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Chaos is observed from a fourth-order autonomous circuit inspired by Chua’s circuit
and obtained by replacing the active symmetric nonlinear resistor (Chua’s diode) with a
parallel combination of a frequency dependent negative resistor (FDNR) and a general-
purpose signal diode. Accordingly, nonlinearity is introduced by a passive device with an-
tisymmetric current-voltage characteristics whereas activity is transferred to the FDNR.
The observed chaotic attractor has similar dynamics to the Colpitts chaotic attractor and
we show its topological equivalence to the well-known Rossler attractor. Experimental
results, PSpice simulations and numerical simulations of the derived mathematical mod-
els are included.

1. Introduction

Since its discovery, Chua’s circuit has served as the main prototype circuit for study-
ing chaos in electronic systems.! Several realizations of this circuit have thus been
introduced in the literature.?~7 It can be identified from Refs. 2-7 that the most dif-
ficult part to realize in Chua’s circuit is the active nonlinear resistor (Chua’s diode)
which is approximated by a three-segment piecewise linear I-V characteristic. In
fact, on the route to producing a monolithic implementation of the circuit, a non-
linear resistor was separately designed® prior to integrating the whole circuit.? The
approach used in Refs. 3-7 was based upon the standard implementation of Ref. 2
in which two op amps, one of which behaves linearly while the other behaves non-
linearly, in addition to six resistors, are required to implement Chua’s diode. The
functionality of the op amps can be reproduced using other building blocks such
as operational transconductance amplifiers (OTAs)® or current feedback op amps
(CFOAs).%7 Tt has also been shown that a cubic nonlinearity can produce quali-
tatively similar dynamics.® However, the realization of such a nonlinearity requires
several analog multipliers, which are complicated to design.

Recently, several new designs for chaotic oscillators have been reported® 4 mo-
tivated by the observation of chaos in the classical Colpitts oscillator.!® A common
feature of all the oscillators in Refs. 9-14 is the use of simple passive nonlinear
devices such as diodes or diode-connected transistors. The design rules proposed
in Refs. 16 and 17 recommend the use of passive nonlinear devices since there is
no evidence that the chaotic signal produced by a system with active nonlinearity
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possesses any statistical feature not possessed by a system with a passive nonlinear-
ity. Furthermore, chaotic oscillators with a passive nonlinearity can be optimized
using classical optimization techniques for linear systems and their performance can
be evaluated according to linear design benchmarks.

In this work, a new chaotic oscillator configuration, inspired by Chua’s cir-
cuit, is proposed. The passive structure in Chua’s circuit is preserved while the
active nonlinear resistor is replaced by a parallel combination of a frequency de-
pendent negative resistor (FDNR) and a switching diode. The observed chaotic
attractor is governed by similar dynamics to the chaotic Colpitts attractor,'®19 as
expected. We investigate briefly the relationship between the well-known Rossler
system and Colpitts-like chaotic oscillators. In particular, we show that the dynam-
ics of Rossler’s system in the X-Y plane are those of a simple sinusoidal oscillator,
similar to all Colpitts-like oscillators. We then propose a modified Rossler system
with a switching-type nonlinearity, instead of the multiplier-type nonlinearity, and
demonstrate its topological equivalence to Colpitts-like chaotic oscillators.
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Fig. 1. Modified Chua’s circuit using a parallel FDNR-diode combination to replace the active
nonlinear resistor.

2. The New FDNR-Based Chaotic Oscillator

Figure 1 shows our new chaotic oscillator configuration obtained by replacing the
active odd-symmetric nonlinear resistor in Chua’s circuit with an FDNR and a signal
diode. The FDNR is a well-known linear analog building block that was derived
from general impedance converters (GICs) and introduced to realize inductorless
active filters by applying Bruton’s transformation.?° The input impedance of an
FDNR circuit is equal to 1/Ds?, where D has the units of Farad. Sec and s is the
complex radian frequency (jw). Considering a practical realization of an FDNR,
the parameter D can be written in the form D = C%Rp/K, where K is a scaling
factor, Cr and Rp are the equivalent capacitance and resistance used to realize the
FDNR. This is also demonstrated in the next section where an FDNR derived from
Antoniou’s GIC?! is constructed.

