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A Frequency Approach for Analyzing and
Controlling Chaos in Nonlinear Circuits

Roberto Genesio, Alberto Tesi, and Francesca Villoresi

Abstract— The paper presents a frequency domain approach
for studying the chaotic dynamics of an important class of
nonlinear circuits. By formulating an elementary model of chaos
and using the harmonic balance principle, techniques for the
analysis and the stabilization to a periodic solution of complex
systems are developed. They result in engineering tools which
are simple and practical, although not rigorous in principle,
providing a qualitative view of the global dynamics in study.
Some applications concerning the recent unfolded Chua’s circuit
are considered.

I. INTRODUCTION

VER THE PAST few decades, one of the most exciting

and interesting ideas developed in nonlinear dynamics is
that concerning the complex and chaotic behavior of systems.
Chaos has been the object of intense research from all the sci-
entific disciplines (biology, chemistry, mathematics, physics,
engineering, etc.) as well as from theoreticians and natural
philosophers. So, many advances have been made in capturing
such complicate phenomena and in introducing differently
oriented methods and techniques for the analysis of chaotic
dynamics. To this regard, the availability of increasingly
powerful computers played an essential role in describing the
actual behaviors and in encouraging the developments of new
approaches to the problem.

Recently, after that a general knowledge of the essence and
main characteristics of chaos has diffused in the scientific
communities, practical implications of these ideas have been
perceived and widely accepted in various technological fields.
This fact leads to novel applications where the chaos has to
be, in some sense, controlled and two possible paradigms, the
first one negative since chaos must be avoided and the second
one positive when chaos is a desired dynamics, are considered
in a growing number of contributions [1]. In particular, there
is no surprise that challenging and promising new directions
of research appear in engineering problems and in particular
in the area of system and circuit theory and applications (see,
for example [2], [3]).

In this framework, the purpose of this pdper is to give a
contribution to the treatment of system with chaotic dynamics
presenting an engineering approach to the problem. It is
a frequency domain approach which comes from classical
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Fig. 1. Basic feedback system.

methods familiar in electronic and mechanical fields, so being
particularly appropriate to connect together new and conven-
tional concepts of nonlinear dynamics.

The presented approach is founded on the harmonic balance
principle [4] (the same of the well-known describing function
method), and using a basic idea on an elementary chaos model
it leads to practical techniques for analysis and control. Such
techniques have an engineering flavor, not being rigorous in
nature, since they should allow one to reach qualitative results
of reasonable accuracy on the global system dynamics at low
computational cost. In particular, the prediction procedures
have been widely applied to many classical and new chaotic
systems with the empirical evidence of good reliability of the
results [5], [6].

In this paper, the treatment has been limited to one class
of dynamical systems of particular interest in the area of
system and circuit theory. Sections II and III briefly present
the analysis techniques, while the control problem, which takes
into account some needs of periodic stabilization of chaos, is
exposed with some detail in Section IV leading to a guaranteed
design of a feedback controller. As a conclusion, in order to
illustrate the application of the proposed approach for analysis
and especially for controlling chaotic dynamics, some cases
are considered and discussed in Section V with reference to
the recent unfolded Chua’s circuit which exhibits a very rich
variety of complex behaviors [7].

II. SYSTEM REPRESENTATION AND MAIN CHARACTERISTICS

Consider the basic feedback structure of Fig. 1 where L is
a linear time-invariant dynamic system and A is a nonlinear
time-invariant static and memoryless system. The block £ can
be described by its transfer function

L(s) = 29 M

where s is the complex variable and p(-) and ¢(-) are poly-
nomial operators, while the block A is represented by the
nonlinear single-valued function n(-). The system of Fig. 1
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is unforced and y(t) denotes its”scalar output. In terms of
differential equation the system is governed by the form

4(D)y(t) + p(D)nly(t)] = 0 2

where D is the differential operator.

The feedback structure in study (see also [6]), well known in
control engineering as Lur’e form [4], [8], is an important class
of representation of circuits and systems also with regard to
their chaotic dynamics.

Since the methods presented in the paper are based on a
first harmonic study, assume for the system output the form

yo(t) = A+ Bcoswt, B,w>0 3)

and assume that the corresponding nonlinearity output (see
Fig. 1) n[yo(t)] is expanded in Fourier series as

n[yo(t)] = No(A, B)A+N1(A, B)BCOSwt+ 4)

The nonlinear system A is characterized, in an approximate
form related to the (steady state) periodic regime, by the bias
and w frequency real gains

ki

.1
NO(A, B) = m

nlyo(t)] dw t %)

™

nlyo(t)] cos wit dwi ©)

-7

N, I(A’ B ) - =B
which are the well-known describing function terms [4], [8].
As an extension, one can define higher frequency complex
gains Ni(A, B), k =2, 3,---, which describe the remaining
terms of (4).

