612 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995

Turing Patterns in CNNs—Part II:
Equations and Behaviors

Liviu Goras, Member, IEEE, and Leon O. Chua, Fellow, IEEE

Abstract—The general state equations describing two-grid cou-
pled CNNs based on the reduced Chua’s circuit are derived, and
the analysis of Turing pattern formation is approached from
a specific point of view: spatjal-eigenfunction based equation
decoupling. Discrete spatial eigenfunctions for two common types
of boundary conditions are presented, and the way the dynamics
is influenced by the shape and position of the dispersion curve
is analyzed.

I. INTRODUCTION

N PART 1 of this paper [1], it was shown that two-grid

coupled CNNs based on the reduced Chua’s circuit have
the potential of producing reaction-diffusion type (Turing)
patterns.! In the above paper the general principle of pattern
formation has been described, the conditions concerning the
individual cell have been analyzed, a qualitative explanation
of the pattern formation mechanism in a 1-D CNN has
been given, and the multiple equilibria property has been
exemplified. The key mechanism of pattern formation is
based on two kinds of conditions. The first kind refers to
requirements for the isolated cells to have a unique, stable
equilibrium point. These conditions, in terms of the nonlinear
characteristic and of the Jacobian matrix of the isolated cell
at the equilibrium point, have been derived in [1]. For the
whole interconnected array, the above equilibrium is still an
equilibrium point but, for pattern formation, it should become
unstable; the pattern will correspond to some of the other
equilibrium points that happen to be stable. The second kind
of conditions, involving not only the cell parameters but
also those of the resistive coupling grid will be discussed
in this paper after deriving the state equations for the CNN.
They are related to a special technique of decoupling the
linearized differential equations describing the CNN: spatial-
eigenfunction based decoupling. The first step is to derive the
state equations of the two-grid coupled CNN subject to the
nonstandard normalization introduced in [1].

II. THE STATE EQUATIONS OF THE TwWO-GRID COUPLED CNN

Let us focus on the (i, j) pair of nodes of the array (Fig. 1).
Sometimes we will not display explicitly the time dependence.
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'In the sense of the definition adopted in [1]; i.e., the steady state evolved
through a differentiated behavior of identical elements identically coupled in
a homogeneous (regular) spatial distribution.
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Fig. 1. The (¢,j) node of the two-grid coupled CNN.

Notations u(i, j,t), u; ;(t), u;,; will be used interchangeably.
Straightforward use of KCL gives
(Cu 22 = —h(uiz) + vy

+ Gul(tigr,; — wij) — (i — wi-1,5)

+ (w1 — vig) — (Ui, — uij-1)]

ey

dvs i (t) _ .
Co =35 = Uij — Vvij

+ Go[(vitr,; — vij) — (Vi — vi-1,5)

H (Vi1 — i) — (vij — vij-1)]

where 7 = 0,1,---,M — 1,57 = 0,1,---, N — 1. Using the
following notations for the 2-D discrete Laplacian®

Viui; = [(wir1s — wig) = (i = vi1,)]
+ (w41 = wig) — (Wi — vijj—1)]
= Uit1,j + i1, + U1 + U1 — dug; (2)
introducing the “diffusion” coefficients D, = %:, D, = %l,
and using the notations defined in Part I, the above equations
become

Bt ® — oy f(u; j,vi,5) + Du V045
dvit,itz' ) = ’Yg(ui,j, Ui,j) + vazvi,j

3

t=20,1,---,M—-1,7=0,1,---, N — 1. For certain values
of the parameters, the above system of 2M N autonomous
nonlinear ordinary differential equations describe the simplest
two-grid coupled CNNs capable of producing Turing patterns.

2In the 1-D case, the discrete 1-D Laplacian is given by VZu; = (uit1
— ) — (ui — ui_1) = wigpy + ui — 2.
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Although (1) are nonlinear, we will show that significant
information concerning pattern formation can be obtained from
the linearized system in the vicinity of the steady state solution
of the isolated cell, which is an equilibrium point for the whole
array as well. Linearization of (1) around the equilibrium
point (Uy, Vp) gives the following system of linear ordinary
differential equations:3

du; ; _
dd’—t-((i)) = y(futi; + fovij) + DuV3u;;

4)
at 'Y(guui,j + gvvi,j) + DUVQUM

i=0,1,---,M—-1, j=0,1,---,N —1, where fy, fu, Gu, gv
are the elements of the Jacobian matrix of f(u,v) and g(u,v)
corresponding to the equilibrium point (U, Vo) chosen on one
of the three segments of the piecewise-linear characteristic.
Their values as functions of the parameters of the nonlinear
resistor in the second-order Chua’s circuit are [1]: f, =

Igzlmi (i = 0,1, or 2 depending on the segment of the
piecewise-linear characteristic of Chua’s diode the equilibrium
point lies in), f, = Ig“l,gu = |g—“|,gv = —Vlg—“l. They
must satisfy the relations futgo < 0 and fugo — f:,gu > 0.
Equations (4) will be used in the following to analyze the
mechanism of Turing pattern formation.

3The symbol y here is unrelated to the one usually associated with Chua’s
oscillator [2]. This is chosen in order to agree with the usual symbol used in
{31

Standard State Equations Approach: Let us briefly discuss
the classical form of the solution of the linear state equations
for the two-grid coupled CNNs. The system (4) may be written
in various forms depending on the ordering of the variables.
As an example, we present at the bottom of this page the
equations for the 1-D case (M = 5, N = 1) where the u’s
are chosen as the first M variables and the v’s as the last M
variables.

