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Synthesis of Higher Dimensional Chua Circuits

Marco Gotz, Ute Feldmann, and Wolfgang Schwarz

Abstract— In this paper, we present a universal method to
design n-dimensional piecewise linear circuits. These circuits are
described by a system of differential equation associated with
a piecewise linear continuous vector-field in the n-dimensional
state-space, which consists of two different linear regions. The
circuits contain only two-terminal elements, one piecewise linear
resistor and a number of linear resistors capacitors and inductors.
The developed method leads to a variety of structures. It is
possible to design n-dimensional canonical circuits containing a
minimum number of inductors as well as inductor-free circuits.
A surprising result is the transformation of the 3-D Chua circuit
[2] into an inductor-free circuit that exhibits the double scroll as
well. We compare our results with the recently published method
of Kocarev [1]. Using our approach, a theorem that specifies
the restriction of eigenvalue patterns associated with a piecewise
linear vector-field having at least two equilibrium points can be
proved.

I. INTRODUCTION

HE INVESTIGATION of nonlinear autonomous dynamic

systems which can exhibit a large variety of behaviour
was strongly forced in the past. One direction of efforts is
the design of physical systems generating chaotic motion in
the state space. For this purpose especially electrical circuits
are easy to handle. Under certain conditions we can realize
a piecewise linear continuous vector-field with such circuits
and study any possible behaviour experimentally. From this
point of view one goal is to design a circuit capable of
realizing every member of the higher dimensional Chua ¢ircuit
family [2]. One 3-D canonical Chua circuit is given in [3].
Furthermore, one extension to higher dimensional canonical
circuits is published by Kocarev [1]. Both represent an analysis
of a given structure in the time domain and made sure that the
structure is canonical. Here we choose a synthesis approach in
the frequency domain which is capable of generating a whole
class of structures containing both ones mentioned above.
With this method, we design as examples a canonical as
well as a noncanonical n-dimensional piecewise linear circuit.
Canonical in our sense means

1) canonical with respect to the behavior i.e., capable of
realizing all possible behaviour of the associated vector-
field. We will call it canonical in behavior

2) canonical with respect to the number of circuit ele-
ments i.e., containing the minimum number of elements
necessary. We will call it canonical in structure.

Manuscript received March 15, 1993; revised May 10, 1993. This paper
was recommended by Associate Editor L. O. Chua.

The authors are with the Technical University of Dresden, Facultit fiir
Electrotechik, Dresden, Germany.

IEEE Log Number 9211769.

II. NETWORK-DESIGN-ALGORITHM FOR THE
n-DIMENSIONAL PIECEWISE LINEAR CIRCUIT

A. General Approach

We choose an electrical network consisting of a nonlinear
static two-terminal element connected to a linear two-terminal
dynamic network. Consider the class L(n, 2) of n-dimensional
two-region continuous piecewise linear vector-fields and the
class C(n, 3) of n-dimensional symmetric with respect to the
origin three-region continuous piecewise linear vector-fields
defined in [1]. One realization of this class of vector-fields is
shown in principle in Fig. 1. This system consists of either a
two-segment static resistor as a member of L(n, 2) or a three-
segment symmetric (with respect to the origin) static resistor
as a member of C(n, 3) and a n-dimensional two-terminal
linear network. The common feature of both classes is the
existence of two different linear regions. Now we increase
the number of segments to & retaining the feature of then
two different linear regions. Let us call this more common
class L(n, k/m). N represents the dimension, k£ the region
and m the number of the different regions. Consider now a
L(n, k/2) and a subset C(n, k/2) that represents a vector-
field symmetric (with respect to the origin). Subsequently the
vector-field of L(n, k/2) or C(n, k/2) shall be represented by
the eigenvalues of the linear systems of differential equations
in the two different regions. Assuming that the eigenvalues
in each region are given, a circuit that realizes all possible
patterns of 2n eigenvalues has to be designed. This circuit
will be canonical in behaviour. First, we have to decide on
the minimum number of element parameters needed for a
circuit that is canonical in structure. It is pointed out in {1]
and [3] that at least 2-n + 1 parameters are needed to generate
any set of 2 - n eigenvalues because of the impedance scaling
property of linear systems [3]. This impedance scaling deals
with normalized parameters: Z,, /o for impedances and Y, - o
for admittances with the scaling factor a.