Now, some definitions concerning constant and estimated
periodic solutions of the system of Fig. 1 are introduced as
main elements for the following paper developments.

* Equilibrium Points (EP’s): the admissible constant output

values y = E;, j =1, 2,- - - of the system. From (1) and
(2) they solve the equation

y+n(y)L(0) = 0. @)

The local stability features of the EP’s E; can be inves-
tigated by standard linear techniques substituting to the
block N the gain (linearization)

n'(E;) = dr;;y)

. (®)

y=E;

* Predicted Limit Cycles (PLC’s): the approximate periodic
solutions yo(t) of the system derived by the describing
function method. According to (3), (5) and (6) these PLC
conditions are

A[l + No(A, B)L(0)] =0 ©

1+ Ni(A, B)L(jw) = 0. (10)

Such equations follow by imposing the harmonic bal-
ance principle [4], [8] along the system loop of Fig.
1, where the transfer function L and the nonlinearity
n have been evaluated at their steady state gains of

zero and w frequency. Equations (9) and (10) must be
solved with respect to the parameters A, B and w and,
as a particular powerful interpretation, condition (10)
graphically corresponds to the intersection of the Nyquist
plot of L(jw) with the function —1/N;. In general, when
B tends to zero the relation (10) expresses the Hopf
bifurcation existence [9] and the relation (9) leads to a
bias value A = E;, being E; the EP where the bifurcation
occurs. Such a point can be viewed as the generator of a
family of periodic solutions.

The stability features concerning yo(t) can be evaluated
from (9) and (10) by means of the Loeb criterion or
similar procedures [10].

Any periodic solution y(t) indicates in the state space
a limit cycle which is called predicted since it derives
from a heuristic analysis and its exact shape and even
existence are uncertain. The reliability of the prediction
depends on the distortion along the system loop (see
below).

* Distortion: the amount of the neglected higher harmon-
ics concerning a PLC yp(t) of frequency w. It can be
expressed by the quantity

x = 150(t) — w®lle

GIE (v

Here, the symbol || -||2 denotes the Ly norm on the period
27 /w and go(t) is the steady-state periodic output of the
system that is obtained when the closed loop is broken
just before N (see Fig. 1) and the signal yo(¢) is injected
into N.

Small values of A, in a symbolic way A < 7, indicate
that the open loop system is an efficient low-pass filter and
that the corresponding PLC is reliable. Indeed, rigorous
arguments can be used to guarantee the existence of a
true periodic solution in a defined neighborhood of the
predicted one under suitable conditions on A [4], [8].

The introduced elements are generally easy to compute even
for high-order systems (distributed parameters or experimental
data), due to the use of input-output models in Fig. 1, and in
simple cases, they result in analytical forms.

III. THE PREDICTION OF CHAOTIC DYNAMICS

The use of the elements considered in Section II to detect
conditions of complex dynamics is based on the essential idea
that, roughly speaking, a chaotic behavior is a kind of noisy
limit cycle [11]. This means that there exists some mechanism
of perturbation which operates on conditions where periodic
motions tend to occur.

By considering the several types of transition that take place
from regular to chaotic regimes when a suitable parameter is
moved, two phenomena appear to be important in relation to
the point of interest, and they have the following geometric
characterization:

1) the homoclinic orbit, which is a trajectory starting from

an unstable equilibrium point along an outgoing eigenvector

and returning to it along an incoming eigenvector [9]
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2) the period doubling, which appears when a stable peri-
odic trajectory shows a double loop due to the emergence
of a component of twice period [9].

Both of these situations can be viewed as cases where a
possible stable limit cycle respectively interferes 1) with an
equilibrium point close to it of unstable characteristics and 2)
a stable periodic perturbation of twice period.

In this framework, the objective is now that of deriving
mathematical relations, approximate in nature, which corre-
spond to the situations 1) and 2) intended as leading indicators
of a chaotic behavior of a system [11], [S], {6].

