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ABSTRACT

A spectral technique is proposed for studying and predict-
ing chaos in a one-dimensional .array of Chua’s circuits.
By use of a Double Fourier Transform the network is re-
duced to a scalar Lur’e system to which the describing
function technique is applied for discovering the existence
of periodic wave. Finally by the computation of the dis-
tortion index an approximate tool is given for detecting
the occurrence of chaos.

I. INTRODUCTION

In recent years a great interest has been devoted to the
study of the dynamics of networks composed by elemen-
tary cells that exhibit a chaotic behaviour (see [1], [3], [4],
(61, [71, (8], [9D)-

In particular in [3] and [4] a classification of the dy-
namic phenomena occurring in arrays of chaotic oscillatcrs
has been established. Among the electrical engineering
community many researchers concentrated on the study
of large arrays made of Chua’s circuits (that is a simple
and robust example of chaotic oscillator, [5]); it has been
shown that such arrays may model the propagation failure
phenomenon [7] and that may have application in image
processing [8], [9].

One of the most interesting behaviours that can be ob-
served in a one-dimensional array of Chua’s circuits is the
spatio-temporal chaos [6]. Due to the high dimension of
such networks only a few analytical tools are available for
their study (see [2]).

In this paper we investigate the dynamic behaviour of
a chain of Chua’s circuits by use of a spectral technique,
that represents the extension of the technique introduced
by Genesio and Tesi in [10] to systems that have both time
and space dependence.

The method is based on the fact that all the cells are
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identical and therefore by introducing a suitable Double
Fourier Transform the network can be reduced to a scalar
Lur’e system (see Fig. 2). Then by use of an extension of
the describing function technique (see [10]) the existence
of periodic waves can be predicted. Finally by computing
the distortion index an approximate tool is developed for
detecting the occurrence of chaos. The accuracy of the
proposed technique has been confirmed by means of time-
simulation.

We remark that the advantage of the method is that
it permits to predict chaos by means of simple algebraic
computations and without performing any simulations
(that for large arrays of nonlinear circuits are rather time-
consuming); moreover the method is not only applicable
to the array of Chua’s circuits but to any network com-
posed by identical elementary cells.

II. CHAIN INTERCONNECTIONS OF CHUA’S CIRCUITS

We investigate the structure obtained by interconnecting a
finite number (M) of classical Chua’s circuits [5]: each cell
of the chain (shown in Fig.1), composed by two capacitors
Ci and C,, an inductor L, a conductance G and a Chua’s
diode ([5]) is coupled to the other cells by means of a
conductance Gj.

We will show that the dynamic behaviour of such a
structure can be studied by means of a suitable spectral
technique; moreover we remark that such a technique can
also be applied to the study of similar structures and in
particular to the chain interconnection of canonical Chua’s
circuit introduced in [6] and to the chain of Chua’s circuits
considered in [7].

The dynamics of the k-th cell of Fig.1 (1 < k < M),
after the scaling transformation 7 = tG/C, and w; =



2G, G 2G,

Figure 1: The fundamental cell of the chain

yr/G, can be described by:

dx
_Ei = —(l'k — 7)) + wg — 7($k - Zk—l)
r
dwk
i
dzk
= —a(zr — zx) — an(zk) — av(zk — Tk+1)

C C G 1 W
where a = Ei—, 8= L—GZZ- , Y = -51—, n(zx) = —éi(zk).

We assume, for the sake of simplicity, that zo = zpr = 0,
i.e that the first cell is ended by a shortcircuit, in series
with the conductance of value 2G; whereas the last cell
(M — 1-th) is ended by the series of the conductance 2G;
with the parallel of the inductance L, the capacitor Cf,
and the Chua’s diode. Moreover, according to [11], we
assume that the nonlinearity of the Chua’s diode can be
approximated by:

n(s) = ~Hat £ )
where the parameters have been fixed to the values m =
4/5, k = 2/45, G = 7/10, which ensure that the k —
th Chua’s circuit of the chain, if not coupled, has three
equilibria located at z; = —1.5, 2z, = 0, 2, = 1.5 (see [11])
In the next section the time variable 7 appearing in (1)
will be denoted again with ¢.

III. THE SPECTRAL METHOD

For studying the above dynamical system we propose a
spectral technique based on the introduction of the Double
Fourier Transform F(w,n) (denoted with a capital letter)
of functions f(t) discrete in space and continuous in time:

k=00 oo
Fem= Y [ _fetexp(=jor)exp(=jnk) - ()

k=—o0

By applying the Double Fourier Transform defined
above to the set of equations (1) the following relations
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Figure 2: Chain of Chua’s circutts as a Lur’e system

are obtained:

J"*’X(W»U) = _(1 +7)X(°-’a77)+W(°-’,77)
+(1 +ye=iM)Z(w,n)

JwWi(w,n) = -BX(w,n)

jwZ(w,n) = ofl+ye")X(w,n) —a(l+7)Z(w,n)
"‘O‘N(Wy’?)

(4)

From (4) the Double Fourier Transform of z(t),

Z(w,n), can be expressed as a function of the Double
Fourier Transform of n(zz), N{(w,n):

Z(WJY) - —L(W,W)N(wﬂ) (5)
with:
a(—w? + jw
Ly = X +L§(w(,1nw; 7 +7)
D(w,n) = —jw’—w’(1l+a)(1+7)

+jw[B + 2a7(1 — cos )} + aB(1 +7)
(6)
Therefore the dynamical system (1) can be represented in
the Lur’e form shown in Fig. 2. Note that for jw = s
and ¥ = 0 (i.e no coupling) the transfer function L(w,?7)
coincides exactly with that reported in formula (12) of
[11].

