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Abstract

In this paper, the adaptive backstepping with tuning func-
tions method is used for the control of uncertain Chua’s
circuits with all the key parameters unknown. Firstly, we
show that several Chua’s circuits of different types includ-
. ing the Chua’s oscillator, Chua’s circuit with cubic non-
linearity, and Murali-Lakshmanan-Chua circuit, can all be
transformed into a class of nonlinear systems in the so-called
non-autonomous “strict-feedback” form. Secondly, an adap-
tive backstepping with tuning functions method is extended
to the non-autonomous “strict-feedback” system, and then
used to control the output of the Chua’s circuit to asymp-
totically track an arbitrarily given reference signal gener-
ated from a known, bounded and smooth nonlinear refer-
ence model. Both global stability and asymptotic tracking
of the closed-loop system are guaranteed. Simulation results
are presented to show the effectiveness of the approach.

A\

1 Introduction .

Controlling chaotic systems has recently been in the focus
of attention in the nonlinear dynamics literature ([6] and
the references therein). In particular, many adaptive con-
trol schemes have been successfully applied to the control
and synchronization of chaotic systems [5](7][14]. All these
methods are based on rigorous Lyapunov stability theorem
and Lyapunov function methods. But the construction of
the Lyapunov functions remains to be a difficult task.

In the past decade, adaptive control of nonlinear systems
has undergone rapid developments ([11] and the references
therein). By using the backstepping design procedure,
Kanellakopoulos et al. [8] have presented a systematic
approach of globally stable and asymptotically tracking
adaptive controllers for a class of nonlinear systems trans-
formable to a parametric strict-feedback canonical form.
The overparametrization problem was soon eliminated by
Krsti¢ et al. [10] by elegantly introducing the concept of
tuning functions.

In this paper, by noticing that several Chua'’s circuits
[1] of different types, including the Chua’s oscillator [2],
Chua’s circuit with cubic nonlinearity [15], and Murali-
Lakshmanan-Chua circuit [13], which have been used as
paradigms in the research of bifurcations and chaos, are
actually in the form of non-autonomous strict-feedback sys-
tem, we extend the adaptive backstepping with tuning func-
tions method to the non-autonomous strict-feedback system
in the following form
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I = b,-g.-(a‘:i, t)IH-l + BTFi(:i,',t) + fi(:f,',t), 1<i<n-1

En = bngn(En, )t + 0T Fo(En,t) + FolZEn,t)

y=1m

(L.1)

where I; = [$1,IE2,-~~,£E{]T eR,i=1,--,n, u€ R, and
y € R are the states, input and output, respectively; b =
[b1,b2,++,b,)T € R™ and 6 = [01,62,---,0,] € RP are the
vectors of unknown constant parameters of interest; gi(-) #
0, Fi(-), fi(), i=1,---,n—1 are known, smooth nonlinear
functions, gn(-) # 0, Fn(-), fo(-) are known continuous
nonlinear functions. We assume that the signs of parameters
bi, i=1,..-,n are known.
This design procedure is then applied to control the output
of Chua’s circuit to asymptotically track any given reference
signal generated from a known, bounded and smooth non-
linear reference model. Simulation studies are conducted to
show the effectiveness of the proposed method.

2 Chua’s Circuits
Feedback Form

2.1 Chua’s Circuit

in Strict-

The famous Chua’s circuit [1] is a simple oscillator circuit
which exhibits a rich variety of bifurcations and chaos phe-
nomena. It contains three linear energy storage elements
(one inductor L and two capacitors C1 and C-), one linear
resistor R, and one nonlinear resistor called Chua’s diode
g(ve,). The dynamic equation of Chua’s circuit is described

by du
Cr=gt = 5(vo; —vey) — g(voy)
v .
Cy—52 = £ (ve, —ve,) +iL (2.1)
LG =-vg

where C1,Cs, L and R are all circuit parameters, iz, is the
current through the inductor L, ve, and ve, are the volt-
ages across C; and Cq, respectively, and the piecewise lin-
ear function g(vc, ) describes the V — 1 characteristics of the
Chua’s diode g as follows