In the general case, the solution of the linear system of
2M N equations, assuming simple eigenvalues, has the well-
known form [5]

2MN-1

Z (ri, x(0))eMq;

=0

x(t) = 6)

where X(t) = [u0u1 SecUMN—1VQV] " UMN_l]T is the state
vector, q; are the eigenvectors of the system matrix, r;
represents the reciprocal basis, x(0) are the initial conditions,
and (.,.) denotes the scalar product in C* (n = 2MN). We
recognize the well-known behavior of the solution: a weighted
sum of exponentials (having the exponents determined by
the 2M Nth-order characteristic equation of the system), the
weighting coefficient being dependent on the initial conditions.
This solution, which can be written for any linear system
of differential equations having distinct eigenvalues, shows
the possibility of having unstable modes if some A; have
positive real parts. We could make a change of variables to
decouple the equations by diagonalizing the matrix of the
system or reducing it to a canonical Jordan form. In this way,

o
Uy
g
U3
g | _
?:’0 -
Uy
V2
U3
L04 ]
[ fu=Du D, 0 0 0
D, Yfu—2D, D, 0 0
0 D, Yfu—2D, D, 0
0 0 D, Yfu—2Dy D,
0 0 0 D, Yfu—Du
YGu 0 0 0 0
0 Y Gu 0 0 0
0 0 YGu 0 0
0 0 0 YGu 0
L 0 0 0 0 T9u
"o ]
U1
U2
u3
x | %
Vo
[l
U2
U3
LU‘; J

vfo 0 0 0 0

0 ~fo 0 0 0

0 0 v fo 0 0

0 0 0 v fu 0

0 0 0 0 v feo
vgo— D, D, 0 0 0

D, ~gu—2D, D, 0 0

0 D, ~go—2D, D, 0

0 0 Dv Vgt'_.z-Dv DL‘

0 0 0 Dv 'Ygr_DL J

)
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(a) Three-dimensional and (b) two dimensional representations of the incipient phase of pattern formation in a 50 x 50 array

of two-grid coupled CNN made of second-order Chua’s circuits under random initial conditions. (c) and (d) Final Turing patterns.

we could separate the stable modes from the unstable modes,
but the new state variables would be linear combinations of
the node voltages of the cells, and no relations to patterns
could be made. However, in this case, we would have to
face the problem of handling a very high-order characteristic
polynomial, which is completely impractical. In the next
section of this paper, we will use another way of separating the
stable from the unstable modes with direct relation to pattern
formation.

In general, the linear theory can predict only how the pattern
begins to evolve. From this point of view, the piecewise-linear
character of the nonlinearity is very convenient. However,
when the amplitude grows, the nonlinearities enter the scene,
and the linear predictions are no longer valid. To illustrate the
evolution of a pattern, we present, in Fig. 2(a) and (b), the
initial stage of pattern formation and, in Fig. 2(c) and (d), the
final Turing pattern for a two-grid coupled CNN consisting of a
50 x 50 array of second-order Chua’s circuits (y = 10,mq =
—-1,m; = 0.1,v = 2,C, = —01,C, = 1,e = 2), subject
to random initial conditions for both © and v variables. In all
figures, only the u variable is displayed, and interpolation has
been used for the display.

1II. DECOUPLING OF LINEARIZED STATE EQUATIONS

The essence of the technique in this section is to transform
the original system of 2M N-coupled differential equations to
M N-uncoupled systems of two first-order linear differential
equations, no matter how big M and N are. Moreover, the
new variables have a direct relation to the emerging pattern.

A. The 1-D Case

We first present in detail the solution to a 1-D CNN
composed of M cells. The 2-D case follows by direct gen-
eralization. The main idea of this technique is to look for a
solution of the system (4) as a weighted sum of M space-
dependent functions* ¢pr(m, i), the eigenfunctions of the
discrete Laplacian,

Vzd)M(m,, L) = (15]\1(7”,1: + 1) + qSM(m A 1) - 2¢M(m,i)

= —kZ,¢n(m,i) o
where k2, are the corresponding eigenvalues. The exponent
2 associated with k,, is usually introduced in the literature

4The first argument m should be regarded as a summation index, and the
second one as the current space variable.
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because the eigenvalues are proportional to the square (or
the sum of squares) of sine functions. The negative sign
associated with k,, in (7) is usually introduced so that k2,
is a positive number at least for the zero-flux and periodic
boundary conditions (see Appendix II). Thus, we look for the
general solution of the system (4) in the form

ui(t) = Yoo bar(m, )it (2) P
0i(8) = S8 ae(m, i) (1) o
¥

The temporal and spatial variables in (8) are separated in
the sense that the weighting coefficients 4., and ©,, are (only)
time dependent (even though we will not always explicitly
show the time dependence) while the spatial eigenfunctions
#ar(m, ) are only space dependent. A supplementary property
required for ¢y(m, ) is that they should satisfy the boundary
conditions for all m, so that any linear combination of such
functions will also satisfy the boundary conditions. To simplify
our derivations, it is desirable to choose the eigenfunctions to
be orthonormal; namely,

where 6,,,,, denotes the Kronecker symbol and

M-1

{a,b) = Z a;b;

=0

(10)

denotes the scalar product in CM | where the asterisk denotes
complex conjugation. We need the complex form of the scalar
product because the eigenfunctions are generally complex as
in the case of a periodic (ring) boundary condition. The final
solutions will be real due to cancellations of imaginary parts.

Taking the scalar product of each of (8) with ¢ps(n,1) we
find that, due to (9)

i = Y100 ¢, i)us

on = ity Ohe(m v
n = 0,1,---,M — 1. Readers familiar with linear vector
space or signal theory will recognize that i, and 9, are the
spectrum of u; and v; with respect to the orthonormal basis
{#m(n,i);(n = 0,1,--- .M -1, 4 = 0,1,---,M — 1)}.
Imposing the condition that the functions given by (8) satisfy

the system of (linear) differential equations that describe the
CNN, we have

Yo bar(m, i,
S o (11, 8) D
[fu fv] o aa (s i)
=7
Ju Go L S Gr(my )
] Yoo —k2 b (m, )i
S — k2 b (m, )

Taking successively the scalar product of both sides of (12)
with ¢3,(n,4) and using again m as the current index, we

an

12)

D, 0
0 D,

obtain the following M pairs of linear differential equations

??'m _ fu fv '&m _ L2 Du 0 '&m
ol Rl | S N | PR
m =0,1,---, M — 1. The solutions of (13) have the form

G = Gme*™1t + b, ermat
D = Cer™t + dpetmat

(14)

where )\, and A,,, are the roots of the characteristic equa-
tions

el Ao S )

(15)
ie.,
Mo+ Ak (Do + Do) = ¥(fu + 90)] + DuDuky,
—Y(Dyfu + Dugv)kfn + 72(fugv - fvgu) =0
m=0,1,---,M -1 (16)

and am,bm,Cm,dm are constants depending on the initial
conditions. Thus, using (14), we can write the solution of the
1-D linearized CNN equations (4) in the following form with
separated spatial variables

u;(t) = Z%;Ol(ame’\mlt + bperm2t) s (m, i)
(17)
v(t) = Eff;ol(cme’\mt + dme)‘mzt)qﬁM(m, i).