According to the considerations of Section II the common
existence of a potential limit cycle can correspond to the
existence of a PLC with a distortion not sufficiently small,
that is A > 7. Otherwise, for A < 5 the PLC indicates a
true limit cycle. Therefore, the proposed conditions for two
independent and alternative mechanisms of chaos onset are
written as in the following:

1) interaction PLC-EP (homoclinic orbit):

(e there exists a PLC yg(t) satisfying
(9) and (10),
which is stable (Loeb or similar
criterion),
\e and such that A > 7,
(e there exists an EP E;
satisfying (7),
e which is unstable (linearization),
e and such that:
E; = A+ Bceoswt = yo(t),
\ for some ¢.

limit cycle )

perturbation

12)
The last condition expresses the fact that the EP, which
must be different from the generator of the PLC, falls
within the projection onto the y axis of the same
PLC yo(t). This is introduced as a closeness condition
since otherwise the presence of the EP tends to be not
important for the PLC dynamics [11], [5], [6].

2) period doubling:

‘e there exists a PLC y(t) satisfying
(9) and (10),
e which is stable (Loeb or similar
criterion),
e and such that A > 7,
® 1t 1S:
14+ N;1(4A, B, 9)L(jw/2) = 0.
2 13)
The last condition (13) results from the harmonic balance
of w/2 frequency terms along the loop of Fig. 1. It
follows from the assumption that a small w/2 component
is added to the PLC so that the nonlinear system A can
be described by its complex incremental gain, namely
Ni, as
2

limit cycle

perturbation {

1 /7 .
Ni(A, B, ﬂ)doteq—/ n'[yo(t)]cos(%Jt—OeJ(“’/Zt_ﬂ) d%t.
3 ) _n

(14)
This relation is similar to (5) and (6) defining N, and
Ni: the presence of the derivative n' is due to the
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linearization of n around yo(t) and ¥ denotes the delay
phase of the w/2 perturbation with respect to the PLC.
In graphical terms the solution of (13) corresponds to the
intersection of the Nyquist plot of L(jw) with a suitable
circle defined by N1 occurring at a frequency which is

the middle of that d%:ﬁning the PLC [10], [5], [6].

The two sets of conditions concerning the simple models
1) and 2) can be solved using the main system characteristics
of Section II, that is PLC’s and EP’s, in the basic equations
(12) and (13). So, it is possible to find the parameter regions
where the above complex phenomena are estimated and where
chaotic behaviors can be expected. In addition, the state space
location of these motions is derived and in simple cases all
the results are obtained in analytical form [11], [5], [6].

In such a global view of the possible dynamics exhibited
by a class of systems, the distortion A takes a quantitative
meaning since it can be thought as a free parameter to be
varied and for which the limit 7 of the transition between
periodic (A < 7) and chaotic (A > 7) solutions results
precisely defined.

The prediction techniques described in this section represent
for the chaos what the describing function method is for
the limit cycles. They have been largely applied to many
classical and new chaotic systems by giving in any case
qualitatively correct results, of reasonable accuracy, with quite
simple computations. More complicate chaotic attractors have
been derived by componing the elementary models described
by situations 1) and 2) [11], [5], [6].

IV. THE CONTROL OF CHAOTIC DYNAMICS

In the general topic of controlling chaos one of the most
studied problem is the system stabilization to a periodic solu-
tion (see, for example [2] and [12]). In particular, the problem
appears to be meaningful when some main characteristics
must be preserved and hence the original system chaoticity
introduces peculiar aspects of control.

Before presenting a precise statement it is important to
remark that the formulation of the control problem, as well
as its solution procedure, is strongly connected with the main
idea introduced in the analysis of Section III, that is looking
at the chaos as a noisy limit cycle. In a certain sense this idea
will be used in an inverse way with respect to what is made
in the analysis approach.

4.1. Problem Statement

Consider a system of the form shown in Fig. 1 and assume
that it exhibits a chaotic behavior and a variety of other regular
dynamics in the different regions of its state space. The aim
is to design a control of this system such that the following
specifications are satisfied:

a) Stabilize the chaotic motions to an admissible periodic
solution y4(t). This means that the desired solution y4(t)
must be connected in some way to the original behavior
of the system. Typically, y4(t) can be fixed as an average
of such chaotic motions, so tending to the limit cycle
which is the basis of their model of Section III (noisy
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limit cycle). More generally one can also select a reduced
amplitude y4(t) and force the system (in its parameter
space) toward the Hopf bifurcation.

b) Preserve the EP’s of the original system.

¢) Preserve the stability features of the interesting EP’s.
This can correspond to maintain the same number of
unstable eigenvalues for the chaotic and the controlled
system or even to have the same eigenvalues.