1
9(ve,) = Gyue, + 5(Ga~ Go)(lvey + 1] = |ve, — 1)) (2.2)

with Go < 0 and G, < 0 being some appropriately chosen
constants. )
By defining b1 = 1/L > 0, b = 1/RC> > 0, 6; = 1/C,
02 = 1/RCs, 03 = 1/RC1, 64 = 1/RCy + G /C1 and 05 =
%‘L, and defining the state variables as

xy = iLy T2 = VCy, T3 = Uy (23)

then equations (2.1) can be reformulated in the following
form



T, = —b1x2
T = bexs + b1z1 — O222 (2.4)
&3 =u+ O3x2 — 0423 — 05 [|£L‘3 + 1| — |1:3 - ll]

where the control u(-) is assumed to be introduced into the
third equation of (2.4) to form the controlled Chua’s circuit.

In comparison with the “strict-feedback” system form (1.1),
and in the case when all the system parameters are unknown
constants, i.e., § = [01,02,---,05]T, b1 and by are unknown
(except that the signs of by and b; are assumed to be known),
we have

g1(z1) = —1, ga(z1,22) = 1, g3(z1,z2,23) =1

fi(z1) =0, fa(z1,22) =0, fa(z1,22,23) =0

Fi(z1) =[00000]T, Fo(z1,22) = [z1 —~22000]7,

Fy(z1,22,23) = [0022 — 23 — (|73 + 1| — oz — 1|)]T

Following the same procedure, it can be verified that several
other kinds of Chua’s circuits, such as the Chua’s Oscilla-
tor and the Chua’s circuit with cubic nonlinearity, can all
be transformed into the non-autonomous “strict-feedback”
form (1.1).

2.2 Murali-Lakshmanan-Chua circuit

The Murali-Lakshmanan-Chua circuit is a simple second or-
der non-autonomous nonlinear circuit, which can exhibit a
rich variety of bifurcation and chaos phenomena [13].

The dynamical equation of Murali-Lakshmanan-Chua cir-
cuit is described by

dv
G5 =i —glvey) - 25)
LY. = —ye, — Ris — Reiz + Fsin(Qt)

where g(vc, ) is given by (2.2).

By defining by = 1/L > 0, &, = (R + R,)/L, 62 = F,
03 = 1/Ch, 04 = G/C1 and 85 = €2=E, and defining the
state variables as

Ty =i, T2 = Vo, (2.6)
then equations (2.5) can be transformed as
Ty = —bizo — 6121 + 62 Sin(Qt) @ 7)

o =u+ 03z — 0422 — 05 (|z2 + 1] - |z — 1))

where the control u(-) is assumed to be introduced into the
second equation of (2.7).
In comparison with the “strict-feedback” system form (1.1),
and in the case when all the parameters are unknown con-
stants, we have
g1(z1) = -1, ga(z1,22) =1, fi(z1) =0, fa(z1,22) =0
Fi(zy) =[ —z1 sin(Q%) 000 |7,
Fa(z1,22) =[ 00z1 — 32 — (jo2 + 1] — o2 — 1)) |7
In the next section, we will extend the adaptive backstep-
ping with tuning functions method [Krsti¢, et al., 1992;

Krsti¢, et al.,, 1995] to the non-autonomous strict-feedback
system in form (1.1).

3 Adaptive Backstepping with
Tuning Functions Method

For the controlled system in form (1.1), consider a known,
bounded and smooth reference model as follows
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Tpi = fri(zv‘yt)y 1<i<m-1

Erm = frm(zr,t) (3.1)
Yr = ZTr1
where z, = [Tr1, Tr2,"**,Trm]T € R™(m > n), y» € R are

the states and output respectively; fri(:),2=1,2,---,m —
1 are known smooth nonlinear functions and frm(:) is a
known continuous nonlinear function.