Observe that the roots of the characteristic equation (16)
depend on the spatial eigenvalues k2,; for each spatial eigen-
value, there are two roots of the corresponding characteristic
equation.

B. The 2-D Case

The 2-D problem can be approached in a similar manner:
find M N orthonormal functions ¢y (m, 1, i, 7) and the same
number of eigenvalues k2, satisfying the relations

V2¢MN(m,n,i,j)
=o¢nun(m,n,i+1,5) + dmun(m,n,i—1,7)
+ oun(m,n,i,5+ 1)+ dppn(m,n,i,5 — 1)
— 4dpn(m,n, i, 5)

= _k3nn¢MN(m7nai7j) (18)
<¢MN(m’ nvivj)7¢MN(p7Q7ivj)> = 6mnpq (19)
M-1N-1
(a,b) =Y Y alby. (20)
i=0 j=0
Using the relations
Ui = Yomeo Someo BN (M1, §)im
Vij = 271\7/1[;01 7127—_-_01 ¢MN(ma n, iaj)ﬁm,n
1=0,1,---,M-1;,7=0,1,--- ,N—-1 (21)
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. M—-1N-1 .
Umn = Zi:O Zj:O ¢*MN(m’nvzv])ui,j
. M-1N-1 .
Vmn = Y izo E]:o Gn(m,m,, 5)vs 5

m=01,-,M-1;n=01,---,N—-1 (22)

and following the same procedure as above we find that our
problem reduces to solving the following M N pairs of linear
differential equations

fl?‘m,n — fu fv ﬁm,n _ 1.2 Du 0 ﬂm,n
[@m,n} =7 [gu gv:| [6m,n ] Fmn I: 0 D”:l ['ﬁm,n:\
(23)

m=0,1,---,M-1;n=0,1,---, N — 1. The solutions have
the form

A

L oy t Amngt
{umm‘—amne 1t byppetmne (24)

ﬁm,n = CmneAmnlt + dmnekmnzt

where Apmn, and Ap,n, are the solutions of the characteristic
equations

10 fu fo 2 |Du O _
I A R 1)
(25)

i.e.,

)‘zn'n. + /\mn[kznn(Du + DU) - ’Y(fu + gv)] + Dukafnn
- W(va“ + Dug‘v)kznn +'72(fugv - fvgu) =0,
m=0,1,---,M—-1;n=0,1,--- N -1 (26)

where @mn, bmns Cmn, @mn are constants depending on the
initial conditions.

Consequently, the solution of the linearized 2-D CNN
equations (4) has the form as (17). (See (27) at the bottom
of this page.)

Equations (17) and (27) are important because the node
voltages are expressed in terms of the spatial eigenfunctions;
there is a relation between the spatial eigenfunctions and the
temporal eigenvalues of the network. The equations give the
node voltages of the CNN as time-dependent weighted sums
of spatial eigenfunctions. To have patterns, it is necessary that
at least one of the temporal eigenvalues have a positive real
part. For instance, if it is known that a particular temporal
eigenvalue has a positive real part, then it follows that the
spatially homogeneous equilibrium point is unstable and the
corresponding spatial eigenfunction will increase with time un-
til bounded by the nonlinearity. In this case, the dynamics will
tend to a pattern assuming the CNN has another equilibrium
point that is stable.

C. Discrete Spatial Eigenvectors

In this section, we consider the spatial eigenvector prob-
lem and specify the form of the eigenfunctions ¢ps(m, i)
and ¢pn(m,n,i,7) that have already been used without
details. Let us first recall the conditions that the functions
éar(m,n) have to satisfy; they must be the M eigenvectors
of the discrete Laplacian for given boundary conditions and
orthonormal with respect to the C scalar product. In the
following, we shall present two sets of discrete eigenfunctions
that satisfy the above requirements, for two typical types of
boundary conditions; namely, zero-flux and periodic (ring)
boundary conditions.> We show in Appendix II that the dis-
crete exponential functions are eigenfunctions of the discrete
Laplacian operator and, as a consequence, any discrete sine
or cosine function is an eigenfunction as well. However, we
shall choose those eigenfunctions that satisfy the prescribed
boundary conditions.

Discrete 1-D Spatial Eigenfunctions for Zero-Flux Boundary
Conditions: In this case, the eigenfunction are the M kernel
functions of the Discrete Cosine Transform [6] which is
defined by the relations

u =% 211\7/11:—01 e[t cos ——(2242']1\2[”
(28)

i, = M5 elilu; cos ZEDmT

where e[0] = %; e[i] = 1 for ¢ # 0. One easily checks that

(2’i + 1)m7r . 9 M (2i + 1)m7r
=4 - s
sin COos oM

2M 2M

i.e., the eigenfunctions and eigenvalues are, respectively,

VZcos (29

(_211;_]\14)7111; k2 = 4sin? on (30)

dr(m, i) = cos Wi

The eigenfunctions satisfy the zero-flux boundary conditions

¢m(m,—1) = ¢p(m,0)
d)M(m,M bt 1) = ¢M(m,M)

and are orthogonal in the interval [0, M — 1].