Denoting the FDNR current by Ip, the nonlinear diode current by Iy and
using a two-segment piecewise linear approximation of the diode current-voltage
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characteristic, the configuration in Fig. 1 can be described by the following set of
differential equations:

Voo — Ve
R

CoVeo = Ip — Iy —

C1Ver = —1Ir

Ve — Ve (1a)
R
Lip, = Vo,

where

IF = —DVCz and IN

Voo = V. Voo > V-
1 { v v (1b)

~ Rp 0 Voo <V,

Rp and V, are the diode forward conduction resistance and voltage drop
respectively.

Because of the diode’s antisymmetrical characteristic, the chaotic attractor ob-
served from this oscillator is expected to resemble that of the chaotic Colpitts
oscillator.!®1® Recalling that D = C2Rp/K and by introducing the following di-
mensionless quantities:

t Vou Voo RI, R CpR?
= x=28 y_Xez g Lo, p=
T CrR v, v, v “T Ry PTTLo
Ch Cy R
= — = — K e
T T YT Re

equation set (1) transforms into:

aX=Y-X-2Z
Ky - .
-?sz—y-qy—ﬂm (2a)
7 =pBX
and

Y-1 Yv>1
f@3=a{ (2b)

0 Y<1

Numerical integration of (2) was carried out using a Runge-Kutta fourth-order
algorithm with a 0.001 time step taking e; = § = 0.01, e2 = 1, @ = 50, and
Ki/K = 12.5. A projection in the Y-Z plane of the observed chaotic attractor is
plotted in Fig. 2. This attractor is preserved when integrating (2) with either &;
or 2 as small as 0.0001, which indicates that although the system described by (2)
is fourth-order, the attractor is effectively living in a three dimensional subspace.
However, care should be taken in numerical integrations with such small values of
e1 and esq.
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Fig. 2. Y-Z phase space trajectory obtained by numerically integrating (2).

From a practical point of view, the values of €1 and €2 should be chosen to
facilitate any possible circuit implementation. The three design sets: (67 = e2 = 1),
(e1 =1,e0 = A) and (61 = A,e9 = 1), where A is practically small, are particularly
useful. The first set allows all capacitors used in the circuit to have equal values,
which might be desirable in some implementations. The other two sets allow one
of the capacitors C7 or Cs to be a parasitic capacitor.

Note also that the ratio between K and K, rather than their absolute values,
is significant. Thus, the circuit dynamics can be varied either through the floating
resistor R, as with Chua’s circuit, or through the FDNR scaling factor K which
provides tunability via a single grounded resistor, as shown in the implementa-
tion presented in Sec. 3. Using either of these two parameters as the bifurcation
parameter, a period-doubling route to chaos is observed.

A state space representation of (2) can be obtained by introducing a new state
variable W, equal to Y, which results in the following matrix form:

aX 11 -1 07[X7] O
Y 0 0 0 1 vl o (58)
. , a
Z Jé] 0 0 0 A 0
EW 1 —(1+4a) 0 —eo] W a
K
where
o Y >1
a= . (3b)
0 Y <1

The system described by (3a) has an equilibrium point in each of the two regions
of operation of (3b). These equilibrium points are given by: (zo,yo, 20, wo) =
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1Q_LQ(O, 1,1,0). Thus, there is a single equilibrium point at the origin in the re-
gion Y < 1. The equilibrium point in the region ¥ > 1 is virtual, meaning
that it lies outside this region.?? For the parameter values used in numerical sim-
ulation, the equilibrium point in the region ¥ < 1 has the set of eigenvalues:
(—0.1312,-99.99,0.0202 + j0.0754) which indicates that it is an unstable focus.
The set of eigenvalues: (—0.0102,—-99.99, —0.0403 + j1.9996) corresponds to the
virtual equilibrium point in the region Y > 1, indicating that it is stable. There-
fore, assuming that the circuit starts with the diode initially off (Y < 1), the Vi,
Voo and If, trajectories will be repelled by the unstable equilibrium point at the
origin and will spiral outwards due to the complex conjugate pair of eigenvalues.
Eventually, this will cause the diode to turn on when Vg exceeds V, (Y > 1). Since
the equilibrium point in this region is stable, the trajectories will be attracted to-
wards it. However, before reaching this stable equilibrium point, which lies in the
region Y < 1, the diode switches off again and the spiral out motion of the tra-
jectories repeats. These qualitative dynamics are typical for Colpitts-like chaotic
oscillators? 15 and have been studied in detail for the Colpitts oscillator in Refs. 19.