Our objective is to design an adaptive state-feedback con-
troller for system (1.1) that guarantees global stability and
force the output y = z1(t) of system (1.1) to asymptotically
track the output y, = z-1(t) of the reference model, i.e.,

ly(t) — yr(t)] — 0, as t — oo. (3.2)

The design procedure is recursive. At ith step, the ith-order
subsystem is stabilized with respect to a Lyapunov function
V: by the design of a stabilizing function «;, and tuning
functions 7; and 775’1, e ,ﬂf*. For the unknown parameter
b, we introduce b; and §;. §; is the estimate of g1 = 1/b1
and is introduced to avoid the division by b;(t). The up-
date law for the parameter estimates 8(t) and b;, and the
feedback control u are designed in the final step.

Step 1. Define z1 = 21 — xr1. Its derivative is given by

#n=bigrzs + g-_ial + 6T Fia + fro - (é ~6)TFi,
~ (i~ b)gizs + (s~ 1)(Fren + giwea)  (33)

where 22 = T2 — §1%r2 — 1, Q1 I8 an artificial control to be
defined later, and Fis = Fi, fis = f1 + g1Tr2 — fr1.

Using a1 as a control to stabilize (3.3) with respect to the
Lyapunov function candidate

__121 AT —1 <01 . 2|b1|A 9
Vi = 57i+5(0-0)'T (e—o)+27(b1» b1) o (1~01)
(3.4)

The derivative of V; is

Vi =big1z122 + 21(-2—1011 +6TF, + f1s)

+ (b161 — 1)sgn(b1)}y " (8, + sgn(br)yz1 (122
+ Z—lal)) +(0—0)TT"(6 —TFy,z)
1

+(b1 = b))y (b — ygrz122) (8.5)
Define the tuning functions 71 and 7rf1 for 8 and 131 respec-
tively as 7y = I'F152; and 7r§’1 = vg12122. To eliminate the
(b161 — 1)-term from equation (3.5), we choose the param-
eter update law for 41 as §; = —sgn(b1)yz1(£ 1 + g1zr2).

To make the second term in equation (3.5) be equal to
—c12%, we choose

o1 = %(—c;zl — 0T F, — f14) (3.6)

Note that the (é — @)-term and (131 — b1)-term in equation
(3.5) would have been eliminated with the choice of update
laws § = 11 and by = 1r'1". Since this is not the last design
step, we postpone the choice of update laws and tolerate the
presence of (6 — 6) and (b; — b1) in V; as follows



-clzf + Blglzlzg + (é - 9)[“1(5 —_ Tl)’
+ (b1 — b))y by — 1)

I’
(3.7)

Step 2. The derivative of 22 is expreésed as
2 =12 — f1Ers — O1Tr2 —

= baga2s + 22 by + 6T oy + fas + a;‘}(’rz —6)
02 a6

. . P
— (b2 — b2)g22z3 + (b1 — bl)_—aal gi1z2
. Ty

— (8- 0)T Fay + (b262 — 1)(gozrs + ‘Z;—Zaz) (3.8)
where 23 = 23— 02T3-—0a2, &2 is the virtual control to be de-
fined later, Fz, = Fy— 2L Fy and fas = fo— 524 i +g2z,3—

by 311913:2_'5’917—2“91fr2_91($r2+ S )Yy B ok

8oy
5t
Using a2 as a control to stablhze the (z1, z2)-subsystem, we
choose the following Lyapunov function candidate
1, 1. 2, lbo],. 2
Vo=Vi+ 22+ o= (ba— Palig, - 9
=W+ g%+ 27(52 - b2)” + B3 (82 — 02) (3 )
The derivative of V; is

Vo = ~c12? + bagazaza + Z2(l;xglz1 + g%oa + 0T Fos + fas)

+ zz%(m - é) —+ (9 ——'é)Tl-‘_l(é1 -7 — 1"F2,.,z2)
+ (b2d2 — 1)sgn(b2)y ™' (&, + sgn(b2)yz2(g2rs

