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Cycling Chaos

Michael Dellnitz, Michael Field, Martin Golubitsky, Andreas Hohmann, and Jun Ma

Abstract— Saddle connections between equilibria can occur
structurally stable in systems with symmetry, and these saddle
connections can cycle so that a given equilibrium is connected
to itself by a sequence of connections. These cycles provide
a way of generating intermittency, as a trajectory will spend
some time near each saddle before quickly moving to the next
saddle. Guckenheime and Holmes showed that cycles of saddle
connections can appear via bifurcation. In this paper, we show
numerically that the equilibria in the Guckenheimer-Holmes
example can be replaced by chaotic sets, such as those that appear
in a Chua circuit or a Lorenz attractor. Consequently, there are
trajectories that behave chaotically, but where the spatial location
of the chaos cycles. We call this phenomenon cycling chaos.

1. INTRODUCTION

NE of the characteristic and distinguishing features
Oof symmetric systems of differential equations is the
existence of structurally stable saddle connections that would
be regarded as highly degenerate in the absence of symmetry
(see [3]). Guckenheimer and Holmes [8] (abstracting a model
for rotating convection developed by Busse and Clever [1])
showed that it was possible for structurally stable, asymp-
totically stable, cycles of saddle connections to be created
by bifurcation at the loss of stability of a group invariant
equilibrium in a symmetric system. The resulting heteroclinic
cycle consists of a finite set of saddle points connected by
trajectories. Trajectories which approach the cycle remain for
long periods near each equilibrium before making a rapid
transition to a neighborhood of the next equilibrium. This
feature of an asymptotically stable heteroclinic cycle gives
a simple mathematical model for intermittence. (A number
of other examples are now known where heteroclinic cycles
between equilibria and limit cycles are created at a bifurcation.
See, for example, Melbourne et al. [9], Field and Swift 5],
and Field and Richardson [6]).

In this paper, we observe that the equilibria in the
Guckenheimer-Holmes heteroclinic cycle may be replaced
by chaotic sets. In this way, we present a phenomenological
mathematical model for (spatially) cycling (temporal) chaos.
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II. SYMMETRICALLY COUPLED CELLS

Golubitsky et al. [7] observed that, with an appropriate
choice of coupling, the Guckenheimer-Holmes example can
be viewed as a symmetrically coupled system of cells (see
also Dionne et al. [2]). For our purposes, we regard a cell
as a k-dimensional system of ordinary differential equations
(ODE’s)

& = f(x)

where z € RF. Thus, in the Guckenheimer-Holmes system,
k = 1 and there are three identical cells coupled in a directed
ring. Generally, let 1, z2,x3 be in R*. We consider a system
of three coupled cells of the form

1 = f(x1) + h(zs, 1)
&y = f(za) + h(z1,22) (N
i’g = f(.’l'3) + h(T2,$3)

We identify two types of symmetry in a coupled cell system
of this type: global and local. The global symmetries are
dictated by the pattern of coupling. In (1), the global symmetry
group is Z3 and is generated by the cyclic permutation

(371,11727353) = (1172*1173,321).

Local symmetries are symmetries of f. Thus, a linear trans-
formation o of R* is a local symmetry if

floz) =of(z), (z€RF).

In the Guckenheimer-Holmes system, the local symmetry
group is Zs and is generated by oz = —z. Moreover, in this
system, local symmetries of individual cells are symmetries
of the complete system (1). That is, for all local symmetries
o we have

Following Golubitsky et al. [7], we call this type of coupling
wreath product coupling. Viewed in this way, the Gucken-
heimer and Holmes [8] system has coupling term given by the
cubic polynomial

h(y,x) = yly|*z

where v € R represents the strength of the coupling.
The internal cell dynamics in the Guckenheimer and Holmes
[8] system are governed by the pitchfork bifurcation

f(z) =z —2*

which is consistent with the internal symmetry. As A varies
from negative to positive through zero, a bifurcation from
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Fig. 1. Chua circuit equations: In the first row, we display the tem-
poral evolution of a single cell without any coupling. In the following
three rows, the time series for each of the three cells is shown when
the coupling strength is chosen to be v = —2. Parameter values:
a = 18, 8 = 33.136, mp = -0.230769, m; = 0.0123077. Initial
conditions: z71(0) = (0.01,0.1,-0.2), x2(0) = (0.24.0.34,-0.01),
23(0) = (0.2,-0.3,0.1).