B. Coefficients of the Characteristic Polynomials

The state equations of an autonomous piecewise linear
network are given by

dz _ [Ag- %,
dt 417

where Dy an D; denote the two different regions.
The eigenvalues of these systems of homogeneous differen-

tial equations are determined by det (A; — sI) =0, =0, 1,
where I is the unity matrix.
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®)

One v-i-characteristic of the nonlinear transistor; (b) general structure
of the unknown circuit.

Fig. 1.

This leads to the characteristic polynomial
n—1
P(s)=s"+2di-s’ =0.

=0

)
According to [3] we denote the coefficients for regions Dy
and D1 by

g =P Z€Do

t iy z €1
Usually the eigenvalues of a given system are calculated
from (2). Here we have the inverse problem to calculate the

coefficients (3) from the given eigenvalues in each region. This
can be done using Vieta’s formulas [5]:

(©))

Pn-1= Ezl:l Hi n-1= 2?:1 Vi
n n
—Pn-2 = Zi,j:l Hilts —Qn-2 = Z,-,,-=1 vivj
=3 =5 s
?).n.—S = Z(l."i';gkl) Hiltj ok ‘In—B Z(fi’:;kl) 1414141 @
(=1)"p1 = Ticy i (-)"q =II2, v
where u; and v;(i = 1,...,n) are the eigenvalues in Dy and

D; respectively.

C. Network Function

Our goal is to determine the structure of the two-terminal
linear network and to calculate all parameters of the circuit
shown in Fig. 1(b). By simply applying Kirchhoff’s voltage
law to the circuit in the complex domain we obtain

Y (s) + G, = 0 in region Dy and 5)

Y (s) + Gy = 0 in region D;. 6)

where G, and Gy denote the small-signal conductance corre-
sponding to the slope of the v-i-characteristics of the piecewise
linear two-terminal element and s is the complex frequency
s = 0 + jw. Assuming the complex admittance function of
the linear network to be

Y(s)
S 4 bpq k8 T by ox8" 24 by x5+ by

ST+ A1 8™ L @py_g*x8™ 24 4ay x St ag

)

we obtain by substituting (7) into (6) and (5)
G.+ K
. "4 bp1 ks by _gxs™ 24+ by *s+bp
SM 4 1*8™ Lt ay, o x8™ 24 - +ay*s+ag
=0 forz € Dy

®
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and

Gy + K
. S by ks L pby_gxs™ 24+ by xs+bo
8™ 4 A1 * S L Qo2 %82+ -+ a1 xS+ ap
=0 for Z € D;. €)]

If the circuit in Fig. 1(b) has to realize the state equation (1),
(8) and (9) have to correspond to the characteristic polynomials
((2), with respect to (3)). This will be achieved by comparising
the coefficients of both groups of equations.

D. Design Algorithm

The algorithm to design a network which realizes the given
sets of eigenvalues will consist of the following two steps:

Determine the coefficients (bg...n—1, Go--.m—1)
of the polynomial of the two-terminal
function, and also the parameters G, and

G by comparing it with the characteristic
polynomial resulting from the given set

of eigenvalues.

Design the network which realizes the
two-terminal function.

Step one:

Step two:

Note that we use admittance functions in developing our
algorithm. Using impedance functions is also possible and
leads to the dual network, as will be shown at the end of
this chapter.

To carry out the first step we have to convert (8) and 9)
into the form of the characteristic equation (2) for comparison.
Multiplying (8) and (9) with the denominator polynomial we
obtain:

m—1 n—1
Gq - (sm + Z aisi) + K- (s" + Zbis') =0 (10
i=0 i=0

m—1 n—1
Gy - (s’" + Z aisi) +K- (s" + Zbisi> =0 (11
=0

i=0

First decide how the order of the denominator and numerator
polynomials has to be chosen. Since the order of the denom--
inator and numerator of a two-terminal network-function can
only differ by 1 at maximum, we have three possible cases:

Casel) n=m 12)
Case2) n=m-—1 (13)
Case3) n=m+1 (14)

In the following we choose the Case 3, for this is the only
one, which does not include restrictions to the choice of the
component values (especially G,, G}, and K) of the circuit
and hence can lead to a canonical structure. Then, (10) and
(11) can be written in the form

