaving an unstable fixed point. This entire process
basically became a supercritical Hopf bifurcation for mathematical
order greater than 2.85. This was then verified in the simulations with
this bifurcation structure occurring for mathematical system order less
than approximately 2.75. In fact, for the mathematical order equal to
2.6, the simulation gave the points at * = +1/0.5 to be stable and
each coexisting with spiral chaos. It is a true testament to the utility
of the describing function approach that it could predict the behavior
of this system as accurately as it does.

V. DISCUSSION

This paper has introduced the idea of fractional derivatives from the
dynamic systems viewpoint. It has been demonstrated that the usual
idea of system order must be modified when fractional derivatives are
present. The usual approach of calculating the mathematical system
order by determining the highest derivative in the system does not
work in this situation.

It has been further demonstrated that chaos, as well as the other
usual nonlinear dynamic phenomena, can occur in systems with math-
ematical order less than three via Chua’s system. This is surprising
given the usual nonlinear system paradigms concerning chaos and
order. It is not clear at this point whether the chaos in fractional order
systems should be characterized differently than chaos in regular
integer order systems.

It should be noticed that the describing function approach usually
requires at least -180 degrees of phase shift in the linear part of the
feedback loop to ever predict Hopf bifurcations, and consequently
chaos, for memoryless nonlinearities. As the linear part can be a
nonminimum phase transfer function, it is further conjectured that
chaos can occur in systems with mathematical order less than three
and probably less than one. Furthermore, the feedback configuration
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indicates that as long as the linear part of the loop has at least -180
degrees of phase shift, the possibility of chaos in the system depends
primarily on the nonlinearity, and how its particular describing
function behaves.

As has been demonstrated, the idea of fractional derivatives
requires one to reconsider dynamic system concepts that are often
taken for granted. Some of these concepts have been discussed in
this paper. Some others that require much further consideration are
the concept of Lyapunov exponents for fractional states, the use of
fractional states in which to embed attractors, and the relationship
between fractional order and fractal dimension.
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