- 4,4 a

+ Zoa)) + by = b)77 by = 7 + v g1m0%)
: \

+ (b2 = b2}y (b2 — 7922223) (3.10)

Define tuning functions T9, T3 and w52 for 6, b1 and b,

respectively as 72 = 11 + ['Fa,22, 1rg = 7r1 - 'yg—"—lg]xzm

and 752 = vg2z223. To eliminate the (bady — 1)-term from
equation (3.10), we choose the parameter update law for g2

as b, = —sgn(b2)vz2(Laz + g22r3).

To make the third term in equation (3.10) be equal to —cz22,
we choose

Qs %:-(-—czzz —big1z1 — 6T Foy — f2:) (3.11)

which yields

. - O P
Vo = —c12% — c225 + bagazozs + zz%-—éi(‘rz —6)

+ (0= O (6 = 72) + (b = by~ (b — m8)

+ (b2 = ba)y ™ (b — m3?) (312)
Step 3. The derivative of zé is expressed as
3= 539324 + gias + 6T Fsy + fas + (b1 — b1) 91:52

+ (by — bz) gzma — (bs — bs)gsza — (0 — 6)T Fs,

c')ag

+ 2%y - '”) )

+ (b3ds — 1)(gszr4 + -L.)—aas) (3.13)
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where z4 = 74 — 03%,4 — a3, ag is the virtual control to
be defined later, F3, = F3 — Sup — 8—"2F2 and f3s

811
8 Ba
fs—a—fol 522 f2+g3Tra— by 222 91:!:2 by 82 Frn gzza—#'ra—

8 Bag
3%12' _Zk =1 azkfrk_a_ef‘gl “QZfr3 92(551‘3‘*‘392)

Using a3 as a control to stabilize the (21, 22, 23)-subsystem,
we choose the following Lyapunov function candidate
5 (s =00y + 2o - ooy?

1
Vz+-zs+

1%
8= 2 2y

(3.14)

The derivative of V; is
. ~ aa - ~
Va = —c12? — 222 + bagazazs + 226—03(7’2 —-6) + 23(629222

6012

- Bo
+-§a3 +9TF3s+f35)+23‘a_(T3_ )+za (7r

—b1) + (0= 0TI (0 — 72 — TF3.25) + (bs — bg)'y_ (bs

- 1,5 o
—gszaza) + (b2 — ba)y  (bo — 752 + 23 a;:zgzra)

- dog
+ (b1 ~ by)y (b1 — ot 23 a—glxz)
+ (bsda — 1)sgn(bs)y ™ (b5 + sgn(bs)yzs(gazra + g—jas))

(3.15)

Define tuning functions 73, 73!, 752 and 7r33 for 8, bl, b and
bs respectively as 7'3 =Ty +1"F3323, ‘/r3 = 7r —'yza 811 g1%2,
7'(32 =T, b2 _ 'yzg 322 g2x3 and 7r3 = ~yg3z3z4. To eliminate
the (b3@3 — 1)-term from equation (3.15), we choose the
parameter update law for g3 as és —sgn(b3)-yz3(‘z:§-a3 +
93Tra).

No};ing that 72 —é = T3 — é + T — T3 = T3 — é — I'F3,23,
equation (3.15) can be written as

. Oa Is]
V3 = —clzf - 0222 + b3932324 + (2 — 20 Ly 3—0[2 )73 — 9)
. R Bay
+ z3(b2g222 + 8 s + 67 Fag + foo — 23 I'Fas)
03 a0

+(0—8)TTH(0 = 73) + (b1 — bi)y ™! (br — 78)

+ (B2 — ba)y ™ (b — m2) + (ba — ba)y ™ (ba — 732)

dog e
+ 23—— —b 3.16
L (3.16)

To make the bracketed term multiplying z3 in equation
(3.16) be equal to —c32Z, we choose