Remark: We warn the reader that k2, as well as k2,
(in the 2-D case) have, in this paper, the significance of
eigenvalues of the corresponding discrete Laplacian and not
wave numbers—a term used in some papers, including [4].
This remark applies to all discrete spatial eigenfunctions that
are discussed below too.

31

5The families of functions we are going to present are in fact only
orthogonal, not orthonormal; this fact, however, does not affect the preceding
derivations.

_ M-1 N-1
Uij = Zm:O

 —M-1N-1
Vij = Dm0

n=0 (amne/\mnlt + bmne)‘mn2t)¢MN(ma , 7’3.7)

n=0 (Cmnekmnlt + dmne)‘mnzt)(ﬁMN(m’ n, 7‘7.7)

e
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Discrete 1-D Spatial Eigenfunctions for Periodic Boundary
Conditions: In this case, the eigenfunctions are the discrete
sines and cosines, or the complex exponential kernel functions
of the Discrete Fourier Transform [7] defined via

M-1 .
i = 37 Do Ume H ™

(32)
= Z =0 tugemdFm
The eigenfunctions and the eigenvalues are, respectively,
dar(m, i) = eI T 33)
k = 4sin®? — m (34)

We remark that the number of distinct eigenvalues in (34)
is smaller than in the previous cases because of the smaller
period of the sine. However, the number of real eigenvectors is
M;; to each distinct eigenvalue correspond a sine and a cosine.

Discrete Spatial FEigenfunctions for the 2-D Case: The
above results can be easily extended to the 2-D case using
the following simple rules:

(35)
(36)

¢MN(m7 n, Z»]) = ¢M(m’ 2)¢N('Il,j)
Ko = K2+ 42

or, in words, multiply the eigenvectors and add the eigenval-
ues. Indeed,

VZpar(m,i)dn(n,7)
= [pm(m,i+ 1) + da(m,i — 1) — 2¢as(m,4)]dn(n, )
+ dap(m,))[dn(n, 5 +1) + ¢n(n, 5 — 1) = 26n5(n, )]
= Viom(m,i) - ¢n(n,j) + dar(m, ) Vipn(n, )
—knda(m, )on(n, ) = kb (m, i) pn (n, 5)
= ~(kp + k2)ba (m,§)pn (n, 5)
= —k,znnqﬁmn(m,n,i,j).

From this relation, we identify

C o (2¢ + )mm (27 + Dnw
dmn(m,n,i,7) = cos 2M cos SN
2 _ nm
B2, = 4(sin® 2 S +sin” 2 N). 37)

The 2-D equivalent of the ring is the torus; the spatial
eigenvectors and the corresponding eigenvalues are defined
by the relation

2w c2m A mT i nm 2w, 2w
Vi mmigh Tt — —4(51112 Y3 + sin? F)e’ MM el N

From this relation, we identify

¢MN(m7 n, 17]) = ej%miej%ni

2 g(sin? T 4 g2 T
kmn—4(sm M—i—sm N)' (38)

Of course, in the 2-D case, the number of eigenvalues will
be much greater than in the 1-D case, making the problem of
explaining and predicting the patterns more difficult.

D. Initial Conditions

In the following, we refer to the 2-D case for which there are
4MN constants® amp, bmny Cmny Gmn, m = 0,1, , M =1,
n=20,1,.--, N — 1 corresponding to the 2M N independent
initial conditions ug, - - -, upN—1, 0, -, UpN—1 (voltages of
the 2M N capacitors of the array). Using (23) and (24) for
t = 0, we obtain (39) (shown at the bottom of this page)
where A, and A, must satisfy the characteristic equation
(written in a slightly modified form)

()\mnl - ’Vfu + Dukz)()‘mnl —YGv + kaz) =
(Amnz - rqu + Dukz)()\mnz — Y9y + kaz) =
It follows from (40) that the constants G,nn, bmn, Cmn, Gmn
must satisfy the relations

’qu + Duk’rznn)

VfoGu
'7fvgu
(40)

= cmnlyfv

amn( mn; 41
{bmn()\mng ’qu + Duk—?nn) = dmn'va ( )
For example, the zero-flux spatial eigenvectors and eigen- or
values are defined by the relation
Y ()\mnl - ’qu + Dukznn)amndmn
) . _ 2
V2 cos (20 ‘;‘]\l/f)mﬂ cos (25 ‘2}‘;)"” = (Amny — Vfu + Dukpp )bmnCmn. (42)
nr Using the above relations and taking ¢ = 0 in (27) so that
= —4(s1n o T8 2N> ui; = u,;;(0) and v;; = v;;(0), all constants can be determined
(2i + 1)mn (2j + )nr uniquely. In the case of double roots A, = Amn, = Amns
X .
€08 2M €08 2N 6Obviously not independent.

{amn)\mnl + bmn)\mnz = (amn + bmn)('y.fu - Dukyznn) + ryfv(cmn + dmn) (39)

cmn)‘m'n.l + dmn)‘mng

= (Cmn + dmn)(’ygv

— kagnn) + ’)’gu(amn + bmn)



618 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995

(41) and (42) remain valid upon replacing factors of the form
mne ™1t + bppemr2t and terms similar to the above by
(@mn + bmnt)ermnt.

IV. PATTERN FORMATION

We will now use (16) and (26) to explain the mechanism of
pattern formation. These equations give the relation between
the spatial and temporal eigenvalues and thus using (17) and
(27), we can plot an image of the dynamics via the amplitudes
of the spatial modes that are basically cosines and sines. We
refer in the following to the 2-D case; all equations and results
for the 1-D case are of the same form except for the fact that
1-D eigenvectors should be used.’