Therefore, the control aim is to remove chaos (point a)
without modifying the essential features of the given system
(points b and c) far from this behavior. The chaos replacement
is made in terms of the most similar regular regime, the
periodic one. From a geometrical point of view the strange
attractor [9], which can be thought as a bundle filled of
trajectories, is substituted by a limit cycle. In the typical case
the limit cycle is the average trajectory of the bundle and
so the controlled process intuitively results in the nonchaotic
system which is the closest one to the given (chaotic) system.
This physically means that the control energy is small and
easy transitions between the two operating modes are possible,
as required in certain applications [1]. When reduced limit
cycles are the goal of the control the strange attractor is
pushed towards its nucleus and the system is moved away
from the chaotic behavior. This can be required to ensure a
regular dynamics for a larger range of certain parameters of
the original system (robustness) [2].

4.2. Solution Structure

In order to solve the posed control problem a feedback
compensator is selected as shown in Fig. 2. It is made by
a nonlinear static block described by the polynomial function

h .
ne(y) = Y iy’ (15)
=1

and by a linear (washout) filter [2] of transfer function

Lo(s) = A>0. (16)

S
PEDY
In (15) and (16) A is a suitable integer to be selected, while
~i»i=1,2,---,h and X are the unknown coefficients which
define the control. This structure is the simplest one to produce
a nonlinear action while having no steady state effect in
constant regime [12], [13]. As made for n by formulas (5) and
(6), the describing function real terms No.(7;) and N1c(7y;) of
the nonlinearity n. can be defined as well as the higher order
complex harmonic gains Ni.(%), k =2, 3,--- .

To satisfy the above control specifications a, b, and c, the
following considerations and conditions are given concerning
the system of Fig. 2:

a) Assume that the periodic solution to be attained has the

form

ya(t) = A+ Bgcoswt, By, w>0 a7y

where By is the desired amplitude, which can be fixed
in the range between the average of the chaotic motions
and a small value, and the parameters A and w are not
given a priori.

ORIV L(s) y(t)

controller

Le(s) ne()

Fig. 2. Structure of the controlled chaotic system.

In order to have the periodic solution (17), impose
now that its parameters satisfy the describing function
method. In other words, according to Section II assume
that yq(t) is a PLC for the system of Fig. 2. The related
harmonic balance conditions simply result in

A[1+No(A, Bg)L(0)+Noc(A, Ba, 7:)Lc(0, A)L(0)] = 0
(18)

14N1(4, Ba)L(jw)+Nie(A, B, %) Le(jw, NL(jw) = 0.

19)

By considering that L.(0) = 0 as shown by (16), the
relations (18) and (19) can be rewritten as

A1+ No(4, B4)L(0)] = 0 (20)

Nlc(Aa By, 'Yi)Lc(jwa ’\)
= —[1+ Ni(4, Ba)L(jw)}/L(jw). 2D

The reliability of this PLC depends by the distortion (see
Section IT) A, of the controlled system which is defined
as in (11) by the relation

. ga(®)

Auli, A) = - yd(t)”2‘ 22)

llya(®)ll2

Now, §4(t) is the steady state system output when the
loop is broken as shown in Fig. 2 and the input to the
nonlinearities is y4(t).

Therefore, to guarantee that the solution (17) is actu-
ally attained, the controller is defined by those parame-
ters corresponding to the condition

min A (y;, A). 23)
Y1,A

b) The presence of the washout filter (16), with L.(0) = 0,
structurally ensures that the controlied system has the
same EP’s of the original system.

¢) Since the washout filter (16) introduces one additional
stable dynamic mode, a linearized analysis of the system
in Fig. 2 shows that the conditions to maintain the
stability features of any EP E; are expressed in terms of
inequalities on the slope of the controller nonlinearity as

_
am(Ejv’\)7
j:]-azv"'yl (24)

1 ,
—— < nl(E;, W) <
o (B < elEr 1)
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In these relations, where [ is the number of the EP’s
of control interest, the positive quantities o,, and os
respectively denote the minimum and the maximum
intersection with the real axis of the Nyquist plot of

Le(w, M) L(jw)
1+ n/(Ej)L(jw)

The conditions (24) can be strengthened by considering
some margins of stability, until to impose n., = 0 that
corresponds to maintain in the EP’s all the same original
eigenvalues.

Then, summarizing these considerations, the control spec-
ifications are essentially fulfilled when the compensator pa-
rameters are selected according to conditions (20), (21), (23),
and (24). The sense of the proposed solution is that of
i) synthesizing a feedback control in such a way that the
describing function method just predicts the desired periodic
solution ((20) and (21)) and ii) using the degrees of freedom of
the controller to have a corresponding small distortion ((23))
and a negligible effect on the local stability features ((24)).