3. PSpice Simulations and Experimental Results

In order to verify experimentally the performance of the proposed circuit, a classical
FDNR implementation based on Antoniou’s GIC?! is constructed. As shown in
Fig. 3(a), this realization requires two op amps (both operating in their linear
regions), two equal capacitors denoted by Cr, and three resistors (Ri, Rz, R3).
Routine analysis shows that D = C%Rle /Rs. Hence, the choice of Ry = Ry =
Rp and R3 = KRp results in D = CI%RF /K. PSpice simulations of the chaotic
oscillator in Fig. 3(a) were carried out with C; = 100 pF, C2 = Cp = 1 nF,
L =47 mH, Ry = Ry = 3 k), R3 = 1.2 kQ and R = 150 Q. A general purpose
diode of type D1IN914 was used and the op amps were biased with +9 V supplies.
The observed Vo — I, projection of the resulting attractor is shown in Fig. 3(b),
corresponding to the Y-Z trajectory of Fig. 2. Here we have used a small value for
C1 to demonstrate that it can become a parasitic.

The circuit can be tuned through a period-doubling cascade by varying K using
the grounded resistor R3. It is worth noting that since the circuit model does
not depend on any circuit-specific parameter of the FDNR, any suitable realization
of an FDNR might be used. It is thus possible to optimize this FDNR to satisfy
constraints imposed on the circuit’s power dissipation, frequency response or supply
voltage. From an analog design point of view, it is easier to optimize an FDNR than
an active nonlinear resistor such as Chua’s diode.

An experimental setup of the circuit was constructed with the same component
values used in the PSpice simulations taking, R equal to 500 2 and R3 as a 5 k{2 pot.
for tuning. A current-to-voltage converter with a 1 k2 load was used to convert the
coil current to a voltage V. The resulting Voo — Vi phase portrait is shown in
Fig. 4. The qualitative agreement with numerical and PSpice simulations is clear.
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Fig. 3. (a) Implementation of the modified Chua’s circuit using Antoniou’s GIC. (b) PSpice
simulation of the Voo — I, trajectory.
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Fig. 4. Experimentally observed Voo — Vi, trajectory. X axis: 0.1 V/div. Y axis: 0.1 V/div.

4. Connection between Rossler’s System and Colpitts-like
Chaotic Oscillators

The similarity between the chaotic attractor observed from our new FDNR-based
chaotic oscillator and the well-known Rossler attractor has been brought to our
notice by a reviewer. In fact, this similarity holds for all Colpitts-like chaotic at-
tractors. However, the nature of the nonlinearity in Rossler’s system is significantly
different from that in any of the Colpitts-like oscillators.? 15 In particular, the non-
linearity in Rossler’s system is obtained by multiplying two state variables, whereas
the nonlinearity in Colpitts-like chaotic oscillators is obtained by switching a con-
stant parameter between two values when one (or more) of the state variables hits
a threshold value. This switching-type nonlinearity typically reflects the behavior
of a simple diode. Furthermore, all Colpitts-like chaotic oscillators have a core
sinusoidal oscillator engine which is responsible for stretching the trajectories.

In order to establish the connection between Rossler’s system and Colpitts-like
chaotic oscillators, two steps are required. The first is to show that Rossler’s system
has a core sinusoidal oscillator engine in the X-Y plane and that its chaotic behavior
is preserved when different engines are used. The second step is to replace the
multiplier-type nonlinearity in Rossler’s system by a switching-type nonlinearity
and to confirm the chaotic behavior of the resulting system (which is even more
similar to Colpitts-like attractors). We then show that this modified Rossler system
has a single unstable equilibrium point at the origin in one of the two regions of
operation of the nonlinearity and an equilibrium point which is virtual and stable in
the other region. Thus, it is governed by dynamics similar to those of the Colpitts
oscillator, studied in Ref. 19.
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4.1. Dynamics in the X-Y plane

Consider the classical Rossler’s system??® which is described by:

X=-Y-Z (4a)
Y =X+ AY (4b)
Z=-CZ+(B+2)X, (4c)

where A, B, and C are constants. The nonlinear term appears in (4c) as X Z.
It can be shown that the dynamics of (4) in the X-Y plane are given by:

X 0 —-17[7X [ X
IRl ©
We recall that a general second-order sinusoidal oscillator is described by:
HE I o
with a condition for oscillation and a frequency of oscillation given respectively by:
a11+az =0 and wo = Va11a22 — 12021 - (6b)

In the special case where a1 = age = 0, the sinusoidal oscillator is known as the
two-integrator-loop quadrature oscillator. By comparing (5) and (6), it should be
clear that the condition A = 0 implies that the dynamics of the Rossler system in the
X-Y plane are those of the quadrature oscillator. The constant A is usually denoted
by € (error factor) since in practice it needs to be increased slightly above zero to
start oscillations, i.e. to push the pair of complex conjugate eigenvalues slightly into
the right half plane. Of course, an amplitude control mechanism (which is usually
a saturation-type nonlinearity such as that of an op amp) is required to stabilize
the amplitude of oscillation.

In order to show that the chaotic system of (4) requires a generic sinusoidal
oscillator in the X-Y plane we consider the following four matrices which are dy-
namically equivalent:

0 -11 [0 171 [4 1] T[4 -1 .

[1 A]N[—l A]N[—l 0]“[1 0]' (@)

The system of (4) was integrated using the conventional parameter set (A, B,C) =
(0.36,0.4,5.7) with the X-Y plane dynamics governed by each of the above matrices.
The Rossler attractor or its mirror-image was observed in each case. We note that
since the X and Y state variables together represent a single entity (a quadrature

oscillator), the term —Z which appears in (4a) can appear in (4b) instead. Thus,
both X and Y can be used to sense the changes along the Z direction. In general,
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the strength of this sensing can be either enhanced or suppressed by a constant
multiplication factor m. Hence, the term —Z should more generally read —mZ.

4.2. Nonlinear subsystem

Equation (4c) can be considered as a separate nonlinear subsystem which is linked
to the dynamics in the X-Y plane through the state variable X. The way this
nonlinear subsystem works is very similar to a threshold-based nonlinear device.
When the amplitude of the X signal is sufficiently small, the term —C'Z dominates
the nonlinear term (B + Z)X. Hence, by neglecting the effect of this nonlinear term
it can be shown that Z scales as e~“* which indicates that the amplitude of the
Z signal rapidly decays with time. This allows the dynamics in the X-Y plane to
be dominated by the sinusoidal oscillator (the term —Z in (4a) is small and can
be neglected) and thus oscillations rapidly build up. However, as the amplitude
of X continues to increase, the nonlinear term can no longer be neglected and is
eventually activated (switches on) resulting in a ‘bursting’ increase in the amplitude
of Z. This in turn reflects back to Eq. (4a) causing the amplitudes of X and Y to
decrease rapidly. Accordingly, the nonlinear term is then deactivated (switched off)
and the oscillation in the X-Y plane starts building-up again.

The “bursting” increase in the amplitude of Z when the nonlinear term is acti-
vated actually indicates that most of the energy stored in the sinusoidal oscillator
is suddenly transferred to (dissipated by) the nonlinear subsystem. This highlights
the role of the constant B which controls this energy transfer. Too small a value
for B results in more accumulation of energy on the oscillator side and thus the
trajectories diverge and become unbounded (active devices saturate). Too large a
value for B results in heavy dissipation of the generated energy and eventually the
oscillations die.

Due to this understanding of the qualitative behavior of Rossler’s system, we
suggest that the nonlinear term (B + Z)X can be replaced by other nonlinear terms
which are independent of Z. Indeed, we have confirmed the observation of chaos
with the nonlinear term (B + X)Y, as shown in Fig. 5(a), which represents the X-Y
trajectory obtained by integrating (4) with A = 0.36, B = 0.4 and C = 1.5. Similar
results can be obtained with the nonlinear term (B +Y)X.