The scenario of pattern formation is as follows. Due to
nonzero initial conditions, the CNN node voltages will vary in
time according to (27) in the 2-D case; i.e., each node voltage
will be a weighted sum of 2M N modes, each pair of modes
influencing the amplitude of a certain spatial eigenfunction.
Thus, the coefficients @.,n, bmn, Cmn, dmn (Which have been
shown to be related and dependent on the initial conditions)
will determine the weights of the spatial eigenvectors and
the temporal eigenvalues Apn,, Amn, Will determine the type
of initial dynamics: increasing exponentials for positive real-
part modes and decreasing exponentials for negative real-part
modes. Should any of the above coefficients be zero, the
corresponding mode will not appear in the node voltages.®?
Turing patterns can develop when at least one temporal
mode has a positive real part. When more than one temporal
eigenvalue is in the right-half plane (which is common for
large arrays) a competition between modes will appear. Of
course, the process will become nonlinear, and the final
pattern will be decided by the nonlinearity. Eventually, it may
resemble some (distorted) spatial eigenvector or (distorted)
combinations of such eigenvectors. The nonlinearity may
produce “intermodulation” terms (new eigenvectors resulting
from the nonlinear interaction of the initial ones) that influence
the final pattern. In this competition of spatial modes (in
which, due to the nonlinearity new terms can be born), beside
the nonlinearity, two factors are significant too: the initial
values of the corresponding temporal modes and the values
of the real parts of the temporal eigenvalues. The intuitive
feeling that the spatial mode corresponding to the most positive
real part of the temporal eigenvalue will eventually win does
not always happen in practice; the weights of the increasing
exponential terms are also important, and they depend on
the initial conditions. The advantage of using the piecewise-

7Similar formulas can be derived for the continuous space cases too.

8 This is a linear theory result and is valid until the first cell voltage enters
in a nonlinear region. Due to the nonlinear interactions of the spatial modes,
the final pattern may contain spatial components that did not previously exist
in the initial conditions.

ReA(k2)

2 2 o
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Fig. 3. Typical dispersion curve.

linear nonlinearity is that predictions based on linear theory
are likely to be valid for a large range of voltages and remain
valid sometimes (mainly for small-dimensional arrays and
especially in the 1-D case) even after the nonlinearity has
played its role. The technique of separating the variables can
be used to analyze the nonlinear behavior too, but in this
case, the differential equations defining the dynamics of the
amplitude of the spatial modes are now nonlinear and no
longer decoupled.

A. The Dispersion Curve

From the above discussion, it should be clear that patterns
are determined by the temporal eigenvalues with a positive real
part. The graph of the dependence on k2., of the temporal
eigenvalues having the most positive real part is called the
dispersion curve [3] and is described by the relation (43),
shown at the bottom of the page.

We chose the positive sign of the square root as we are
interested in the eigenvalue having the greatest positive real
part. The contribution of the eigenvalues having negative real
parts will tend to zero as time increases. The index mn was
parenthesized because the dispersion curve will be traced as
a continuous function of k% and then samples will be taken
at admissible k2, . In the subsequent relations, the index mn
will be dropped, but we should remember that only M N (M,
in the 1-D case) values of k? = k2,,, are possible; i.e., only
samples of ReA(k?) for k? = k2, are relevant. Thus, the
relation (43) (shown at the bottom of this page) gives, for
each k2, the value of the most positive real part of the
eigenvalues associated with k2. Observe that the dispersion
curve is uniquely defined by 7 parameters only: fu, gu, fu, v,
~, Dy, and D,,. The spatial eigenvalues k2,,, depend only on
m, n, M, N, and the boundary conditions and do not depend
on any of the parameters of the dispersion curve. Table II
containing the spatial eigenvalues k2, for the case M = 5
and N = 6 is presented in Appendix L

A typical dispersion curve is shown in Fig. 3. The dashed
line represents the locus of 7(&%&) - k(zmn)(PJ%Dl);
namely, the real part of the eigenvalue (which is complex
within the dashed interval). The interval between k7 and k3
represents the band of unstable modes corresponding to real
positive roots of the characteristic equation.’

9Those that happen to lie in that interval, if any.

2 _ (fu+ 9v) 2 (Du+Dv)
ReA(k{mnny) = Re{7—2'— - k(mn)—2_

2
+ \/[W(g”;—f") + k?mn)&%%)} +72fvgu}- (43)
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Fig. 4. Critical value of k.

Observe that, for m = n = 0, (36)—«(38) give k%, = 0 so
that the conditions f,, + ¢, < 0 and f, g, — fug, > 0 already
imposed for the stability of the isolated cell also ensure that
the constant spatial mode will be stable; i.e., ReA(0) < 0 in
view of (26) with k2, = 0. This is why the dashed line of the
dispersion curve must intersect the vertical axis at some point
below the origin. There is no contradiction between the fact
that the zero spatial mode is stable and the statement made
in [1] that the equilibrium point of the CNN corresponding
to (Up, Vp) for all coupled cells must be unstable. In fact,
the instability of that equilibrium point ensures the pattern
development while the fact that the zero spatial mode is stable
ensures that the spatially homogeneous pattern will damp out
in time, giving rise to a nontrivial Turing pattern.

Thus, to have patterns, besides the previous two conditions,
we should impose that there exist values k2, # 0 for which
ReA(kZ,,.) > 0; i.e., there exists an interval (band) of unstable
modes. This happens if the following two conditions are
fulfilled:

(vau - Dugv)2 + 4Duvavgu > 0 (44)

Conditions (44) can be derived by analyzing (26). Such
an equation has positive real part roots if one or two of its
coefficients are negative. As from previous conditions, the
coefficient of A, is positive for all k2, the only possibility
is to impose k2, such that the constant term is negative. A
necessary condition is D, f,, + D, g, > 0. Another condition
is that the minimum of the above constant term with respect
to k2, be negative; i.e., the second condition in (44).