The typical case where By is fixed as the average of the
chaotic motions has a particular meaning [12], [13]. Here, the
desired solution y4(t) given by (17) is intuitively the PLC
recognized as chaos by the analysis of Section III. Then,
according to (10) computed for B = By, the right-hand side
of (21) vanishes and the condition reduces to

Nlc(A, Bd, ')'i) = 0

(25)

(26)

Therefore, the controller stops the w frequency as well as
the zero frequency terms (since L.(0) = 0) maintaining the
same original PLC’s, and it makes small the system distortion
by the introduction of suitable higher harmonics to reduce
the ones existing in the given process. This effect leads to
a true limit cycle, and it can be said that the role of the
control is to remove the disturbing actions from the noisy
limit cycle (chaotic regime), hence restoring the basic limit
cycle (periodic regime). Reversely, in the analysis of Section
IIT the perturbations able to transform a possible limit cycle (a
PLC) in a chaotic behavior were investigated. In practice, By
can be derived by prediction techniques as those of Section
III or by experimental way. The number A and more generally
the specific degree of the coefficients +y; are selected taking
into account the main harmonics of the nonlinearity n which
have to be compensated.

Finally, it is important to remark, according to the related
considerations of Section II, that the rigorous existence of the
desired periodic solution (17) can be shown, also giving its
accuracy, by an appropriate reduction of the corresponding
system distortion [4], [8]. In this sense, while the analysis of
Section III results in approximate conclusions, the proposed
control solution, which is known as distortion control in [13],
can be precisely justified.

4.3. Solution Procedure and Validation

With respect to the signal yq(t) given by (17) define the
real h-vectors

y=m v - ml" X))

823

s

3 [va(t) y3(t) yh(#)]" coswt dwt

(28

(A, B) = —
p y Pd} — p Bd
where the symbol 4T denotes the transpose of .

The describing function of n. becomes (see (6) and (15))

Nic(4, Ba, v:) =p™v. 29

Then, define the complex h-vectors

™

A, By = — [ty 20) - g6 e dut,

7By J_

k=2,3,--- (30

and recalling that N, indicates the higher harmonics complex
gains of the function n, introduce the h x h matrix D, the
h-vector d and the scalar 6 in the form

D(A. B 2) = B—ﬁ
( y Ddy W, ) = 2A2 T Bg

2,3,

37 |L(jkw) Le(ikw, N)*[gi(A, Ba)di (A, Ba)l (1)
k

. B?

d(A, Bg, w, X) = (m)

2,3,

- 57 [L(jkw)[? Re [N{(A, Ba)Le(jkw, Nai (A, Ba)]  (32)
k

BZ 2,3,
d . 2 2
T gy) O IHRIPIN(A, B

(33)

54, Ba) = (
where g; denotes the conjugate of g.

It can be easily shown that the square of the distortion (22)
can be written as

Ag = (A7 de w, )‘) = ’YTD'Y + 2dT’Y + 6. (34)

Finally, define the real function
®(A, By) = A[l + No(A, By)L(0)] (35)
the complex function
. _[1+Ni(4, By)L(jw)]
T(A, By, w, \) = — . - (36)
(A Bar 0 ) = =L, )

and with respect to the EP’s E; the real h-vectors
g(E;)=[1 2E; 3E? nEr T,

Now, in terms of relations (29) and (34) = (37) the complete
control conditions (20), (21), (23) and (24) derived in Section
4.2 can be restated in the following optimization problem on
the coefficients v and A

mi/r\l ['yTD(A7 Bg, w, Ay
Y
+2d7 (A, By, w, My + 6(A, By, w)] (38)
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subject to the constraints

P (A, Ba)y = ¥(4, By, w, A) (39)

®(A, By) =0 (40)
- < gT(Ej)r < I
om(Ez, N IS B )

The important fact is that the linear dependence on « of
the controller has produced, for any fixed A, a standard
quadratic optimization problem. Indeed, the essential control
action is just due to  which must suitably shape the different
higher harmonics to compensate those produced by the original
nonlinearity n (Fig. 2). The role of ) is different and less
significant since it only must limit the high frequency gain of
the filter L. of (16) without introducing undesirable dynamics
in the solution.