5 ) . P
a3 = -z—:-(—cua — bagaze — 67 Fa — fas + ZZ%FF%)(&”)

which yields
Vs

day da
2 2 2
—C12] — C229 — C z +b3 32324 + 22—+z
1 2 323 g3z3z4 ( Py 3~

(15— 6) + zag—zz-(wgl —by) + (60— )TT (0 - 73)
1

)

+ (b1 — b))y (b — m3t) + (b — b2)y " (be — m5?)
+(bs — b3)y ! (bs — m2?) (3.18)

Step i. The derivative of z; is expressed as



i =bigizigy1 + gh—i.az‘ + 0T Fis+ fis — (0 —0)"Fis + (s
3
—9)+Z i (e —bk)+Z(bk—bk)

— (B: — bi)gizig1 + (bidi — 1)(giTr(i+1) + Ea,:) (3.19)

Oai—1
86

gk$k+l

where zit1 = Zig1 — diTr(i41) — i, @ is a fictitious control
to be defined later, and

. i—-1 Baj1
Fis=Fi = ) ey 0y Fk1 o .
. g1 i
fis=fi + giTr(i1) = 2 e;k fo =2 1b’c By IkTh+1
Baj_1 i—2 Ba,_ o Baiy
- =% Ti = k_la 3bk 1 Ek—l az%k frk 5
~ 1—2 Baj.y & g1 0‘-. 1
—Oi1fri— )4 Bp 0k — bia(ri + %5ia) ~ B

Using o; as a control to stabilize the (z1, - - -, z;)-subsystem,
we choose the following Lyapunov function candidate
1, 1

Vi= Vi1 + 527 + 2= (bi — b:)*

[P

The derivative of V; is

i-1
Vi=— Z cxzl + bigizizig1 + Z,‘(i)i—lgi—lzl + 'gfi‘ai +6TF;,
k=1 o
i—-3 i—j—2
+ fis) + Z <2k+1——~> (i1 — 9) + Z Z Zk42
=1 k=1
8;:” (7l‘t__1 — i)J) -+ (0 _ é)TF_l(é — Ti—1 — FFiszi)
i—1 . 3
2 “1 b Qi1
+ Z(bk —bi)y " (b — R oy 3;k GrTh41)
k=1
N P Oa;— o
+ (b = b)Y (b — v9izizi41) + 27— (i — 6)

00

i-2
aai_ A R _
T Z az‘)kl (w2 — bi) + (bsgs — 1)sgn(bi)y ™"

k=1

(6; + sgn(be)v2i(giriivn) + %o«)) (3.21)
T

Define tuning functions i, b ... ,Wf‘ for 8, b1, -, b; re-

S
spectively as
Ti =Ti-1+ ' Fisz

by _ b Boy_g
Tw =T, — V25, 9172

bi—1 _ b

us =T, — 'th az gt 1T
bs

7r.;l = YgiZiZi+1

To eliminate the (b;9; — 1)-term from equation (3.21),
we choose the parameter update law for p9; as p;
_Sgn(b )Fth(ha' + glmr(t+1))

Noting that 7i—1 — - T~ 0+ 7‘,_1 —ri=7— 0~ TFz
and ﬂ:il
as

—b; = ”1] —b; _'_,},z1 azj Lgizj+1, wWe rewrite 14
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i—1
V= Z izt + bigizizigr + Z(zk+1 s £ (7 — 6)
k=1
) i—2
+ zi(bi—1gi-12i + g—fm + 0T Fis + fis — sz-n
g k=1
1—3 i—~j~2

3""‘ BUrR+Y Y o

j=1 k=1

3ak+1 dai—a
Y az ngj‘l'l)

+(0—) T (6 —m)+ O by by — 77)

Jj=1

i—2 i—j—1 .
+> N ( ““) (x5, —by) (3.22)

j=1 k=1

To make the bracketed term multiplying z; in equation
(3.22) be equal to —c;z?, we choose.
i-2

Oa
( Cizi — bt—lgt 12i-1.+ sz-{»] 39 FFts

=3 i—j—2
3ak+1 6011_

——ZZ va.