G = G
n a n—1 a i __
s+ (bn_1+—k—)8 + E (bi+7(“ai)5 =0 (15)

=0
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TABLE 1

Approach:

Pls)=Gayp-(s™ +am—1-s™ "'+ a1 -s+a)+ K- (s" +bn1-s"" ' +---+b1-s+bo)

=s"4+dn-1-s""14...dy-s+do=0 d; = pi(resp.q;), £ € Do(resp.D;)

System of equations:

17
(bn—1+%"‘) =Pn-1 an
18
(bn—1+%) =qn-1 a18)
bi+ % a;)=p; fori=0,1,---,n—2 a9
bi+%-a; =gq; fori=0,1,---,n—2 (20)
First additional equation:
First step of polynomial division: Separate a capacitor and select its value: Y (s) = Ks + Yr1(s) 21
(22)

I\’:Cl:l

Second additional equation: Two alternative possibilities:

First possibility:

Separate a parallel conductance and set it to zero:
Y(s) = s+ (buei — an—2) + Yra(s)

The obtained second equation is:

(ba—1 —an_2)=0 23)

Second possiblity:
Avoid separating a conductance parallel to the capacitor

C1 (for examples see Sections IV and V)

Look for an equation obliterating Choose a condition for one of the coefficients of the

(for examples, see Section IIT)

structure

an arbitrary circuit element thus
obtaining a circuit canonical in

numerator polynomial b; or one of the parameters
Gg, or Gy, arbitrarily

Calculate the coefficients of the denominator polynomial:

- (pi—q:)
R o —Y
One obtains the restriction: pn—1 # gn—1

(26)

)fori=0,l,v~~,n——2

Calculate the remaining coefficients and parameters of the nonlinear resistor using the equations derived above and (17)—(20) and (22).

Carry out the second step completely, realizing yr1(s) or Y;2(s) by one of the well-known methods of network theory considering the above condition.

Gy n-2 Gy
n T0 ) on—1 4+ =2 g ) =
s"+ (bn_1+ K)S +izo(b,+ e a,) 0 (16)

Comparing the coefficients of (15) and (16) with those of the
characteristic polynomial (2) Table I, we obtain the system of
(17)~(20) shown in Table I.

These are 2 - n equations for the 2 - n + 2 unknown values
a,'(z' = 0,"-,71, - 2), b,(’t = 0,~--,TL — 1), Ga, Gb and K.
Hence to clearly determine all unknown values, two additional
equations are required. The definition of them allows to
introduce additional conditions concerning the desired form
of the network. To get the first additional equation we carry
out the first step of polynomial division in (7) thus separating
a parallel capacitor to be the first network element seen from
the input (see (21) in Table I). C, is the normalized value
of the parallel capacitor. Since one circuit element parameter
can be chosen arbitrarily because of the impedance scaling
property, we set it for convenience and simplicity as in (22)
in Table I. There are different ways to determine the second

additional equation (for instance (23) in Table I). Two of these
possibilities are shown in the table below. If all necessary
2n + 2 equations are determined, the unknown values can
be calculated as follows: Subtracting (18) from (17) and (20)
from (19) gives

(pn—l - (In—l) = (Ga—‘Kva_) (24)

(pi—qi)zw-ai fori:O,l,---,n—2(25)
Substituting (24) into (25) we obtain all ;(: = 0, 1,---,n—2)
in (26) in Table L

The kind of the structure we will obtain depends on the
chosen way shown in Table I.

Note that there is the restriction

Pn-1 9& qn—1 (27)

which also arises in [1] and [3]. However p,_; # ¢,_1 is a
singular situation and can be eliminated by perturbing one of
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the eigenvalues without substantially changing the behaviour
of the system [3].

We give examples of both proposed ways in Sections III
and IV.

Closing this chapter we mention that there exists a dual
network to every circuit realization outlined above. Then,
instead of (8) and (9), we have

Rojp+ Z(s) = Rapp

LK 8"t bp_1 xS T tby_g k"2 by x5+by 0
S™ 4 Q1 * S™ 1Ay, g %8240y xag

(28)

where R, denotes the slope of the i-v-characteristic of the
piecewise linear one-port.

