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Coexistence of Excitability,
Hopf and Turing Modes
in a One-Dimensional Array
of Nonlinear Circuits

Moncho G6émez-Gesteira, Vicente Pérez-Mufiuzuri, Leon O. Chua, Fellow, IEEE, and Vicente Pérez-Villar

Abstract—The behavior in the vicinity of a point where ex-
citable, Hopf and Turing modes coexisting is analyzed within the
framework of a simplified version of Chua’s nonlinear circuits.
The different factors (e.g., initial and boundary conditions and
small changes in circuit parameters) which determine the final
state of the system are numerically studied.

I. INTRODUCTION

N HIS CLASSIC 1952 paper [1], Turing suggested the

possibility of spontaneous formation of stationary patterns
in a system where only reaction and diffusion (RD) were
involved. Nevertheless, it was necessary to wait until 1990 [2],
[3] to obtain experimental evidence of such patterns; generally
called Turing patterns. From then on, considerable efforts have
been devoted both theoretically and experimentally to the char-
acterization of the different patterns and to the study of their
relationships with similar structures observed in biological
systems [4]. Even recently, much interest has been focused
both on the appearance of self-replicant spots [S]-[7] and on
the interaction between Turing and Hopf modes [1], [8]-[10].

On the other hand, it is well known that an array of Chua’s
circuits, which can be described by means of a set of ODE’s,
can exhibit most of the phenomena typically found in RD
systems; namely, spiral waves [11], travelling waves [12],
chaotic behavior [13] and Turing patterns [14], [15]. This kind
of system has some important advantages when compared to
continuous (chemical) systems, because both the excitability
of each cell and their diffusion can be externally controlled,
which cannot, obviously, be done in chemical or biological
systems.

Throughout this paper, we will study the behavior of an
array of Chua’s circuits in the vicinity of a triple point, where
Turing and Hopf modes and a trivial stable state coexist.
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II. MODEL

As it was previously mentioned, we will use a set of
discretely-coupled dynamic systems where each cell is de-
scribed by a Chua circuit [16], [17]. This system can be
described by the set of ODE’s

U; = Oé[’U,‘ — h(ul)] + Du[ui.,_l - 2u; + ui—l]
V; =U; — U+ w; + DU[Ui+1 — 2u; + 'Uz'—l]
wi = —Pv; — yw; (D

where h(u) describes a three-segment piecewise-linear func-
tion

h(u) = miu+0.5(mo —ma)(Ju+ 1| = lu—1]) +e. (2)

In order to obtain a simpler system, the set of (1) can be
transformed by supposing w changes with a significantly faster
time scale so w is determined by the instantaneous values of
the other variables according to

w=——v 3)
v
obtained by setting w; = 0 in (2). This approximation is
equivalent to replacing the inductor in Chua’s circuit by a
short circuit, thereby obtaining a second-order reduced Chua’s
circuit.
Thus, the new two-variable system will be described by

i = f(ui, vi) + Dultiips — 2us + i)

0; = g{ui,v;) + D,viy1 — 2v; + vi—1] 4)
with
Flui,vi) = alvi — h(wi)]
g(ui, ’Ui) =U; — VY ®)
where
_y+p
V= —.
Y

The set of fixed parameters we will use throughout this pa-
per is {a,m,,m1, Dy, Dy} = {-10.0,-1.0,0.1,1.0,40.0}.
The parameters v and ¢ will be considered free parameters,
though their values will be restricted to the intervals ¢ € {0, 4]
(since the effects due to ¢ are symmetric for positive and
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Fig. 1. The (e,») parameter space. For the set of parameters

{a,mo,my, Dy, D} = {-10.0,—1.0,0.1,1.0,40.0}, three different
regions were identified for different (e,r) values: excitable, Turing and
Hopf. Note the existence of a point P where these three states coexist.

negative values), and v € [—4.0,—0.1], (since only for nega-
tive values of v can Turing structures be obtained and since
the system can exhibit three equilibrium points (bistability) if
v > —0.1, and we are only interested in systems with a sole
critical point). Moreover, within the above parameter intervals,
it is possible to find a point where three different states can
coexist.

If we let f,, fu, gu, and g, denote the partial derivatives
of f(u,v) and g(u,v) evaluated at the dc steady state (equi-
librium point), we can study the stability of that equilibrium
point when only reaction terms! are taken into account. So, an
equilibrium point is stable if

fu+g9.<0
fugv - fvgu > 0.