95Tj+1 _9 Fzs fis)
j=1 k=1

(3.23)

which yields
i—1

‘./i = Z ckzk + bzglzlz’b+1 + Z(Zk+l

k=1 k=1

) (ri — 6)

+(0-6)TT Yo —7) +y (- by~ (b — %)

=1

i—2 i—j . .
> ( 6"’““)(#?1',4»1) (3.24)

j=1 k=1

Step n. Since this is our last step, the derivative of 2, is
expressed as

n—1
. gn AT Oop_1 e dotn—1
Zn="—u+8 Fus+ fas + —(Tn — 0) + =
bn et st g5 (= 0) ; Bbx

n—1

(o — bk) ~(0-6)TFns + Z(bk - bk) L gkTisa
where
Fns=Fn _ n—1 8ap— le

k=1 8= 18

— n-— o 1

fna‘-fn + 9nZTrn — k=1 agk fk - k 1 bk 83 gkmk-f-l
n—-1 8an_y bk oy _1 n—2 Ban_1 A
k=1 b, Zk 1 Bzrp ffk k=1 Ok

90y
= b1 (@rn + ag

oy 1.

EY ] Q'n.——l fr'n.

Cn— 1)_8°n 1

Using control u to stabilize the (z1,---,zn)-system, we
choose the following Lyapunov function candidate

bn
Vn—Vn—1+_Zn+| l(” —gn)

5 (3.26)



The derivative of Vn i

n-—1

Vo=— chlk + Z zk+1

+ z—"u 07 Fg + fs) + 20 2072

(Tn—l - 0) + zn(bn 19n—12n

n-—1

1(‘r,.—@)+znz

k=1

8on-1 (10§ 4 (0= 8)TT (6 = Ty — DFrozm)
N 4 Oa

+ ;(bk = bk)7 7 (e — Ty + T GuTk)
n—3n—j—2

+2 3 (sl el -
=1 k=1

+ (bndn — 1)sgn(ba)y (b, + sgn(bn)vzn(f.,—:u» (3:27)

To eliminate the (bnfn — 1)-term from equation (3.27),
we choose the parameter update- law for 9, as 9, =
~sgn(ba) 7220
To eliminate the (6 —6), (b1 — 1), - -, (bn — bn)-terms in V5,
from equation (3.27), we choose the parameter update law
for 6, by, -+, bp—1 respectively as

é =Tn =Tn-1 +[Fns2n

by =w8 =7l — 'yzng%%liglzz

br1

bn—l =Ta = 7l'n 1 — Yz "'8:.: gn—lzn
N
Noting that Tne1 =0 = Tae1 — Tn = —[Fn,s2, and W:j— -

b 'yzn Bz 1g;Tj+1, equation (3.27) can be written as

n—2
Vn =2Zn i’n—lgn—lzn + g_nu -+ éTF‘ns + fns - Z Zk+1
on k=1
n—-3n—j-2
aak 6ak+1 ) Ban
—TIFps + Zkt2 T
2 ns 2 ; ( -+ 3b v az; g] +1

n—1
- Z crzt : (3.28)
=1

Finally, we choose the control u such that the bracketed
term multiplying 2. in equation (3.28) equals —cn22

n—-2

dax
u= —( CnZn — b —19n—12n—1 + Z k1 ‘5‘o—ana

n—3n—j3—2 a
Qn—
“3Y By Bty - R - )
i=1 k=1
(3.29)
Thus, we have n
V, =— Z exz? (3.30)

Theorem 1 The closed-loop adaptive system consisting of
the plant (1.1), the reference model (3.1), the controller

130

(3.29) and the parameter update law (3.28) has a globally
uniformly stable equilibrium at z = {21,222, ++,24]T = 0.
This guarantees the global boundedness of all the sig-
nals in the closed-loop system, including the states z =