Summarizing, the necessary conditions for Turing pattern
formation in two-grid coupled CNNs are

{vau + Dugv >0

Jutgs <0
fugv — fogu >0
vau+Dugv >0

(vau - Dugv)2 + 4Duvavgu > 0. (45

Basically, the first two conditions in (45) correspond to
the requirement that, in the absence of diffusion (cells are
unconnected) the isolated cells are stable!® (ReA(0) < 0). The
last two conditions in (45) ensure the instability of the CNN
when diffusion is present. Analyzing the above equations, one
easily finds that, assuming D,,D, > 0, at least one of the
coefficients in the first equation should be negative so that f,
and g, must have opposite signs (in our case, g, < 0). From

19This is equivalent to the stability of the constant spatial mode for the
whole CNN; namely, when k2, = 0 in (23) and (24).

the third equation, it follows that f, > 0 and D, > D,,. Thus,
to have the second equation satisfied, we must have f,g,, < 0.
Hence, f, and g, must have opposite signs as well.

The domain in the parameter space for which the conditions
for Turing instability are fullfilled will be called the Turing
space of the CNN. Let us finally summarize the conditions for
Turing pattern development in terms of the dispersion relation.

*A band of unstable modes exists, and the homogeneous
spatial mode is stable: (45).

*There exists at least one spatial eigenvalue inside the band
of unstable modes (corresponding to the imposed boundary
conditions).

*The initial conditions should be such that at least one of
the unstable modes could develop.

*The nonlinearity should be such that the growing pattern
could evolve into a stable equilibrium.

Using straightforward calculations, one finds that the peak

of the dispersion curve (Fig. 3); i.e., the value k2 for which
the derivative is zero, is located at the value

s 3 (Du+Dy) —— Y
kp - (gv fu) + \/m f’l)gu DU _ Du

where k2 is real if f,g, < 0 and D, > D, > 0 and is
positive if
(9v = fu)VDuDy + (Dy + Dy)\/ = fugu > 0.

A band of unstable modes will exist for real intersection
with the horizontal axis (real k7 and k3). Calculating the roots
of ReA(k?) = 0 and requiring them to be both real, we obtain
the condition

""(quv -

The limits of the band of unstable modes are the values k?
and k3

(46)

(47)

v
k%,Z = m [(vau + Dugv)

+ \/(vau - Dugv)2 + 4Duvavgu:| . 49

Critical Values: When the two limits of the band of unsta-
ble modes concide, the dispersion curve is tangent to the k2
axis (Fig. 4), and the linear system is at the limit of stability.
This critical value k2 of k? is given by

L2 = Y(Dye fu + Dugo) - Jugv = fou
¢ 2DuDvc -D'u.Dm:

where D, is the critical value of the diffusion coefficient D,
obtained by setting to zero the square root in (49)

(V=Fogu + Vfugo — fvgu)zD
12 v

Let us make several observations concerning the influence
of the dispersion coefficients on the behavior of the CNN.
First, as it was already shown, the necessary Turing conditions
cannot be satisfied with D,, = D,,. From the above formulae,
we observe that, for D, # 0 and D, — oo, the band of

unstable modes becomes {0, 275‘; }. In this case, the upper limit

(50)

Dvc =

(5D
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= 0 - 0.0(())000 0.2(;795 1.03000 2.03000 3.03000 3.73?205
1 0.38197 0.64992 1.38197 2.38197 3.38197 4.11402
2 1.38197 1.64992 2.38197 3.38197 4.38197 5.11402
3 2.61803 2.88598 3.61803 4.61803 5.61803 6.35008
4 3.61803 3.88598 4.61803 5.61803 6.61803 7.35008

of the band determines the lowest spatial eigenvalue that can
belong to this band. Finally, for D,, = 0 (R, = o0); i.e., for
the case of one-grid coupling, one can easily show, using (16)
or (26) that the lower limit of the band of unstable modes is
k? = W"—%——Tﬁ while the upper limit is infinite.

B. Role of Dispersion Curve and Initial
Conditions in Pattern Formation

In this subsection, we will give examples for 1-D arrays
illustrating how the periodic patterns appear. We will discuss
the case of arrays having one and then several spatial unstable
modes.

First Case—Only One Spatial Mode Unstable: The follow-
ing example refers to a 1-D array of length N = 30 with
zero-flux boundary conditions in the case when the band of
unstable modes contains only one spatial eigenvalue. The
eigenvalues for this case are shown in Table L

Choosing v = 8.5, D,, = 1, D,, = 38, and using cells with
the parameters, mg = 0.1, m; = mg = —1, v = 2, € = 0,
E=1,C, =-0.2, C, =2 (the elements of the Jacobian
matrix are: f, = 0.1, f, = -1, g, = 0.1, g, = —0.2) we
obtain the dispersion curve shown in Fig. 5(a) whose band of
unstable modes, ranging from k7 = 0.30260 to k3 = 0.50267
contains only the 6th mode; i.e., the value k = 0.3819. The
dispersion curve has a peak of 0.02327 at k2 = 0.39069. Using
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ot

random initial conditions with maximum 0.1 amplitude, the
time evolutions of the u- and v-voltages shown in Fig. 5(b)
and (c) have been obtained. We show in Fig. 5(d) snapshots
taken at time ¢ = 20, before any cell reached the nonlinear
region and in Fig. 5(e) at ¢ = 40, when the pattern was
already stabilized and some cells are in the nonlinear region
(Fig. 5(d) and (e) are “sections” from Fig. 5(b) and (c) at

621

0.1+

0.05 "

0.054

-0.1

(g)

two different time moments). In this case, the only spatial
mode that can develop in the linear part of the transient is
that corresponding to m = 6. The main points are that the
periodicity of the evolved pattern is determined by the (only)
spatial unstable eigenmode and the nonlinearity did not change
the periodic aspect of the pattern inherited from the linear part
of the transient; i.e., the pattern continues to be periodic with
the same spatial period as it can be seen from Fig. 5(b) and
(c) and also comparing Fig. 5(d) and (e). We remark that, by
choosing appropriate parameters for the CNN, it is possible
to select only one spatial mode. However, if the dimensions
of the array are big, due to the fact that the adjacent spatial
eigenvalues are very close to each other, their selection will
be difficult because, on one hand, very careful tuning of the
parameters is necessary and, on the other hand, the real part
of the (only positive real part) selected temporal eigenvalue
will be very small and thus, the transient will be very long.
Moreover, if the initial conditions do not contain the above
spatial mode, there will be no pattern assuming there is no
noise, as shown for example in Fig. 5(f) and (g) for zero initial
conditions except for the first and the last cell u-voltages,
which are equal to +0.1 and —0.1, respectively, (in this case
the 6th mode, which is a symmetric one, is not contained in
the initial conditions).
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Fig. 7. Time evolutions for ,respectively, the (a) u-voltage and (b) v-voltage in a 1-D CNN with M = 30 subject to random
initial conditions for the u-voltages and zero for the v-voltages; (c), (d) Same as above but with a different realization of the

random initial conditions.