(6a)
(6b)

On the other hand, when diffusive terms are taken into
account, a stable point (satisfying (6a) and (6b)) can give

rise to a Turing instability. To obtain this behavior, two new
conditions must be imposed

(7a)
(7b)

fuDy + 9,Dy >0
(quv + gvl)u)2 - 4DuD'U(f'ugv - fvgu) >0.

So, in the (v, ) parameter space, three different regions can
be considered, namely; (a) excitable region, which corresponds
to those parameter values fulfilling conditions (6a) and (6b).
Physically, this corresponds to the existence of an excitable
stable point, which can execute a large excursion in the phase
space after being perturbed beyond a certain threshold. This
is equivalent to a monostable or single-shot electronic circuit;
(b) Hopf region, which corresponds to parameter values where
at least one of the previous conditions ((6a) or (6b)) is not
fulfilled, so there exists an unstable equilibrium point and a
stable limit cycle around it; (c) Finally, there is a Turing region
where (6a), (6b) and (7a), (7b) are fulfilled (the system can
be driven unstable by diffusion). The spatially homogeneous
state is stable, but it can become unstable due to any small
perturbation, and will eventually tend to a stationary but

'In this paper, we adopt the standard terminology on Turing patterns,
where “reaction terms” means without diffusion (D, = D, = 0). In circuit

terminology, this is equivalent to investigating a single “uncoupled” Chua’s
circuit.

nonhomogeneous structure. In Fig. 1, the three regions are
represented as a function of the parameters (v, €). Observe the
existence of a critical point P(rv; = —1.0,¢; = 2.0), where
the three states coexist.

In the next section, we will study the different conditions
that will influence the system behavior when initially placed in
the vicinity of the triple point P. Throughout our calculations
we will always consider the same computational space (500
circuits) and an explicit Euler method with a time step At =
1073,

III. SYSTEM EVOLUTION NEAR A TRIPLE POINT

A. Influence of Initial Conditions

When the system parameters are located at the triple point
(vt,€+) and zero-flux boundary conditions are considered, the
trivial state (v = v = 1), which corresponds to the most stable
mode, dominates the Turing and Hopf modes and is the only
one that persists for any initial condition.

When the parameter ¢ is varied slightly along the line
separating the Hopf and the Turing regions (v = —1.0;0<e—
es < 1), different behaviors can be observed as a function
of the initial conditions, namely; (a) central peak (CP) initial
condition, which consists of a perturbation of Chua’s circuits
located in the central region (from circuit 225 to circuit 275),
to a v value much bigger than the equilibrium state. The rest
of the circuits are assumed to be operating at the equilibrium
value (u 2 1). (b) random (R) initial conditions, which consist
of a perturbation of each circuit to a u value around the
equilibrium position. In both cases, the v variable is assumed
to be equal to its equilibrium value (v = 1).

For any e value in the vicinity of the triple point
(2.0<e<2.05)R initial conditions were unable to create
Turing structures; however, it does give rise to the appearance
of an oscillatory solution (Hopf mode). On the other hand, for
CP initial conditions, different behaviors were observed for
different ¢ values. Thus, for ¢ € (2.0,2.001273) Hopf (i.e.,
oscillatory) solutions were obtained, and for (2.001274, 2.05)
Turing (i.e., stationary) solutions were obtained. In Fig. 2(a)
and (b), these behaviors are shown for slightly different values
of €.

In spite of the fact that both solutions proved to be stable
against small perturbations once the final state had been
reached, for those values of (v,e) near the Hopf-Turing
transition, but in the Hopf region, an instantaneous small
random perturbation (Aw) applied to each circuit during the
transient state was sufficient to generate a Turing pattern,
and not the Hopf solution that would be predicted for these
parameter values.

Fig. 3(a) and (b) summarizes the dependence of the system
behavior on the initial conditions. The amplitude of the so-
lutions is represented as a function of the parameter . For
oscillatory solutions, the amplitude represents the difference
between the extremum values of each variable along the limit
cycle. On the contrary, for Turing solutions, the amplitude rep-
resents the distance between the maximum and the minimum
value of each variable in the stationary structure.
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Fig. 2. Hopf and Turing evolution. For the same set of parameters related
in Fig. 1 and v = —1, two qualitatively different system evolutions were
observed for the same initial (CP) and boundary (zero-flux) conditions, and
slightly different values of €. In (a), for ¢ = 2.001273, a Hopf solution
was obtained and in (b), for ¢ = 2.001274, a Turing solution was obtained.
Observe that in the top of (a), parallel horizontal lines of smoothly varying
gray scale levels repeat periodically in time, independently of the spatial
(horizontal) position. This means all circuits are synchronized and oscillate
with a common waveform. In (b), however, near the top when transients have
disappeared, we obtain constant vertical lines (independent of time) whose
gray-scale value varies smoothly along the spatial direction in a periodic
manner, which by definition constitutes a Turing pattern.