the trivial equilibrium (z = 0) to nontrivial equilibria (z =
+v/X\) occurs, and these bifurcating equilibria are stable in
the internal cell dynamics. Guckenheimer and Holmes [8]
show that when the strength of the coupling is large and
negative (v < 0), an asymptotically stable heteroclinic cycle
connecting these bifurcated equilibria exists. The connection
between the equilibria in cell 1 to the equilibria in cell 2 occurs
through a saddle-sink connection in the x;x2-plane (which is
forced by the internal symmetry to be an invariant plane for
the dynamics). The global permutation symmetry guarantees
connections in both the xox3-plane and the x32;-plane.

III. CYCLING CHAOS

It turns out that the intermittent cycling of the global
dynamics does not depend in an essential way on the nature
of the internal dynamics, provided that f satisfies some mild
restrictions (for example, the origin and infinity are repellors).
Detailed mathematical analysis and generalizations will appear
in Field et al. [4]. In this paper, we illustrate this observation
by numerical simulation of the internal dynamics in a three-
cell system. Our first two examples have internal dynamics
defined by (a modified) Chua circuit

mi
flyr,y2,y3) = (a(y2 — moy1 — —y:f)vyl — Y2 + Y3, —Py3)

3
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Fig. 2. Chua circuit equations: In the first row, we display the tem-
poral evolution of a single cell without any coupling. In the following
three rows, the time series for each of the three cells is shown when
the coupling strength is chosen to be 7 = —2. Parameter values:
a = 15, 3 = 33.136, mg = —0.230769, m; = 0.0123077. Initial
conditions: r1(0) = (0.01,0.1,—0.2), z2(0) = (0.24,0.34, —-0.01),
r3(0) = (0.2.-0.3,0.1).

where the internal variable z = (y1,y2,y3) and «, 8, my,
m, are constants. Our third example has internal dynamics
governed by the Lorenz equations

fy1,y2,y3) = (o(y2 — y1)s py1 — Y2 — Y193, —BY3 + Y1y2)

where o, p, 3 are constants.

In Fig. 1, we choose parameter values so that the internal
dynamics is a double scroll attractor. We present a time series
of a single cell in the first time history. The following three
time evolutions in Fig. 1 show the temporal behavior for
cell 1, cell 2, and cell 3, respectively. From this figure, we
see that when one of the cells is active and performing the
double scroll dynamics—say cell 1—the others (cell 2 and
cell 3) are quiescent (near zero). After a while, cell 1 becomes
quiescent while cell 2 becomes active, and the transition time
during which the cells interchange states is very short. The
process then repeats with cell 2 and cell 3 interchanging active
and quiescent states. Indeed, the process cycles forever, just
as in the Guckenheimer-Holmes heteroclinic cycle, but now
producing cycling chaos.

In the second example, we choose parameter values in the
Chua circuit which yield an asymmetric chaotic attractor. The
internal symmetry forces a second conjugate attractor, and
which attractor is actually observed depends on the initial
conditions in the individual cell. In Fig. 2, we illustrate this
asymmetry. For one choice of initial conditions, the internal



DELLNITZ er al.: CYCLING CHAOS

Rk v 3 A

A AAANS E A
TR

YU UUARLS A1 v AT R
¥ nRCIFi BRI

|

|

.

o

Fig. 3. Lorenz equations: In the first row, we display the temporal evolution
of a single cell without any coupling. In the following three rows, the
time series for each of the three cells is shown when the coupling strength
is chosen to be ¥ = -—0.025. Parameter values: 0 = 15, p = 58,
3 = 2.4. Initial conditions: z1(0) = (10, —11, 30), z2(0) = (10, —13, 20),
z3(0) = (10, —12,30).

cell dynamics always has y; > 0; a different choice of initial
conditions leads to an attractor where y; < 0 for all time.
When we simulate the coupled cell system, we get the same
cycling chaos but when a given cell—say cell 2-—becomes
active it chooses “randomly” which of the conjugate attractors
(y1 < 0 or y > 0) it will track.

Finally, in Fig. 3, we illustrate the phenomenon of cycling
chaos when the internal dynamics is given by the Lorenz
system. Note that the cycling exists even though the internal
symmetry in the two examples is different. In the Chua circuit
o(z) = —z while in the Lorenz equation a(y1,Y2,y3) =

(—yl, —Y2,9Y3).
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