4.3. Modified rossler system

We propose a modified Rossler system with a switching-type nonlinearity instead of
the multiplier-type nonlinearity. Thus, the nonlinear subsystem described by (4c)
is modified to be:

7 =-CZ+ BX, (8a)
where either B or C is a switching term given by:
Qa1 f(Xa Y) >1

(BorC) = {az XY <1 (8b)
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Fig. 5. (a) X-Y trajectory when Rossler’s system of (4) is integrated with the nonlinear term
(B+X)Y. A=0.36, B =0.4 and C = 1.5; (b) X-Y trajectory obtained after modifying (4) with
(8) when f(X,Y)=X. A=0.3,C =12, a1 =4 and a2 = 0; and (c) X-Y trajectory obtained
after modifying (4) with (8) when f(X,Y)=Y. A=0.2,C =0.8, a1 =4 and a2 = 0.
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Two cases for f(X,Y) are investigated, namely f(X,Y) = X and f(X,Y) =Y.
Figure 5(b) shows the X-Y trajectory observed when A = 0.3, C = 1.2 and B as
given by (8b) with f(X,Y) = X, ag = 4 and ay = 0. The trajectory observed
when f(X,Y) =Y is shown in Fig. 5(c) with A = 0.2, C = 0.8 and the same B.
A trajectory similar to that of Fig. 5(b) can also be observed with A =0.7, B =1
and C as given by (8b) with f(X,Y) = X, a; = 0 and ae = 2. Again, we stress
that chaotic behavior persists when the dynamics in the X-Y plane are governed
by any of the matrices in (7).
Our modified Rossler system can be written as:

X 0 -1 —-1][x
Y| =1 A4 0 Y|, (9)
A B 0 -C||Zz

where either B or C' are as given by (8b).

It can be seen that this system has a single equilibrium point at the origin
in the region f(X,Y) < 1. The equilibrium point in the region f(X,Y) > 1
is virtual.?? For the parameter values corresponding to Fig. 5(b), the equilibrium
point at the origin has the set of eigenvalues: (—1.2,0.15+30.9887), which indicates
that it is unstable, while the virtual equilibrium point has the set of eigenvalues
(0, —0.45 £ j2.1065), which indicates that it is stable. For the parameter values
corresponding to Fig. 5(c), the two sets of eigenvalues are: (—0.8,0.1 & 50.995)
and (0,—0.3 & j2.1794) respectively. These qualitative dynamics are typical for
third-order Colpitts-like chaotic oscillators.?~19

Finally, we note that (9) can be written in the form:

X =-[(C-A)X+(1+B-A0)X + (C — AB)X] (10)

where B or C are as given by (8b) with f(X,Y) = f(X, X).
For the choice of C — A = 1 and for sufficiently small values of A such that
A% <« 1, (10) simplifies to the following two-parameter system:

X=-[X+(1-A4+B)X+(1+A-AB)X]. (11)

This system captures the dynamics of the modified Rossler system as seen in
Figs. 6(a) and 6(b) which represent the X — X trajectory in the two cases f(X, X) =
X and f(X,X) = X respectively. Figure 6(a) was obtained with A = 0.5, a; =5
and ag = 0 while Fig. 6(b) was obtained with A decreased to 0.2.

It is interesting to note that even the following single-parameter system captures
the dynamics of Eq. (10):

X = —[X +BX + X], (12)

where B is as given by (8b). Here «; is used as the bifurcation parameter. For the
sack of clarity, we show the X — X trajectory in Fig. 6(c) with a1 =5 and ap = 0.



240 A. S. Elwakil €& M. P. Kennedy

Fig. 6. (a); (b) X — X trajectory obtained by integrating (11) with cqa =5 and a2 = 0 in the two
cases f(X,X) = X and f(X,X) = X respectively. A = 0.5 for (a) and A = 0.2 for (b); and (c)
X — X trajectory obtained by integrating (12) with ey =5 and a2 = 0.
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We suggest that Egs. (11) and (12) capture in a canonical manner the qualitative
dynamics of a large class of chaotic oscillators.

5. Conclusion

A new chaotic oscillator configuration using an FDNR-Diode combination has been
reported. The chaotic attractor observed from this circuit is similar to the Col-
pitts attractor and is governed by similar dynamics. We have also established the
connection between Rossler’s system and Colpitts-like chaotic oscillators and have
proposed a canonical version of this system using a switching-type nonlinearity.
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