Therefore, the solution procedure of the problem (38)+ (41)
separates the selection of -y and A according to the following
steps:

1) From (40) derive

A= A(Bg) = Aq 42)
neglecting the case A = 0 since those of Section III are
essentially asymmetric models of chaos.

2) Substitute (42) in (39) and consider the imaginary part
of the obtained equation which is

Im¥(A, By, w, \) = 0. (43)

In the range of validity of (43) assume a value A = \g >
0 which is sufficiently large to avoid the introduction of
slow dynamics in the controlled system. Hence, from
(43) determine the corresponding w = w(By, A\g) = wyq

3) Use Ay, wg, Aq in (38), (39) and (41) leading to the
problem
m’)%n [’YTD(A(L Bd’ W, Ad) + 2dT(Ad7 de wq, Ad)’Y]
44)
subject to the constraints
p"(Aa, Ba)y = Re U(Aq, Ba, wa, \a) ~ (45)
1 - 1
e < g (Ej)Y < — o,
oa(Bj, Aa) 7 By om(Ej, Aa)

4) Solve the standard problem (44) - (46) with respect to v
obtaining the controller parameters -y = -y, as a function
of the given amplitude Bj,. In the reasonable assumption
that the number [ of EP’s of interest is not greater than
the number A of the components of , the admissible set
of this vector is shown to be non empty. In particular,
since the first component -y; does not appear in (44) the
problem is equivalent to a quadratic minimization with
{ linear inequality constraints on h — 1 variables.

T
LT T8

Fig. 3. The unfolded Chua’s circuit.

5) Guarantee that the derived control system really attains

the periodic solution y4(t) by verifying (i) the stability
and (ii) the obtained distortion.
The point (i) can be investigated by one of the usual
indicative stability criteria associated with the describing
function method [10]. Certainly, it is important that the
EP generating the PLC y4(t) is constrained to a suitable
instability by one of the relations (46). Concerning point
(ii) consider that the minimum distortion decreases with
the number ~ of the control parameters. So, if it is
possible, the value which ensures the existence of a true
periodic solution close to the desired one y4(t) [4], [8]
can be obtained by suitably increasing h.

V. APPLICATION TO THE UNFOLDED CHUA’S CIRCUIT

Consider the Unfolded Chua’s circuit drawn in Fig. 3 [7].
This is a recently presented electrical system, simply derived
by the well-known Chua’s circuit [14], which can exhibit the
qualitative dynamics of any autonomous third-order system
containing one odd symmetric three-segment piecewise-linear
function. Its state equations result in

vy _ _ G G 1=
A= —Gc—lvl +G—v2 - & n(v)

dvg _ G

dd't = 0211)1 sz + C2 Z3 (47)
dig _ _ 1, _ Ro

a — "LV2T L3

where the nonlinear characteristic is written in the form

a(y) = Gey + - (G - Go)(ly+E|-|y-E]). 48

The unfolded Chua’s circuit can be represented in the basic
feedback structure of Fig. 1. After a scaling transformation
which defines the new time variable (G/C5)t, assuming y =
vy and

Cy

a:a’ ﬂ:

Cy e

Icz P LGR 49)

the transfer function of the linear part (see (1)) is found as

afs® + (1 +p)s + (84 p)]

$+(1+atp)s?+(B+p+ap)s+af 0

L(s) =

while the system nonlinearity results in n(y) = n(y)/G.

Now, the purpose of the section is to present and discuss the
application of the analysis and control techniques of Sections
III and IV to some complex behaviors of this circuit.
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TABLE 1
COMPARISON OF PREDICTION RESULTS WITH ACTUAL BEHAVORS OF THE SYSTEM, WHERE A = APERIODIC (STABLE) MOTIONS, P = PERIODIC
MortioNs, PD = PErIOD DOUBLING, SS = SINGLE SCROLL CHA0S, DS = DOUBLE ScroLL CHAOS, U = UNSTABLE MOTIONS

stable interaction " . .
, PLC with B2 =0 Pl::rll((i)lgd dlSl()rIlOl? system
4 B .,ie,B>A doubling A Ao behavior