III. SYNTHESIS OF CANONICAL CHUA CIRCUITS

In this chapter we take the first possibility in Table I
First we determine the coefficients and the parameters of the
non-linearity. Substituting (26) for ¢ = n — 2 into (23):

b _ (Pn—2 — Qn_2)

i =ay,_ = 29
! 2 (pn—l - Qn—l) ( )

Now we can calculate the parameters of the non-linearity and
all remaining coefficients b;:

Go = Pt (pn72 — Qn—z) (30)
(Pn—l - qn—l)
Gy = qn_lw @31
(pn—l - Qn—l)
bi=p; —Ga-a;
b; = p;
_ (p _I(Pn—z - qn—2)> ] ( (pi — @) )
" (Pn-1 — Gn-1) (Pr—1 — @n-1)
i=0--n—2. (32)

Now all needed coefficients of Y (s) are calculated. Next, we
carry out the second point i.e., we determine the structure of
Y,1(s). Different ways are possible. Our current goal is to de-
sign a canonical n-dimensional Chua circuit. The easiest way
to achieve this is using the method of continued polynomial
division. One example structure and its dual network is shown
in Fig. 2. The associated equation is:

Ga/b +C1-s
1
+ . =0
L2-s + R2 + C3~s+G3+aMHlT
A REaTHR
(33)

where for even n: Hn = Rn and Kn = Ln and for odd
n: Hn = Gn and Kn = Cn. It is the same structure as chosen
by Kocarev in [1]. Another structure containing only one single
inductor can be synthesized in the following way: Instead

857

R2 L2 R4 L4 ... RA—1 Ln—1
900 ANV
ong [er cs3>Tecs  cs2fes ... cn2o e
()
L1 R3 L3 RS L5 ... Rm Lo
A% LTI
L
RNQ Gz ’1?:2 G4 ”IE:4 L.Gn—1 Tcn?1
(b)
Fig. 2. (a) Structure of the n-dimensional canonical circuit for odd n;
(b) corresponding dual network.
Cr: r §Gm
Fig. 3. Structure of the n-dimensional “inductor poor” canonical circuit.

of calculating the conductance G3 in (33) we calculate a
resistance of the reciprocal term having separated the capacitor
C3 before, etc. The corresponding equation is

1

Gunp+Cl-s+ =0
/e L2 s+ R2+ qgor—1
B — —
n-stGn
(34

The structure is shown in Fig. 3.
Obviously, there exist further canonical realizations of Chua
circuit containing w inductors, where w is a number with:

1<w< g for even n (35)

1<w< 22 for odd 7. (36)

IV. SYNTHESIS OF AN INDUCTOR
FREE CANONICAL CHUA CIRCUIT

Now we follow the second possibility in Table 1. We use
our method to design an inductor-free circuit. Inductors can be
avoided by a modification of the polynomial division. Instead
of calculating a conductance after separating a capacitor we
calculate a resistance from the reciprocal term. Assuming that
we can completely determine the two-terminal function Y (s)
by adding any second equation additional to (17)«20) and
(22) we obtain the continued fraction:

1

Rl + 1

02‘5__11__
R24 ——— g7
ot Cn s+Gn

(37

Y(s)=Cl-s+

Fig. 4 shows the corresponding structure of a RC ladder
network. Next we propose an idea to find the necessary
second equation. The n-dimensional polynomial represent-
ing the linear two-terminal network contains 2 - n coeffi-
cients (bg...n—1, @0...n—2 and K). This leads to 2 - n circuit
elements. Therefore our circuit has 2 - n + 2 parameters
(C1..ny Ri..ny Ga, Gp). In order to find the second additional
equation, we use

Theorem 1: Let G, denote the last conductor at the end
of the n-dimensional RC-ladder network. Then the following
equivalence is valid: G, = 0 if and only if by = 0.
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6N fle cZl o3l A

Fig. 4. Structure of the n-dimensional inductor free circuit.

| /\f“ /\ V] J\A/ VT

1 ﬁL ATV <

o 01 LT ay Tc 1h CST}GJ
(a) ()

(a) Chua’s 3-D circuit; (b) associated RC-ladder obtained by trans-
forming Chua’s circuit.

o)

Fig. 5.