Second Case—Several Spatial Modes Unstable; No “De-
fects”: Let us examine Fig. 3 for the 1-D case too. If, for
instance, there are two eigenvalues kg and kf inside the band
of unstable modes, at least two kinds of patterns could evolve:
those corresponding to cos %ﬂ and cos %M (for zero-
flux boundary conditions). Intuitively, the former is more
likely to appear as it corresponds to a temporal eigenvalue
with a greater real part. Indeed, this happens for random
initial conditions when the weights of the spatial modes are
almost equal so that the most favored mode wins. However,
some appropriate choice of initial conditions could favor the
appearance of the pattern corresponding to k2 or even other
patterns due to the influence of the nonlinearity. The following
examples will be enlightening.

Consider again a 1-D CNN with M = 30. We choose
the same parameters for the reduced Chua’s circuit as above
and the diffusion coefficients D, = 1, D, = 40. In this
case, v = 5 and the elements of the Jacobian matrix are:
fu=01, f, = -1, g, = 0.1, g, = —0.2. The corresponding
dispersion curve is shown in Fig. 6. It has a peak of 0.25014
at kf, = 0.1207, the limits of the band of unstable modes are

k? = 0.02870 and k2 = 0.46464, and the critical values are
D,. = 35.88854 and kZ = 2.36068. There are five spatial
eigenvalues inside the band of unstable modes; i.e., those
corresponding to m = 2 to m = 6 and printed in boldface
in Table 1. We show in Fig. 7(a) and (b) the time evolution
of u;(t) and v;(t) for t € [0,25] and ¢ = 1---30 (the cells
have been labeled from 1 to 30) for random initial conditions
of maximum 0.5 amplitude for the u-voltages and zero for
the v-voltages. We observe that the final pattern corresponds
to m = 4, the value for which the real part of the associated
temporal eigenvalue is the largest. Thus, even though the initial
conditions were random, the final pattern is a distorted replica
of the most favored spatial eigenfunction since all spatial
modes have been excited with the same weight. Different
realizations of the random conditions may produce the same
pattern, or one having the opposite-phase, as happened in the
case shown through the time evolutions in Fig. 7(c) and (d).
Next, we use deterministic initial conditions aiming to
control the pattern evolution. This time the initial conditions
will contain only one or two spatial modes with specified
amplitudes and wavelengths. The time evolutions represented
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Fig. 8. Time evolutions of u- and v-variables for initial conditions for the u-voltages (and zero initial conditions for the v-voltages),
chosen to excite the 2nd spatial mode (a) and (b) and the 6th spatial mode (c) and (d).

in Fig. 8(a) and (b) were obtained with the following initial
conditions:

(2¢ + Lymm

u;(0) = 0.1cos 530

Thus, even though the real part of the temporal eigenvalue
associated to the m = 2 mode is smaller, due to the fact
that the weights of all spatial eigenvectors except for m = 2
are zero, the imposed patiern could be obtained. Using a
similar procedure to excite only the 6-th spatial mode; i.e.,
using m = 6 in the above initial condition, we obtained the
evolutions shown in Fig. 8(c) and (d).

The following results have been obtained using wu-initial
conditions containing both spatial modes m = 2 and m = 6
with various amplitudes (v;(0) = 0 as before)

(2i +1)2
2:30

(2i + 1)6m

(0)=A4
u;(0) cos 230

+ Bcos
The time evolutions shown in Fig. 9(a) and (b) have been
obtained for A = B = 0.1; observe that the most favored
spatial eigenfunction is that corresponding to m = 2. The
patterns in Fig. 9(c) and (d) were obtained for A = 0.1 and

B = 0.2; observe that still the pattern corresponding to m = 2
has been selected even though its initial weight was smaller.
However, in this case, the tendency to develop the 6-th spatial
mode is apparent. In both cases, the final pattern has the same
shape.

Using A = 0.1 and B = 0.4, we observe from the time
evolution shown in Fig. 9(¢) and (f) that already the 6th spatial
mode has been selected. Finally, using wu-initial conditions
corresponding to m = 8 (i.e., a spatial mode placed outside
the band of unstable modes) and zero for the v-voltages as
before, we obtained the time evolutions shown in Fig. 10(a)
and (b); i.e., all cells evolved to the (unstable) homogeneous
equilibrium point (Up, Vo).

Remark: The above behavior assumes an ideal noise-free
CNN. In a physical CNN, the inherent noise will, however,
determine the emergence of a pattern, the most probable
evolution being one of those already shown in Fig. 7 since
in this case all modes will be excited and the imposed initial
conditions will not influence the CNN.

Third Case—Many Spatial Modes Unstable; “Defects”:
The example that follows was obtained for a similar 30
cells 1-D CNN, the only parameters that were changed being
~ = 15 and D, = 250. In this case, the dispersion curve,
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Fig. 9. Time evolutions of u- and v-variables for u-initial conditions containing two spatial components and zero initial conditions

for the v-voltages (see text).

represented in Fig. 11(a), contains ten spatial eigenvalues (for
m = 3, k2 = 0.0978 to m = 12, k%, = 1.3819). Using
random initial conditions of unity amplitude for the u-variable
and zero initial conditions for the v-variables, the evolutions
shown in Fig. 11(b) and (c) have been obtained, and the final
stable patterns are represented in Fig. 11(d). We remark the
fact that the final pattern, even though approximately periodic,
contains “defects” that have been produced by the conjugate

effects of the high amplitude of the initial conditions: they
affect the transient and the large band of unstable modes,
thereby allowing a competition between many modes.