B. Influence of Boundary Conditions

Let us now investigate the effects of the boundary conditions
assuming a fixed initial condition. In this section, only R initial
conditions will be considered. Note that, although one can
analyze the shape of the structures when only spatial terms are
considered by solving an homogeneous eigenvalue problem
[4], such analysis does not provide any additional information
on the system evolution when placed near a triple point.

We have observed that for v = -1.0,0<¢e — &, < 1, and
imposing the Dirichlet> boundary conditions u(0) = v(N +
1) = 1.0 and v(0) = v(N + 1) = 1.0, where v = v = 1.0 is
the equilibrium position and N the number of circuits in the
array, the system evolves into a Turing pattern whose peaks
are different near the boundaries. The temporal evolution of an
R initial condition converges to the Turing structures shown

2 A boundary condition is usually called a Dirichlet condition if the value
of each variable is fixed at each boundary. In this case, we solve the circuits
in the array (form 1 to V) and we fixed the values of both variables (u, v)

in the circuits 0 and NV + 1. These values are used to calculate the spatial
derivatives in circuits 1 and N.
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Fig. 3.  Amplitude of (u, v) in Turing and Hopf solutions. The amplitude of
both variables, calculated as explained in the text, are plotted as a function
of ¢ for different (CP) and (R) initial conditions and zero-flux boundary
conditions. In (a), for R initial conditions, the final state is always a Hopf
solution whose amplitude (u and v variable) increases linearly with . In (b),
for CP initial conditions, the behavior shifts from Hopf to Turing within the &
interval (2.001273, 2.001274). The = amplitude is continuous (does not change
abruptly) at the transition point while the v amplitude has a discontinuity at
this point, though it increases linearly both before and after the transition. Note
that the u amplitude is the same in both figures and the v amplitude is only
equal in the interval € € (2.0,2.001273) where a Hopf solution is obtained
for any initial condition. The set of parameters was the same as in Fig. 2.

in Fig. 4 when the Dirichlet boundary condition previously
related was imposed. At some instant after the structures have
stabilized, the amplitudes of the peaks close to the boundaries
are significantly larger.

C. Influence of Random Changes in v and ¢
in the Proximity of a Triple Point

Until now, we have assumed all cells to have exactly the
same dynamics; i.e., every circuit has the same parameters
and diffusion properties. This does not represent a realistic
case either in biological or chemical systems. Even from an
electronic circuit point of view, each circuit has a tolerance
bigger than 1%. Even though the variation of the parameters
can have some influence on system behavior [13], [18],
this effect is merely quantitative when the parameters are
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Fig. 4. Turing structure obtained with Dirichlet boundary conditions
(u(0) = v(0) =1 and u(N 4+ 1) = v(N + 1) = 1, where N = 500 is the
number of circuits in the array). For the set of parameters given in Fig. 2,
€ = 2.001273, R initial conditions Turing structures were obtained. Note
that the amplitude of the peaks is much bigger near the boundaries.
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Fig. 5. Effect of Ac applied near or far from a triple point. Different Turing
patterns were obtained when a small white noise was added to the & parameter
both in the vicinity of the triple point, and far from it. In (a) (¢ = 2,v = —1)
a “noisy” stationary pattern was obtained, while in (b) (¢ = 2,v = —=2) a
Turing pattern (with a characteristic wavelength) was obtained. In both cases,
we choose the same set of parameters as those in Fig. 1 and Ae = 1073,

distributed around a point where there exists only one possible
state; namely, excitable, Turing or Hopf. We now show that, if
the values of (v, ¢) vary randomly around a triple-point, new
patterns can be observed.

In the following numerical simulations, we have carried
out all calculations with zero flux boundary conditions and
CP initial conditions, since this allows us to obtain different
behaviors when ¢ is varied along the line » = —1. In all

U
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Fig. 6. A Turing mode superimposed on top of a Hopf mode. For the set
of parameters given in Fig. 1 and (¢ = 2.001275, » = —1) the final state
(a) is similar to the oscillatory (Hopf) solution in Fig. 2(a). However, in (b)
observe that for different time instants, there is a relatively small stationary
Turing structure superimposed on top of a large-amplitude oscillatory (Hopf)
solution.

calculations, a random white noise was added to the parameter
values in such a way that

£ €leo — Ae/2,e, + Ac/2)
vEle, — Av/2,v, + Av/2] (8)

where Ae and Av are the amplitudes of the noise in both
variables.