[#1, %2, +,%n])T, the control u and parameter estimates 8,
b1, ,ba-1 and 91, -+, fn, and limoo 2(t) = 0, i.e., sub-
sequently,

Jim [y(t) — 4. ()] = 0 (3.31)

Proof: The (z1,---,2,)-system corresponds to the closed-
loop adaptive system, which consists of the plant (1.1), the
reference model (3.1), the controller (3.29) and the parame-
ter update law (3.28). The derivative of the Lyapunov func-
tion (3.13) along (21, -, zn)-system is (3.30), which proves
that equilibrium z = 0 is globally uniformly stable.

Combining (3.26) with (3.30), we conclude that é,
b1, -+,bn-1 and @1, - -, On, are bounded. Since z; = z; —z1
and z,1 is bounded, we see that z; is also bounded. The
boundedness of z;, i. = 2,---,n follows from the bounded-
ness of a;—1 and §i—1, i = 2,---,n and z,;, and the fact
that ; = 2i + i—1Zri + ai—1, 1 =2, - -, n. Using (3.29), we
conclude that the control u is also bounded.

From the LaSalle-Yoshizawa theorem [11], it further follows
that, all the solutions of the (z1,- -,z )-system converge
to the manifold = = 0 as t — oo. From the definition
z1 = Ty —Zr1, we conclude that |y(t) —y-(t)| — 0 ast — oo.

4 Example: Tracking Control of
Chua’s Circuit

We assume that the controlled Chua’s circuit is originally
(u = 0) in the periodic state, period-1 attractor {9], with
parameters C; = 0.11364,C2 = 1,L = 0.0625,R = 1,G, =
—1.143 and G, = —0.714, ie., by = 16, b, = 1 and 6 =
[1.0000, 1.0000, 8.7997, 2.5167, —1.8875]T. The objective is
to force the output y = z1(t) of the controlled Chua’s circuit
(2.4) to asymptotically track the chaotic reference signal
yr = zr1(t) generated from another uncontrolled Chua’s
circuit (2.4) (u = 0) in chaotic state, double-scroll attractor
[9], with parameters C; = 0.10204,C2 =1,L = 0.0625, R =
1,Go = —1.143 and Gy, = —0.714.

The design parameters of controller (3.29) and parameter
update law (3.28) are chosen as ¢y = 10,c2 = 20,c3 =
50,7 = 0.1 and I’ = diag{0.03,0.1,0.1,0.02,0.07}. These
gains are chosen by trial and error for better performance.
The initial conditions are chosen that z,(0) = 2, z2(0) =
0.3, 3(0) = 0.4, z,1(0) = 0.2, z,2(0) = 0.5 and z,3(0) =
0.3.

Numerical simulation results are shown in Figures 1-3. As
shown in Figure 1, the output y = z1(¢) of the controlled
Chua’s circuit (2.4) asymptotically track the chaotic refer-
ence signal y» = z,1(¢). It can be shown that at the same
time the states z2(t) and z3(t) of the controlled Chua’s os-
cillator (2.4), the parameter estimates 6, b1, 1, b2, g2 and
the control u remain bounded. The boundedness of param-
eter estimates and control signal u is shown in Figures 2 and
3 respectively.

5 Conclusion

In this paper, firstly we showed that several Chua’s circuits
of different types, including Chua’s oscillator, Chua’s circuit



with cubic nonlinearity, and the non-autonomous Chua’s
circuit, can all be transformed into the class of nonlinear
system in the so-called non-autonomous “strict-feedback”
form. Then, an adaptive backsteppinig with tuning functions
method has been extended to the non-autonomous “strict-
feedback” system, and it is used to control the output of the
Chua’s circuit to asymptotically track arbitrarily given ref-
erence signal generated from known, bounded and smooth
nonlinear reference model. -
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Figure 1: Tracking error z;(t) — z,1(t)
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Figure 2: Boundedness of parameter estimates ||4|].
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Figure 3: Boundedness of control signal u.