The spectral approach that we propose is based on the
Lur’e representation of Fig. 2 and extends the technique
developed in [10] to systems that are both time and space
dependent. It consists of two fundamental steps: the first
one is the prediction of the existence of a periodic wave by
means of a suitable extension of the describing function
technique; the second is the evaluation of the distortion
index which provides, according to [10], an approximate
tool for determining whether chaos occurs.

In order to investigate the existence of a periodic wave,

we represent the state z;(t) in the following approximate
way:

zro(t) = Alsin (wot + kng) — sin (wot — kno)]  (7)
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Figure 3: Square of the distortion indez A%, versus v

where A and wp are parameters to be determined whereas
7o is assumed to be equal to the frequency of the first
spatial harmonic, i.e. 1o = 2x/M. It is easily verified
that the choice of zxo(t) satisfies the boundary conditions
zo(t) = zp(t) = 0 as required. Note that different bound-
ary conditions can be satisfied by simply changing the
approximate function zro(t).

According to (2), the output of the nonlinear block of
the Lur’e system n[zx(t)], results to be expressed by:

nlzo(t)) = [-ZA+ %A:’]

[sin (wot + kmo) — sin (wot — k7o)

— & A3[sin 3(wot + kno) — sin 3(wot — k7o)
— 3% A3[sin (wot + 3kno) — sin (wot — 3k7o)]

+%A3[Sin (3wt + kng) — sin (3wt — k1))

By neglecting both spatial and time higher order harmon-
ics, nfzxo(t)] can be approximated by:

9k
4G
-[sin (wot + kno) ~ sin (wot — kno)] (9)

nlao(®] ~ [—FA+ A7)

Now, according to the Lur’e structure of the system of
Fig. 2, in order to have a periodic wave the following pair
of constraints in the two unknowns w and A have to be
satisfied:

Im[L(w, 0)] = 0 (10)
[—g + %A’}L(w, n)+1=0 (11)

From (10) it is possible to determine analytically the time
oscillation frequency; there are two values of w satisfying
(10), but only one of them is compatible with a real value
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Figure 4: Time-domain simulation of z¢(t) versust: (a)
y=0.1, (b) y=0.2

of Ain (11):
wo:\/ﬁ_i_a__g_l_'-—a)é}_iy_)z_*.o-

§ = ay(1 — cos(n))

S [ L

(12)

(13)

Finally by (11) the approximate amplitude of the peri-
odic wave is derived:

m
41 =/ 32 [Flwo,m0) - ] (15)
This completes the prediction of the characteristic param-
eters of the periodic wave (7).

The principal limitation of the above procedure derives
from the fact that the higher order harmonics have been
neglected; in order to evaluate such an approximation we
compute the distortion index, defined, according to [10],

as:
_ 1Z@) — zo (@l
A= T el ()
where Zj(t) represents the output of the open Lur’e sys-
tem of Fig. 2 when the input is z;0(t) and the norm of a
function fi(t) is defined as:

1 M-1 .7
TRCTES= B ATAC It
k=00

After some algebraic manipulation the explicit espression
of A? results to be:

_ ’CZA4(|L(3UJ0, 37’)0!2 + 9|L(3w0, 1]0[2 + QIL(wo, 31)0}2)

2
A 16G2|L(wo, mol?

(18)
A small value of the distortion index indicates a low-
pass filtering both in time and in space: in this case the



existence of the predicted periodic wave is reliable. In [10]
it is shown that for time-dependent systems there is an
interval of values of the distortion index (medium filtering
condition) corresponding to the existence of noisy limit
cycles, that represent a strong indication of chaos. We
will show that the distortion index plays a similar role also
for the system under analysis; in particular if it crosses a
threshold value a noisy periodic wave occurs, that can be
interpreted as the occurrence of spatio-temporal chaos.

In order to show that, we assume M = 10, o = 19/2,
£ = 100/7 and we only vary the parameter v representing
the coupling between the cells. With 4 = 0 the cells are
not coupled and each circuits works in a chaotic region
(see [11]).

The plot of the square of the distortion index A? versus
v is reported in Fig. 3, while the simulation of the chain
of Chua’s circuits is shown in Fig. 4 for two characteristic
values of +.

The simulation shows that chaos occurs for v less
or equal to 0.1, and it disappears by increasing v (see
Fig. 4(b)). By looking at the plot of Fig. 3 it is seen that
there exists a threshold value A? = 0.03 (corresponding
to ¥ = 0.1), such that for A? > A? the system exhibits
spatio-temporal chaos, whereas for A? < A? the system
converges towards a periodic wave. By performing other
simulations (with different parameters « and ) we have
found that the value of 4 corresponding to the occurrence
of chaos does change, but the threshold value A? remains
approximately constant. It turns out that by the compu-
tation of the distortion index we have a simple tool for
predicting chaos, that is of importance because only a few
analytical tools are available for studying the dynamics
high-dimensional systems.

1V. CONCLUSIONS

We have proposed a spectral technique for predicting
chaos in a one-dimensional array of Chua’s circuits; such
a technique represents the extension of the method pro-
posed by Genesio and Tesi in [10] to systems that have
both time and space dependence.

The method gives an approximate tool for detecting
chaos by simply performing some algebraic computations;
its accuracy has been confirmed by time-simulation.

Future work will concern the complete study of the bi-
furcation phenomena in the space of the parameters «
and B of the chain of Chua’s circuits (that can be carried
out analytically if the nonlinearity is approximated by a
suitable polynomial).

Finally we remark that the method is suitable for all
networks made of elementary identical nonlinear cells
(then for example for Cellular Neural Networks exhibit-
ing a complex dynamics).
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