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ABSTRACT 4 new cell is proposed for CNN'’s able to produce Turing patterns. The
conditions for generating Turing patterns in terms of the cell parameters are derived
and several computer simulations are presented.

1. Introduction

The two-grid coupled Cellular Neural Networks (CNN’s) architecture [1-5] has been recently shown to
be capable to produce Turing patterns on the basis of a mechanism similar to that proposed by Turing
[6],17]. Composed of identical cells identically coupled by means of two homogeneous resistive grids, such
CNN’s exhibit an unstable homogeneous equilibrium point which corresponds to a stable one for an
isolated cell, The pattern is one of the stable equilibrium poifits‘towards which the network emerges. The
equatlons governing the dynamics of the array have the form:

du, (1) D,
d = 7f(u,l,v,,)+ v? U
dv, (1) ) (1)
T_yg( 5Vy)+ DV v

where f{u,v) and g(u,v) are related to the two~-port nonlinear resistive characteristics as shown in the next
section, D, and D, the diffusion coefficients and V7 is the discrete Laplacian. The so-called Turing
conditions [5-7]

fut 8 <0

S8~ f,8.>0
D,f,+Dg >0

(vau - Dugv)2 + 4Duva;gu >0

where f,, f,, 8. g, are elements of the Jacobian matrix of f{1,v) and g(1,v) have been shown [9] to be only
necessary for discrete arrays. Obviously f, and g, as well as £, and g, should have opposite signs. The
study performed in [8-11] considered-CNN’s based on the (reduced) Chua’s circuit which, as a concrete
vehicle to introduce the basics concepts, showed once again its capability of generating new exciting
behaviors. In this case, using appropriate coupling resistors, f;, g, are positive and f,, g, negative. The aim
of this communication is to investigate Turing patterns produced in CNN’s based on another active cell
for which f,, £, are positive and g,, g, negative.

@

2. The Cell

The two-port nonlinear dynamic cell shown in Fig.1 is proposed as the basic cell for CNN realization. It
consists of four linear clements including a voltage controlled current source and a Chua’s diode. The
relations between parameters of the cell and those appearing in the overall equations are:
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where i,; = f(,,v;) and i,, = g(u,,v,) are the equations describing the resistive part of the cell.
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Figure 1: The new cell and the v-i characteristic of the Chua’s diode

Explicitly, the above algebraic fumctions are:
’ iy=-Gu- f(u)+ Gv @
i = (G- gu-Gv
For the characteristic of the nonlinear resistor shown in Fig.1 the relations between the elements of the
Jacobian matrix, vy, Dy, D, and the parameters of the array are:

f =—(G+Gy)
(-G G=f,
c G, =—(f, +1,)
g, ==-(G-g) _ C,
v - g':G_C gu
C v
gv Cv G v 1V v v ()
D G, C,=—
n_(j‘1 Y
C,=-C,
Dv=g" Y g,
v D“
1 G, = y
T=¢

Observe that there are seven degrees of freedom; i.e., the four elements of the Jacobian matrix and ¥y, Dy,
D, thus being possible to synthesize CNN’s having any desired parameters.

3. Qualitative Explanation of Reaction-Diffusion Phenomena in a 1D CNN Based on
the New Cell

We consider the array shown in Fig.2 and assume that the diffusion coefficients D, and D, of the u- and
v-grid respectively satisfy the relation D,<<Dy; i.e., R,C;>>R,C,. Suppose that the initial conditions are
zero except for the voltage w; which slightly increases. Due to the negative slopes of the nonlinear resistors
for small voltages which determine the instability of the array, the voltage will continue to increase.
Through the R, resistors the increase of u; will slowly “diffuse” to the neighboring cells on the u-part. As a
consequence the neighboring cells will have their u- voltages increased in the vicinity of the i cell (local
activation). At the same time, the voltage controlled source will determine the voltage of the opposite v-
node decrease; i.e., become negative, and, due to the much smaller value of the time constant of the v grid,
the negative voltage of the v; node will propagate quickly on the v- side of the array (local activation
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again), Thus, at a greater distance of the cell i, the negative voltage on the v- side of the atray will
determine, through the transversal resistors, the decrease of the opposite u- voltages (which were not able
to increase as a consequence of the slow propagation of the initial perturbation on the u- side); i.e., a
distance inhibition.

Figure 2: 1D array exhibiting reaction-diffusion Turing pattern behavior.

This way of reasoning can be applied for other points in the array as well; the voltages on the two sides of
the array will grow up and down until the nonlinearity will bound them at various levels. The voltage
levels on the two sides of the array are sketched in Fig.2 as well. Obviously, the spatial wavelengths will
be determined among other parameters by the ratios between the diffusion coefficients.

The simulation results shown in Fig.3 confirm the above intuitive explanation. Similar consideration can
be made for 2D arrays.

time R space time spaca

Figure 3: Simulated behavior of the time-space dynamics of the u- and v- voltages in a 11-cell 1D array
ting from zero state except for the u- voltage of the 5th cell showing the validity of the intuitive
explanation of the pattern formation mechanism.
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4. Simulation Results

Qualitatively, the behavior of CNN’s based on the proposed cell differs from that reported in [8-11] by
the fact that the v- voltages are “opposite phase” with respect to the u- ones. In the following we present
several simulation results for 1D and 2D arrays to show how patterns may be controlled, to a certain
extent, by means of appropriate initial conditions. We emphasize the fact that, while for the 1D case, the
mode selection has been successful for all simulations, in the 2D case the prediction of the final pattern
has been sometimes unsuccessful as the nonlinearity has a role which is not yet enough understood.
We give below several examples of mode selection through initial conditions for the 1D and 2-D cases. In
the 1D case we used a 50 cell 1D CNN with the parameters £,=0.4, =1, g,=-0.25, g.~0.5, y=28.2714,

D~4. The band of unstable modes (0.11492, 0. 43508) contained five spatial modes

k62=0.14045...k102=0.38197. Using the initial conditions 1;(0)=0.1cos[(2i+1)mn/100]; v(0)=0, for m=6
and m=10 respectively and zero-flux boundary conditions, the dynamics shown in Fig.4 have been
obtained.
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Figure 4: Time evolution of u- and v- variables in a 1D 50 cell CNN controlled through initial
conditions, the modes 6 (a, a’) and 10 (b, b’) being excited.
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c (]

c
Figwre3: Final 2D patterns for successful [a, a’ - mode (24), b, b’ - mode (3,4)] and unsuccessful [c, ¢’ -
attempt to excite mode (4,1)] control through initial conditions.
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In the 2D case we used an array of 6x8 cells with the same parameters except for y=28.40909 and D,=3.4
corresponding to a band of unstable modes (2.58893...4.59096) with 23 modes inside. Using zero-flux
boundary conditions and initial conditions of the form u;;(0)=0.5cos[(2i+1)mmn/12]xcos[(2j+1)nn/16] and
v;(0)=0 we obtained for (m=2, n=4), (m=3, n=4) and (m=4, n=1) the resuits presented in Fig.5. From the
last image one sees that the obtained pattern has little resemblance to that expected from linear theory: the
(4,1) mode led to an unstable patter that evolved to another one, stable but different.

5. Concluding Remarks

The new cell proposed for CNN’s capable to produce Turing patterns has been shown to allow designing
CNN’s with any desired parameters. Pattern control using initial conditions can be realized even patterns
different to those predicted by linear theory are possible as well.
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