0 — — NO — — — A

—0.01 163 Hopf NO — — — P

—0.10 1.44 0.95 NO — 0.023 0.008 P

—-0.15 1.34 1.00 NO YES 0.029 0.009 P

—0.20 1.25 1.03 NO — 0.034 0.008 P

-0.25 1.17 1.06 NO — 0.038 0.007 PD

—0.30 110 1.07 NO — 0.041 0.007 PD

—0.35 1.03 1.08 YES — 0.044 0.007 SS

—0.40 0.96 1.10 YES — 0.046 0.007 DS

—0.50 0.84 1.105 YES — 0.049 0.009 DS

—0.60 0.73 1.108 YES — 0.050 0.012 DS

=065 pstable  PLC YES — — — u
5.1. Chaos Prediction To this regard the following Table I presents the obtained
Assume in (50) and (48) the numerical values ana!y's1s re.asults m' tel'ms'of the main elements (only. for the
‘ positive bias), by indicating when the above mechanisms are
predicted and what is the corresponding actual behavior of
=67, B=143, G./G=-12, Gp/G=-0T the system. Observe that the EP at E = 0 always results to
(D pe unstable, while the quantity A, expresses the distortion of

with the normalization £ = 1 and regard as variable the
parameter p which is moved on the negative axis. Observe
that just the parameters o and 3 define the classical behavior
of the original Chua’s Circuit when p = 0 [14]. Recalling the
characterization of Section III determine the EP’s by solving
the equation (see (7))

(52)

y+ (1 + %)n(y) =0.

For the parameter values (51) they result in

7.15 4 0.5p 715+ 0.5p
B =—(f2T0P)  p—0, Ey=+( o —or
! (4.29 - 0.7p)’ 2T Jr(4.29 - 0.7p)

(53)
and the characteristic equations concerning their local eigen-
values directly come from (50) and (48).

In the range of interest the transfer function L(jw) has two
intersections with the real axis at frequencies

[10.45—0.5p%£(0.52—28.6p—18.15p2+0.25p%)1/2]*/2 (54)

corresponding (see (10)) to the oscillation frequencies of
possible periodic solutions (the PLC’s) of the system.

By solving the equations (9) and (10) for negative p it
follows that the EP’s E; and E35 can generate two stable PLC’s
(symmetrically located) which are the only ones existing in
the system.

According to Section III, these PLC’s make evident can-
didate situations to chaos onset, in presence of perturbing
mechanisms as 1) the interaction with an EP (homoclinic orbit)
or 2) the twice period emergence.

the system without considering the contribution of the 2nd
harmonic. The frequency of the PLC’s corresponds to the
negative sign in (54); it approximately varies in the interval
(2.6, 3.0).

As a comment to Table I it can be said that the two consid-
ered indicators give good predictions of chaotic behavior with
different characteristics. The homoclinic model (interaction
PLC-EP) holds in an interval on p, that is approximately
(—0.35, —0.60), where A is not sufficiently small and the
estimate is correct. On the contrary, the period doubling model
gives a specific value of p, that is p ~ —0.15, which is
considered to be at the beginning of the chaotic regime. Indeed,
the true period doubling cascade arise when —0.25 < p <
—0.20 but also this result appears a quite acceptable prediction.
Moreover, from the data of Table I it is also possible to locate
the chaos in the sense of sketching in state space the average
of the strange attractors and considering its time oscillatory
motion.

The above results are obtained from simple numerical com-
putations: a straightforward fully analytical treatment could be
developed in case of polynomial (cubic) representation of the
nonlinearity [13].

Finally, Fig. 4(a) and 4(b) show two trajectory simulations of
the systems respectively corresponding to values p = —0.50
and p = —0.60.

5.2. Chaos Control 1

Consider the circuit studied in Section 5.1 for p = —0.50. It
clearly is a chaotic system (see Fig. 4(a)) with EP’s at F; =0
(one unstable eigenvalue) and at E; = —1.49, E3 = 1.49 (two
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(®)

Fig. 4. Trajectory simulations of the unfolded Chua’s circuit: (a)
p = —0.50; (b) p = —0.60.

unstable eigenvalues), and two symmetrically located stable
PLCs having parameters written in Table I. ’
Assume that this circuit must be controlled in such a way
that the following occurs:
a) It attains a large periodic solution which is the average of
the chaotic motions with positive bias. From the previous
analysis (Table I) this corresponds to

ya(t) = 0.84 + 1.105sin2.67¢ (55)
which is the PLC giving rise to chaos.
b) It has the EP’s E;, F,, E5 above indicated.
c) It preserves in the local stability features one unstable
eigenvalue at E, and two unstable eigenvalues at Fj.
For the selection of the controller structure observe that Table
I puts in evidence the importance of the second harmonics in
the distortion (Az/A =~ 0.18) so that it can be assumed the
controller nonlinearity
ne(y) = 1y + 12y’ (56)
According to Section IV this control problem is translated into
the constrained optimization given by (38) + (41). Now, it
results that the equation ¢ = 0 has been already solved prede-
termining from the analysis just the value A4 corresponding to
B,. Moreover, it is ¥ = 0 as indicated by formula (26) for the
case where y4 is taken as the average of the chaotic attractor.

v

Fig. 5. Dynamics of the unfolded Chua’s circuit before and after the control
application at ¢t = t* (large solution, Bq = 1.105).