Similar examples can be produced for 2-D arrays as well.
However, in general, it is virtually impossible to predict the
final pattern. The nonlinearities can play a decisive role, and
patterns having no resemblance to those predicted by linear
theory considerations may emerge.
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TABLE II
k2 =0.0000 k2 =0.0109 k2 =0.0437 k2 =0.0978 k2 =0.1729 kZ =0.2679
k2 =0.3819 k2 =05137 k% =0.6617 k2 =0.8244 k102 =1.0000 k12 =1.1865
k122 =1.3819 k132 =1.5841 k142 =1.7909 k152 =2.0000 k162 =2.2090 k172 =2.4158
k182 =2.6180 k192 =2.8134 k202 =3.0000 k212 =3.1755 k222 =3.3382 k232 =3.4862
ko242 =3.6180 k232 =3.7320 k262 =3.8270 ko 72 =3.9021 k282 =3.9563 k292 =3.9890
_ and A, = 4sinh®% are the corresponding eigenvalues.'!
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Fig. 10. Time evolutions of (a) u-variable and (b) v-variable for u-initial
conditions containing only the 8th spatial mode placed outside the band of
unstable modes and zero v-initial conditions.

APPENDIX |
SPATIAL EIGENVALUES k2,, FOR M =5, N = 6
AND ZERO-FLUX BOUNDARY CONDITIONS

The eigenvalues have been calculated using the relation

B = A(si® I sin? 27

i sin 2M,—*—sm IN

(see (37)) with M = 5, N = 6, m =
n =0,---,5 (See Table II).

0,---,4, and

APPENDIX 11
THE DISCRETE EXPONENTIAL FUNCTIONS AS
EIGENFUNCTIONS OF THE DISCRETE LAPLACIAN

In general, ), is called an eigenvalue of the linear operator
L associated with the eigenfunction ¢, if Lo, = Aa¢q. In the
following, we show that functions of the form e where
i is the space index, a may be complex, and b is real, are
eigenfunctions of the 1-D discrete Laplacian operator L = %

In particular, for a = ja, where j = /=1 we have
V2ei@itd — 4ginh? % Cedoith — _46in? & . eIt and,
taking the real parts, V2 cos(ai +b) = —4sin® § cos(ai +b).
In these cases, appropriate for the analysis we made in this
paper, if we denote k, = 2sin 3, the eigenvalues are A, =
—k2. Observe that the eigenvalues do not depend on the initial
phase b of the exponential or cosine functions.

APPENDIX 1II
CONTINUOUS-SPACE CASE

In the following, we briefly discuss the continuous-space
version of the two-grid coupled CNNs. In this case, the grids
will be replaced by sheets of homogeneous conducting mate-
rials.!? The aim is twofold: on the one hand, the equations we
are going to derive are identical to those describing continuous
pattern phenomena in physics, chemistry, ecology, and biol-
ogy. On the other hand, the previously derived equations can
be viewed as resulting from a discretization of the distributed
or continuous-space problem; in this situation, the discrete
equations approximate the continuous-space ones. Following
a procedure similar to the derivation of the telegraphers’
equations; i.e., writing KCL for the infinitesimal nodes (z,y)
similar to (7, j) of Fig. 1 and using the well-known fact that the
conductance is proportional to the transversal dimension and
inversely proportional to the longitudinal dimension, we have

(C AzAyPiex®
= —i1(Uny, Voy ) ATAY + Gy RL(Artigy — Dotsy)

+Gu—2—§(A3umy — A4umy)
CyAzAyPes®)
= —io(Ugy, Voy) ATAY + Gv—ﬁ—z(szy — AoUzy)
L +Gv—2—Z(Agvzy - A4Uzy).

Dividing by AzAy and passing to the limit, we obtain
Qu(z,yt) _
at

{ Bu(z,yt) _
5t

where Cy, Cy, Gy, and G,, are the distributed (per unit area)
“surface” capacitance, and conductance, and V2 is the contin-
uous 2-D Laplacian.

(52)

—&ia(u(z, y, 1), v(z,y,1) + & V2u(z,y, 1)
(53)

1 The 2-D case follows as a generalization using (35) and (36).

12The physical realization of such “distributed” CNNs would have to face
the problem of the ground plane that should exist between the two external
plates.
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(a) Dispersion curve for ¥ = 15 and D,, = 250. Time evolutions of u- (b) and v-variables (c) for random initial conditions

for the u-voltages (and zero initial conditions for the v-voltages); (d) Final patterns with “defects.”

Straightforward normalization gives the equations:

{a—u%z‘yﬂ = vf(u(z,y,1),v(z,9,1)) + DuV?u(z,y,t)
% = vg(u(z,y, t),v(z,y,t)) + D, Viv(z,y, 1,‘)(5
which are the reaction—diffusion equations describing Turing-
pattern phenomena in many areas of science; e.g., biology. Of
course, to solve the above equations, initial conditions of the
form u(z,y,0) and v(z,y,0) as well as boundary conditions
which, in particular, may be zero, zero-flux, etc., must be
given.

VIII. CONCLUDING REMARKS

Even though the Turing pattern formation is intrinsically
a nonlinear process, the linear theory developed above has
sufficient power to predict not only the conditions for Turing
instability but also certain qualitative features of the final
pattern. The problem of Turing pattern generation in the two-
grid coupled CNN was investigated by decoupling a large
system of linear differential equations into pairs of linear
differential equations. No matter how large the array is, this
spatio-temporal decoupling technique reduces the analysis of
pattern formation to the analysis of an uncoupled system of
two first-order linear differential equations directly related
to the spatial eigenvectors. The influence of the initial and

boundary conditions and their relation to the spatial eigenvec-
tors and eigenvalues are derived. Computer simulation results
are presented in Part III of this paper.
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