Initially, a random distribution around (14,e;) was con-
sidered, in all cases the system attained a stationary final
state, similar to Turing structures but with peaks of different
amplitudes and different wavelengths between peaks. We
called them “noisy Turing” patterns since they look like a
noisy spatial signal, but stationary in time. Note that, when
Turing structures are considered, the final state corresponds
to the most probable mode, the one with the biggest positive
real part [4], [14]. However, near a triple point, several modes
have a nearly identical real part and, thus, they spread with
nearly identical velocity. Fig. 5 shows for the same noise
amplitude (Ae), two different final states; the pattern in
Fig. 5(a) is observed when is near the triple point, whereas
that of Fig. 5(b) is obtained when is far from the triple point.
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Fig. 7. Effect of inhomogeneities near the Hopf-Turing transition. For the set of parameters given in Fig. 1 and with circuits
(200, 300) below the line of Hopf-Turing transition (¥ = —1.005), the rest of the circuits being above this line (¥ = —0.995),
the system behavior was studied near and far from the triple point (¢ = 2.0). For ¢ = 2.01 (near the triple point), one can
observe (a) how the circuits in the Turing region induce a Turing behavior on those circuits located in the Hopf region. In the
steady one can observe a Turing structure with two different amplitudes as shown in (b). For ¢ = 2.2 (far from the triple point),
observe (¢) how an oscillatory (Hopf) solution remains in the Hopf region and both modes (Hopf and Turing) remain coupled
in the Turing region. In (d) this behavior can be observed for two different time instants. In this case, the amplitudes of both

modes in the interval (200, 300) are approximately the same.

Another system behavior can be observed when the value is
chosen close to the point where, for CP initial conditions, the
final state changes from a Hopf to a Turing solution. We have
considered ¥ = —1 and € = 2.001275, which corresponds to
the appearance of Turing structures for CP initial conditions
and zero-flux boundary conditions. Small random changes in
e(Ae < 2.5x107?) gave rise to Turing structures. During their
formation a competition between several modes was observed
but, eventually, only one remained. On the contrary, when
Ae>2.5%x1073 (e, — Ae/2 can become smaller than &,) the
noisy Turing patterns described above were observed.

On the other hand, when a small Av centered around v,
and € = 2.001275 were considered, different calculations with
the same initial conditions (CP), parameter values, Av and
zero-flux boundary conditions gave rise to different behaviors.
In particular, a Turing or Hopf was obtained. The most
unexpected behavior was observed in those cases when a
Hopf solution was finally reached. In Fig. 6(a), observe that
as time increases, the gray scale pattern becomes periodic
(near the top edge) in time and nearly uniform in space. To
show the pattern along the spatial direction (horizontal) is
not homogeneous even after the transients had settled down,
we have magnified the instantaneous value of u(¢) at three
time instants; namely, ¢ = 1200 t.u. (time unit), 1450 t.u.

and 1800 t.u. Observe the relatively small spatial variations
remain almost identical (local extreme points occur at the
same position), independent of time, and constitutes therefore
a small-amplitude Turing pattern, superimposed on top of a
large amplitude Hopf oscillation.

D. Influence of Spatial Inhomogeneities

In this final section we study the system behavior in the
proximity of a triple point when most of the circuits are located
in the Hopf region near the transition line and a small group
of circuits is located in the Turing region very close to the
transition line.

Throughout our calculations, for circuits in the interval
(200, 300) the parameter v is chosen as v = 1.005 (Turing),
and v = 0.995 (Hopf) for the remaining circuits, with zero-
flux boundary conditions and R initial conditions. We have
considered an interval consisting of 100 circuits in order to
improve our image quality, but qualitatively similar results
would be obtained for any interval containing more than ten
circuits.

In Fig. 7(a) one can observe the system evolution when e
is chosen close to the triple point (¢ = 2.01). The circuits
in the Turing region (between 200 and 300) are able to
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induce the appearance of Turing structures in the Hopf region,
giving rise to a final state where two Turing structures of
different amplitudes coexist. This coexistence can be observed
in Fig. 7(b), which corresponds to a time instant after the
structure had stabilized.

" A different situation is shown in Fig. 7(c), which corre-
sponds to a value far from the critical point (¢ = 2.2). In this
case, the oscillatory solution remains in the Hopf region while
in the Turing region, the Turing mode is superimposed on top
of the Hopf mode. In this case the amplitudes of both modes
are similar, as shown in Fig. 7(d), where two different time
instants are plotted.
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