Proof: See Appendix L.
This allows us to eliminate the last conductor G,, in the
structure of Fig. 4. We choose:

bo = 0. (38)

Therefore, we make the inductor-free circuit canonical in
structure because it contains exactly the minimum number of
circuit parameters. Using the equations (17)—(20), (22) and
(38), we obtain the remaining coefficients:

Go= 2 = py. Pno1 = Gnc1) (39)
ag (po - lJo)
sz @ =q- (p'n—l_Q'rﬂ) (40)
ao (Po - lIu)
b; =p; — Ga-ay
bi = p; — (po- (Po — 40) )( (pi — ai) )
(pn—l - anl) Pn—-1 — Qqn-1
i=1--n-2 (@4l)
buo1 = Pt — Ga = puos —po- 21T B01) )
(po — qO)

Next we determine C2---n, 2---n by polynomial division
described above. With this approach we are able to design an
inductor free network capable of realizing any desired member
of L(n, k/2) and C(n,k/2).

V. INDUCTOR FREE THREE-DIMENSIONAL CHUA CIRCUIT

Vector-fields of C(3, 3/2) are either linear conjugate or
linear equivalent if they have identical or identical normalized
eigenvalue patterns [2]. Circuits which realize those vector-
fields will only differ in state or in time and state scale thus
having the same behaviour in quality. Since our method is
suitable to realize given eigenvalue patterns it can also be used
to transform circuits conserving their qualitative behaviour. As
an example we choose the well known 3-D Chua circuit first
published in [7] shown in Fig. 5(a). We transform the linear
network into a RC-ladder network shown in Fig. 5(b). The
following algorithm applies:

-4 :
4 [} 4

Fig. 6. Double scroll produced by the RC-ladder network. (Projection onto
the (Ve1, Vo) — plane).

1) From the Chua circuit (see [7]) we determine the coef-
ficients of the characteristic equations in both regions:

Po = —18.367 P = 4 P2 = —2/7 for Do
go = 36.735 q1 = 7.857 g2 = 25/7 for D1

2) From this set of coefficients we design a RC-ladder
network, following the second possibility in Table I.

a. Calculating the coefficients of the denominator
polynomial yields:

ag = 14.286
b. Set
K=Ci=1 by=0

c. Calculating the remaining coefficients and param-
eters of the nonlinear resistor using the equation
derived above and (17)-(20) and (22) yields:

bo = —14.285 by =4.286 G, =ps=—2/7
Gb =gz = 25/7

d. Carry out the second point by continued poly-
nomial division avoiding inductors. In order to
confirm our results we have simulated the obtained
RC-ladder network. The Double Scroll attractor is
shown in Fig. 6.

Finally, we emphasize the following theorem:
Theorem 2: 1t is impossible to transform the 3-D Chua cir-
cuit into a RC-ladder network which is canonical in structure.
Proof: See Appendix II.

VI. NECESSARY CONDITION FOR AT
LAST TwO EQUILIBRIUM POINTS

For some applications it is important to make sure that
a vector-field has two or more equilibrium points i.e. fixed
points. The theorem for the 3-D canonical circuit associated
with C(3, 3/2) having three equilibrium points is given in {3]
and for a special n-dimensional canonical circuit in [1]. Here
we prove a theorem that determines the conditions for the
existence of equilibrium points in the outer regions (denoted
Dy, and D_,) for a vector-field of C(n, 3/2). This vector-
field can be realized by any n-dimensional circuit following
the method in Section II and has always an equilibrium point
in the inner region Dy at the origin.
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Theorem 3: A vector field of C(n, 3/2) realized by any
n-dimensional circuit only has equilibrium points in the outer
regions Dy and D_, if:

(i) The canonical circuit has three dc operating points,

or

() po-qo <0

Proof: (direct):

1) The nonlinear v-i-function of the nonlinear resistor is

described in the outer region D + 1 by the equation (see
Fig. 1(a)):

43)

iN=Gb'U+(Ga-Gb)

2) Therefore, the DC-Network (s = 0) of the whole
n-dimensional circuit is described by the equation

44

3 G, -G b
Z—N':Gb+q+—0=0
Vg Vo ag

(45)

where vy is the normalized voltage of the assumed equi-
librium point. by/ao represents the dc-conductance of
the two-terminal element with capacitors open-circuited
and inductors short-circuited.