Therefore, by selecting Ay = 0.5 the problem reduces to
(44) + (46) in the form

mi2n [0.066’73 + 0.02472], (distortion minimization)
¥

subject to

7 +1.67572 =0,
(PLC condition on y,)
T < 0.229,
(condition on E stability)
—0.337 < 41 + 2.974v, < 1.530,
(condition on Fj3 stability).

(57

By elimination of -y; through the equality relation, the final
constraint —0.137 < v, < 1.178 is obtained so that the
minimum solution lies on its lower bound. To have a certain
stability margin it can be assumed 24 = —0.1 which gives
the distortion A, ~ 0.023, a lower value than the original
A 22 0.049 (see Table I). It follows v14 = 0.167.

Fig. 5 shows the time behavior of the controlled system
when the feedback compensator is applied to the chaotic circuit
att = t*. It is evident that the selected controller has destroyed
the original system symmetry, so that the derived solution does
not stabilize the attractor of negative bias. It can be easily
shown that this can be obtained by changing the sign of -y,
while neglecting the other attractor. Therefore, a switching
between -y, suitably entrains the system to one or another of
the average chaotic motions.

5.3. Chaos Control 2

Again consider the chaotic system of Section 5.2 and assume
that it must be controlled in such a way that a) it attains a
periodic solution of small amplitude, say By = 0.1, around
the positive bias as

yd(t) = Agq + 0.1sinwgt, (58)

while the specifications b) and c) are the same as the problem
in Section 5.2.

In this case, since the behavior of the original system has
been restricted close to the EP E3 = 1.49, its dynamics
is really that of a linear circuit due to the piecewise-linear
characteristic 7 (see (48)). Then, the role of the compensator
is that of leading the controlled system to a quasi Hopf
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J
o L = .

Fig. 6. Dynamics of the unfolded Chua’s circuit before and after the control
application at t = t* (small solution, By = 0.1).

bifurcation and, at the same time, of establishing a given
oscillation amplitude. This requires the extension of (56) to
the cubic function

no(y) = ny + 12y” + 13y’ (59)

Now, the bias value clearly results in Ay = E3 = 1.49 and by
selecting Mg = 0.5 the problem (44) - (46) reduces to

min [1.272 + 10.4v573 + 23.373]
Y2, Y3

subject to

1 4 2.97y2 + 6.64v; = —0.337

7 < 0.229

—0.337 < 71 + 2.972 + 6.63v3 < 1.530 (60)
where the relations have the meaning of those in (57). The
derivation of ; from the equality condition and the substitu-
tion in the inequalities allows one to determine the minimum
of the distortion cost. As in the preceding case the solution is
on the boundary of the admissible v, — 73 region: with a few
stability margin the values y2g = —0.002 and y34 = —0.001
can be selected, leading to v14 = —0.324. The distortion A,
turns out to be very small (=~ 10~5) being the system close to
the Hopf bifurcation, while the frequency is wq =~ 2.3.

Fig. 6 shows the time behavior of the control system when
it operates from ¢ = ¢*, after that it has been inizialized in the
neighborhood of the EP Ej. In fact, in this case the domain
of attraction of the desired solution does not generally contain
the trajectories of the original attractor. Fig. 6 also represents
that an inizialization close to E; does not give rise to a stable
periodic solution since the system is not symmetric for the
presence of 2 in (56). It can be shown that by means of
only 73 the system could be controlled to two small periodic
solutions around E; and Ej3.
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VI. CONCLUSIONS

The paper has presented an approach for studying the
chaotic behavior of circuits which is founded on a basic
elementary model of chaos. By considering an important class
of nonlinear dynamical systems, this model is recognized by
means of methods based on an approximate harmonic analysis
and essentially structural (non-numerical) conditions to detect
the chaos onset are derived. This leads to engineering tools of
reasonable accuracy that have been presented for applications
in analysis problems as well as in control problems where
a stabilization to periodic solutions is required, preserving
the main characteristics of the given chaotic system. Some
examples concerning the unfolded Chua’s circuit have been
also developed to show the applicability of the proposed
techniques and the kind of results which can be expected.
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