Solving this equation, vy is obtained to be

vy = % (assumed Gy + Z—Z # 0). (46)
The region D, has exactly one equilibrium point if
vo > 1 (47)
because the break-point is located at v = 1.
3) Inserting (46) into (47) we have
vy = “L%%—;—i%) > 1. @8)
from which we obtain
0> (ag-Ga+bo) - (ao- Gy + bo) (49
Using (19) and (20) yields
0>po-q (50

Because of symmetry there is an equilibrium point in the
region D_1, too, i.e., the theorem is proved. Assuming that
the vector-field has an equilibrium point in the original in Dy.
Theorem 1 is also valid for the class L(n, 2/2).

VII. CONCLUSION

In this paper we have discussed a method to synthesize
piecewise linear networks with given eigenvalues in each
linear region in the state space. We derived a simple algorithm
consisting of the following two steps:

1) Calculation of the coefficients of the characteristic poly-

nomial in linear region

2) determination of the admittance or impedance network

function corresponding to the characteristic polynomial
and the realization of the network by continued fraction
expansion.

859

Because of some degree of freedom additional conditions
concerning the desired form of the network can be introduced
into the synthesis procedure thus providing the possibility of
synthesizing inductor free or networks canonical in structure.
The proposed method will be important for practical design
of nonlinear system which are to generate chaotic signals as
electronic integrated circuits. We have demonstrated several
variants of Chua circuits by synthesizing including an inductor
free version of the original three dimensional Chua circuit.
This result which is surprising to some extent was confirmed
by direct simulation of the resulting network showing the
typical Double Scroll behaviour. Now for example the Chua
circuit can be easily realized by an electronic circuit containing
no inductive elements. The proposed method allows also to
prove a theorem about the existence of equilibrium points in a
piecewise linear vector-field. This theorem is a generalized
of the three dimensional case in [3] and of the particular
n-dimensional case in [1].

APPENDIX I
INDUCTIVE PROOF OF THEOREM 1

1) The theorem applies for n = 1:

Y(s)=K-(s+by) =C1-54+Gy (ALD)
Gy =K b (A1.2)
bo=0&G1=0 (A1.3)

2) Assuming that the theorem is valid for n, i.e., for the
admittance function

st b st 4 by

Y(s)=K -
©) sl Y a8

(Al4)

bo < Gn =0 (A1.5)

is valid.
3) We prove the validity for n + 1: Performing a two-step
polynomial division, we get

‘ s bist+ by

Y(s) =K s+ Zv-ol @ - 8t
2=l 4
K
=K-s+ n+2n_1 e =K-s
E ?=4(bi—:z—1)'51+bn
. K
1 1
(b"‘a"’l)-‘— E:;l (bj—a;_1)-st+bg
n— (bi—ai_1) i
¥ (ubn——n_ln) +(“°‘<:>Tfa°:r>)
(A1.6)
bo =0 Gn+1 =0 (A17)

The denominator of the last fraction in (A1.6) has the form
of (A1.4). Thus, if the equivalence (A1.5) is valid for n then
it is also valid for n + 1. This proves the theorem.
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APPENDIX 1T
INDIRECT PROOF OF THEOREM 2

We show that the method of Section IV leads to a singular
network.

Consider the characteristic equation belonging to the nor-
malized differential equations of Chua circuit [2] and the
special coefficients p; and ¢; in it:

S+1+a-c¢)-s?+(alc—1)+p)-s+a-B-¢=0

co Z€ Dy

c= C41 ZE Dj:l (A21)

Assumption: The transformation is possible.
Using (22), (26) and (38)—(42), we obtain the coefficients

p=bime _alo-cn) (A22)
P2—q2 a-(co—cx1)

by =0 (A2.3)
G, =2 =p0.u (A2.4)

ao P1—q1

b2=p2—Gavp0=p0'q2_p2'q0
Po — 9o

_afa(taa)-afo (taw)
a-fB-(co—c1) .
(A2.5)

Now, having all coefficients, we determine the network pa-
rameters performing polynomial division:

834 by-824by-5+b N 1
=s .
s2+a1-s+a0 (ﬁj-%Zr(s)

(A2.6)

From (A2.2) and (A2.5) we get:
(bg —a1)=0. (A2.7)
Comparing (A2.6) with (37) yields:
R, — oo. (A2.8)

Thus the effective part of the network will consist only of C;.
An infinite series resistor R; isolates it from the remaining
part. Thus, the assumption is false, and the theorem holds.
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